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The need for accurate yield estimates for viticulture is becoming more important

due to increasing competition in the wine market worldwide. One of the most

promising methods to estimate the harvest is berry counting, as it can be approached

non-destructively, and its process can be automated. In this article, we present a method

that addresses the challenge of occluded berries with leaves to obtain a more accurate

estimate of the number of berries that will enable a better estimate of the harvest. We

use generative adversarial networks, a deep learning-based approach that generates a

highly probable scenario behind the leaves exploiting learned patterns from images with

non-occluded berries. Our experiments show that the estimate of the number of berries

after applying our method is closer to the manually counted reference. In contrast to

applying a factor to the berry count, our approach better adapts to local conditions by

directly involving the appearance of the visible berries. Furthermore, we show that our

approach can identify which areas in the image should be changed by adding new berries

without explicitly requiring information about hidden areas.

Keywords: deep learning, machine learning, Generative Adversarial Networks, domain-transfer, grape generation,

occlusions, yield counting

1. INTRODUCTION

With increasing competition on the winemarket worldwide, the need for accurate yield estimations
has been getting more and more important for viticulture. The variation of yield over the years is
mainly caused by the berry number per vine (90%), while the remaining 10% are caused by the
average berry weight (Clingeleffer et al., 2001), which is generally collected manually and averaged
over many years. Traditionally, yield estimations in viticulture can be done at three phenological
timepoints by (1) counting the number of bunches 4–6 weeks after budburst, (2) counting the
number of berries after fruit set (May, 1972), or (3) destructively sampling vines or segments
of vines close to harvest. Considering that yield estimation can be more accurately and reliably
determined as harvest approaches, a berry count is a promising option that can be approached
non-destructively and whose process can be automated.
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Several papers show that machine learning-based methods
for analyzing data from imaging sensors provide an objective
and fast method for counting visible berries (Diago et al., 2012;
Kicherer et al., 2014; Nuske et al., 2014; Roscher et al., 2014;
Aquino et al., 2017; Coviello et al., 2020; Zabawa et al., 2020),
and thus for automated yield predictions in the field. One
of the main challenges in deriving berry counts from image
data taken in the field is occlusions, which generally causes an
underestimation of the number of berries and yield (Zabawa
et al.1). First, occlusions of berries by other berries make it
difficult to distinguish or count individual berries. Therefore,
approaches that perform a segmentation of regions of berries
and regions without berries is not sufficient, and more advanced
methods that recognize individual instances of berries must be
applied (Zabawa et al., 2020). Second, occlusions by leaves play
a major role in underestimating the number of berries. Zabawa
et al. (see text footnote 1, respectively) perform leaf occlusion
experiments over two years and show that the yield estimation
is highly dependent on the number of visible berries. With vines
defoliated (i.e., with manually removed leaves) at pea size, they
report an average error of total yield estimation of 27%, whereas
Nuske et al. (2014) observed average errors between 3 and 11%
using images of entirely defoliated fruit zones.

In order to overcome the challenge of leaf occlusions,
defoliation can be performed in the grapefruit zone, but
this is immensely time-consuming and labor-intensive. Partial
defoliation is carried out in viticulture, for example, for
ventilation and rapid drying of the grape zone to avoid fungal
infections of the grapes or yield and quality regulation (Diago
et al., 2009). However, complete defoliation is not feasible on
a large scale or may lead to negative effects such as increased
sunburn on the berries (Feng et al., 2015) or generally have
an undesirable impact on yield results. Alternatively, machine-
learning-based approaches can be used to obtain a more accurate
estimation of the berry number. Numerous approaches rely on
information where occlusions are present, which is generally
provided as a manual input (Bertalmio et al., 2003; Barnes et al.,
2009; Iizuka et al., 2017; Dekel et al., 2018; Liu et al., 2018). In
contrast to this, two-step approaches first detect occlusions and
then fill the corresponding regions with information according
to the environment (Ostyakov et al., 2018; Yan et al., 2019).

This article addresses the challenge of occlusions caused
by leaves by generating images that reveal a highly probable
situation behind the leaves, exploiting learned patterns from
a carefully designed dataset. The generated images can then
be used to count berries in a post-processing step. Our
approach generates potential berries behind leaves based on
RGB information obtained by visible light imaging, as this is an
efficient, cheap and non-harmful approach in contrast to data
frommaterial-penetrating sensors. In order to train ourmachine-
learning method, we use aligned image pairs showing plants
with leaves and the same plants after defoliation. In detail, we

Abbreviations: cGAN, conditional Generative Adversarial Network; SMPH, semi

minimal pruned hedge; VSP, vertical shoot position.

1Zabawa, L., Kicherer, A., Klingbeil, L., Töpfer, R., Roscher, R., and Kuhlmann, H.

(2021). Image-based analysis of yield parameters in viticulture. Biosyst. Eng. (under

review).

model this problem as a domain-transfer task and regard the
aligned images containing occluded berries as one domain and
images with revealed berries as a second domain. We resort to
methods like Pix2Pix (Isola et al., 2017), that uses a conditional
generative adversarial network (cGAN) (Mirza and Osindero,
2014) and can learn the described domain-transfer. In contrast to
other works, we present a one-step approach that is end-to-end
trainable, meaning the positions of the occlusions are identified,
and patterns that need to be filled are learned simultaneously.
Through the experience the model gains during training, it learns
patterns such as grape instances with their appearing shapes, their
environment, and where they occur in the image. This knowledge
is exploited during the generation step, in which the learned
domain-transfer model is applied to images of vines that have
not been defoliated to obtain a high-probability and realistic
impression of the scene behind the leaves. In order to obtain a
berry count, the generated images are further processed with the
berry counting algorithm of Zabawa et al. (2020). In this way,
we provide a more accurate count of grape berries, since both
visible berries and berries potentially occluded by leaves are taken
into account.

A major challenge for training is that there is no large
dataset of aligned natural images that includes both images with
occluded berries and images with berries exposed by defoliation.
In addition, in our case, the spatial alignment between the image
pairs is not accurate enough since defoliation leads to a resulting
movement of branches, grape bunches, and other objects in the
non-occluded domain patches. As a result, the natural data is not
sufficient to train a model that matches our requirements of a
reliable model. Due to this, we propose the use of a synthetically
generated dataset that contains paired data of both domains. Our
main contributions of this article are:

• The true scenario behind the leaves without defoliation is
unlikely to be identified. Therefore, our approach estimates
a highly probable scenario behind the occlusions based
on visible information in the image, especially of the
surroundings of the occlusion, and learned patterns during the
training process which include for example the berry shape
and neighborhood of berries to obtain a distribution similar
to the training data.

• We present a one-step approach, which can implicitly identify
which image areas contain visible berries and which areas
are occluded without supervision regarding occluded and
non-occluded areas. This differs from approaches such as
inpainting (Bertalmio et al., 2003; Barnes et al., 2009; Iizuka
et al., 2017; Dekel et al., 2018; Liu et al., 2018), in which the
occluded areas must be known a priori.

• In addition to the acquired images, we use so-called berry
masks obtained by the approach presented in Zabawa et al.
(2020), which uses semantic segmentation to indicate in the
image which pixels belong to berry, berry-edge, and
background. During training, this leads to a more stable
and easier optimization process. During testing, the berry
mask is only needed for the input image since our GAN-
based method simultaneously generates the berry mask in
which the berries are counted, in addition to the visually
generated image.
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• Since a direct comparison of the true scenario behind
the leaves and our generated scenario is not appropriate
using standard evaluation methods such as a pixel-by-pixel
comparison, we perform a comprehensive evaluation using
alternative evaluation metrics, such as generation maps and
correlation, that assesses the performance of our approach.

• We show that the application of our approach minimizes the
offset compared to the manual reference berry count and the
variance, which is not achieved by applying a factor.

• We create various synthetic datasets and show that our
approach trained on synthetic data also works on natural data.

The article is structured as follows: After surveying related
works, we start by introducing our domain-transfer framework
and describe the different components, such as the conditional
generative adversarial network, that are used in our approach.We
explain the data acquisition and post-processing of the natural
and synthetic datasets we use in our work. We explain the
evaluation metrics we use and then describe our experiments in
which we analyze the generation quality of different synthetic
input data, compare generated results with real results in the
occluded as well as the non-occluded domain and analyze
the berry counting based on the generated results. Finally, we
investigate the application of the synthetically learned models
to natural data. We end our article with the conclusion and
future directions.

2. RELATED WORK

2.1. Yield Estimation and Counting
Since an accurate yield estimation is one of the major needs in
viticulture, especially on a large scale, there is a strong demand for
objective, fast, and non-destructive methods for yield forecasts in
the field. For many plants, including grapevines, the derivation of
phenotypic traits is essential for estimating future yields. Besides
3D-reconstruction (Schöler and Steinhage, 2015; Mack et al.,
2017, 2018), 2D-image processing is also a widely used method
(Hacking et al., 2019) for the derivation of such traits. For vine,
one plant trait that strongly correlates with yield is the number of
bearing fruits, that means the amount of berries. This correlation
is underlined by the study of Clingeleffer et al. (2001), in which
it is shown that the variation of grapevine yield over the years is
mainly caused by the berry number per vine (90%).

The task of object counting can be divided into two main
approaches: (1) regression (Lempitsky and Zisserman, 2010;
Arteta et al., 2016; Paul Cohen et al., 2017; Xie et al., 2018)
which directly quantifies the number of objects for a given input,
and (2) detection and instance segmentation approaches which
identify objects as an intermediate step for counting (Nuske et al.,
2014; Nyarko et al., 2018). Detection approaches in viticulture
are presented, for example, by Nuske et al. (2011), Roscher et al.
(2014), and Nyarko et al. (2018), who define berries as geometric
objects such as circles or convex surfaces and determine them
by image analysis procedures such as Hough-transform. Recent
state-of-the-art approaches, especially segmentation (He et al.,
2017), are mostly based on neural networks. One of the earliest
works combining grapevine data and neural network analysis

was Aquino et al. (2017). They detect grapes using connected
components and determine key features based on them, which
are fed as annotations into a three-layer neural network to
estimate yield. In another work, Aquino et al. (2018) deal
with counting individual berries, which are first classified into
berry candidates using pixel classification and morphological
operators. Afterward, a neural network classifies the results again
and filters out the false positives.

The two studies by Zabawa et al. (2019, 2020) serve as the
basis for this article. Zabawa et al. (2019) use a neural network
which performs a semantic segmentation with the classes
berry, berry-edge and background, which enables the
identification of single berry instances. The masks generated in
that work serve as input for the proposed approach. The article
by Zabawa et al. (2020) based on Zabawa et al. (2019) extends
identification to counting berries by discarding the class edge
and counting the berry components with a connected component
algorithm. The counting procedure applied in that work is used
for the analyses of the experiments.

2.2. Given Prior Information About Regions
to Be Transferred
A significant problem in fruit yield estimation is the overlapping
of the interesting fruit regions by other objects, like in the case
of this work, the leaves. Several works are already addressing
the issue of data with occluded objects or gaps within the data,
where actual values are missing, which is typically indicated
by special values like, e.g., not-a-number. The methodologies
can be divided into two areas: (1) there is prior information
available about where the covered positions are, and (2) there is
no prior information. In actual data gaps, where the gap positions
can be easily identified a priori, data imputation approaches
can be used to complete data. This imputation is especially
important in machine learning, since machine learning models
generally require complete numerical data. The imputation can
be performed using constant values like a fixed constant, mean,
median, or k-nearest neighbor imputation (Batista and Monard,
2002) or calculated using a random number like the empirical
distribution of the feature under consideration (Rubin, 1996,
2004; Enders, 2001; von Hippel and Bartlett, 2012). Also, possible
are multivariate imputations, which additionally measures the
uncertainty of the missing values (Van Buuren and Oudshoorn,
1999; Robins and Wang, 2000; Kim and Rao, 2009). Data
imputation is also possible using deep learning. Lee et al. (2019),
for example, introduce CollaGAN in which they convert the
image imputation problem to a multi-domain image-to-image
translation task.

In case there are no data gaps, but the image areas that
are occluded or need to be changed are known, inpainting is
a commonly used method. The main objective is to generate
visually and semantically plausible appearances for the occluded
regions to fit in the image. Conventional inpainting methods
(Bertalmio et al., 2003; Barnes et al., 2009) work by filling
occluded pixels with patches of the image based on low level
features like SIFT descriptors (Lowe, 2004). The results of these
methods do not look realistic if the areas to be filled are near
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foreground objects or the structure is too complex. An alternative
is deep learning methods that learn a direct end-to-end mapping
from masked images to filled output images. Particularly realistic
results can be generated using Generative Adversarial Networks
(GANs) (Iizuka et al., 2017; Dekel et al., 2018; Liu et al.,
2018). For example, Yu et al. (2018) deal with generative image
inpainting using contextual attention. They stack generative
networks to ensure further the color and texture consistence of
generated regions with surroundings. Their approach is based
on rectangular masks, which do not generalize well to free-form
masks. This task is solved by Yu et al. (2019) one year later
by using guidance with gated convolution to complete images
with free-form masks. Further work introduces mask-specific
inpainting that fills in pixel values at image locations defined
by masks. Xiong et al. (2019) learn a mask of the partially
masked object from the unmasked region. Based on the mask,
they learn the edge of the object, which they subsequently use
to generate the non-occluded image in combination with the
occluded input image.

2.3. No Prior Information About Regions to
Be Transferred
Methods that do not involve any prior knowledge about gaps
and occluded areas can be divided into two-step and one-step
approaches. Two-step approaches first determine the occluded
areas, which then are used, for example, as a mask to inpaint the
occluded areas. Examples are provided by Yan et al. (2019), which
visualize the occluded parts by determining a binary mask of
the visible object using a segmentation model and then creating
a reconstructed mask using a generator. The resulting mask is
fed into coupled discriminators together with a 3D-model pool
in order to decide if the generated mask is real or generated
compared to the masks in the model pool. Ostyakov et al. (2018)
train an adversarial architecture called SEIGAN to first segment
a mask of the interesting object, then paste the segmented region
into a new image and lastly fill the masked part of the original
image by inpainting. Similar to the proposed approach, SeGAN
introduced by Ehsani et al. (2018) uses a combination of a
convolutional neural network and a cGAN (Mirza and Osindero,
2014; Isola et al., 2017) to first predict a mask of the occluded
region and, based on this, generate a non-occluded output.

3. MATERIALS AND METHODS

3.1. Framework
In our work, we regard the revealing of the occluded berries as
a transfer between two image domains. We first detail this and
show how we model this transfer for our data. Then we will lay
out the cGAN and the framework we use for this task. Finally, we
show how we train this network.

3.1.1. Domain-Transfer Framework
On a high level, the task of revealing the occluded berries can be
described as generating a new impression of an existing image.
We model this generative task as a transfer of an existing image
from one domain, the source domain, to another domain, the
target domain. In our work, we regard images where berries

are occluded by various objects as the source domain and call
it occluded domain. Accordingly, our target domain contains
images of defoliated plants, and we call it non-occluded domain.
Therefore, by performing this domain-transfer, we aim to reveal
hidden berries. Samples of both domains are shown at the top
of Figure 1.

This task can typically be learned by a cGAN, like Pix2Pix in
our case. We train this network using aligned pairs of images
from the occluded domain and the non-occluded domain and
indicate them with xocc and xnon, respectively. The first ones
are used as the network input and the latter ones, being the
desired output, as the training target. Due to computational
limitations, we use cropped patches from the original data and
convert them to grayscale to develop an efficient approach that
is independent of the berry color. In practice, we accompany
the images of each domain with a corresponding semantic mask,
that indicates per image pixel the content based on the classes
berry, berry-edge, and background. This mask supports
the discriminability of relevant information like the berries from
the surrounding information in the image and the generation
of separated berries, supporting the later counting step. After
training, we use the cGAN to generate images, x̃non, that we
further process with a berry counting method.

Since we only have limited amounts of data available for
training and testing, we resort to a dataset consisting of synthetic
images for the occluded domain and natural images for the
non-occluded domain that we describe in detail in section 3.2.
In addition, we test our trained model on fully natural data
to analyze the generalizability of the model. For the training
set, the non-occluded domain contains natural images, whereas
the images from the occluded domain are derived from the
former domain, where berries are artificially occluded with leaf
templates. To differentiate the different datasets of images, we
further qualify the natural images with index N and the synthetic
images with index S, which results in the two occluded domain
groups: xNocc and x

S
occ. The generated images are accordingly

indicated by x̃
N
non and x̃

S
non. We therefore train the model with

input images xSocc and use x
N
non as target images. Finally, we apply

the model on natural images xNocc and compute the berry counts
of the generated output images, x̃Nnon.

3.1.2. Conditional Generative Adversarial Networks
The core of our framework is the cGAN that we use to generate
images with berries being revealed. Specifically, we use the
Pix2Pix (Isola et al., 2017) network and training method, which
is illustrated in simplified form in Figure 2.

The model consists of two networks, the generator, and
the discriminator. The generator network G takes images with
occluded berries as an input and is intended to generate
images with revealed berries G (xocc) = x̃non that cannot be
distinguished from real images xnon of the non-occluded domain.
The adversarially trained discriminator network D , on the other
side, tries to discriminate between generated images x̃non and real
images xnon. The generator used in Pix2Pix is based on a U-Net
(Ronneberger et al., 2015), the discriminator D on a PatchGAN.

As described by Goodfellow et al. (2014), both parts of GANs
are trained simultaneously using a min-max approach. The goal
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FIGURE 1 | Domain-transfer framework. We transfer images from the source domain with occluded berries to the target domain with revealed berries using the

Pix2Pix cGAN. We train and test the model on synthetic data and subsequently apply it to natural data. Finally, a berry counting is performed on the generated

outputs. Further evaluation steps will be performed in our experiments.

FIGURE 2 | Our network structure based on the Pix2Pix framework (Isola et al., 2017). An input image xocc of the occluded domain is transferred to a non-occluded

domain using a generator network G . The discriminator network D distinguish whether the output of G looks real or generated.
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FIGURE 3 | Acquired images of the Phenoliner (Kicherer et al., 2017) for two different kind of cuttings: semi minimal pruned hedge SMPH (A–C) and vertical shoot

positioned system VSP (D–F). (A,D) Show example images before defoliation in the occluded domain. (B,E) Show example images after defoliation in the

non-occluded domain.

of the discriminator during training is to be able to distinguish
as good as possible between real and generated images. For
this, the discriminator uses a mini-batch of input images xnon
and computes the discriminator loss lD real

. Additionally, it uses
generated images x̃non obtained from the generator G and
computes the corresponding loss lD gen

. For both computations,

the mean squared error (MSE) loss lMSE is used. The overall loss
lD of the discriminator is calculated as:

lD =
1

2
· (lD fake

+ lD real
) (1)

The objective is to maximize this loss, as this means that the
discriminator can distinguish between generated and real images
with ease. The weights of the discriminator network are then
updates with respect to this loss.

When generating new images, the generator tries to trick
the discriminator at the same time, which is the adversarial
part of the network. Compared to the maximization of the
discriminator loss, the objective of the generator is to minimize
the generator loss lG. This is calculated from a combination of
MSE loss computed by D [G (xocc)] referred to the reference label
generated and a l1 loss, which avoids blurring. The l1 loss is
computed using real and generated images, xnon and x̃non, from
the non-occluded domain. The generator loss lG is then used to

update the generator’s weights.

lG = lMSE(D (G (xocc)))+ λ · l1(xnon, x̃non) (2)

The weighting factor λ adjusts the scale of the losses to each other
and is, in our case, λ = 100.

The minimization of the generator loss lG results in either a

strong generator or a very weak discriminator. If the loss becomes
maximal, the opposite possibilities can occur. The objective is to
balance both adversarial goals at the end of the training in the
best possible way by realizing both at the same time.

3.2. Data
3.2.1. Study Site
The data, we use in this work, were acquired at the experimental
fields of JKI Geilweilerhof located in Siebeldingen, Germany.
It was acquired using the Phenoliner (Kicherer et al., 2017), a
reconstructed grape harvester that can be used as a phenotyping
platform to acquire geo-referenced sensor data directly in the
field. A description of the on-board camera setup can be
found in Zabawa et al. (2020). The images were acquired
in two different training systems of the cultivar Riesling
(DEU098_VIVC10077_Riesling_Weiss_DEU098-2008-085): (1)
Vertical shoot positioned (VSP) vines (Figure 3C) and (2) vines
trained as semi minimal pruned hedges (SMPH) (Figure 3F)
were chosen due to diverse difficulties in image analysis (Zabawa
et al., 2020). The acquisition took place in September 2019 and
2020, before harvest at the plant growth stage BBCH89, and in
each year the images were taken 1 day before (Figures 3A,D)
and right after defoliation (Figures 3B,E). In 2019 50 cm
and 2020, respectively, 100 cm of the grapevine canopy have
been defoliated.

In our framework, we use three different types of inputs:

• Natural data: Images acquired in the vineyard before and
after defoliation. For our studies, we use grayscale images. We
denote this dataset with XN.

• Synthetic data: Images acquired in the vineyard after
defoliation. Images with occluded berries are synthetically
generated. We denote this dataset with XS.

• Semantic segmentation masks (berry masks): So-called
berry masks obtained by a semantic segmentation approach
presented in Zabawa et al. (2019). Each pixel in these
images is assigned to the class berry, berry-edge, or
background. We denote this data as XB.

The use of the mentioned grayscale images is indicated by the
index G and with index B we denote the use of the berry masks.
Moreover, we define XGB as the input where the grayscale image
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FIGURE 4 | Example patches extracted from images of (A) the occluded and

(B) non-occluded domain. One row shows the same patch in RGB, grayscale,

and berry mask format. One column represents a patch pair {xocc, xnon}.

and the berry mask are stacked to form a multichannel 2D input.
In the following, the used data is explained in more detail.

3.2.2. Natural Data
We convert the acquired RGB images into grayscale images in
order to develop an efficient approach that is independent of
the berry color. Covering the whole variability of possible berry
colors is complex and not feasible in our case. For example, in the
case of green berries, the color also does not serve to differentiate
them from leaves.

Since the Phenoliner platform revisits the vine row for each
data collection of the two domains, the images depicting the same
scene are acquired at different times and from different positions,
leading to differences in translation, rotation and scale.Moreover,
the defoliation of vines causes a movement of the branches and
grape bunches, and additional environmental changes between
the two acquisition time points can result in different scenes in
the aligned patches.

However, to obtain aligned image pairs for a qualitative
evaluation, we manually align images from both domains. For
this, we compute a four-parameter Helmert transformation
(Helmert, 1880) between the two domains, where we manually
define corresponding keypoints per image pair to calculate the
parameters. We apply this transformation to images from the
non-occluded domain to register them to the occluded domain.

Due to computational limitations, we use a sliding window
of size 656 px × 656 px and stride 162 px to extract patches
from the grayscale images. Figure 4 illustrates one RGB patch,
the grayscale patch, and the corresponding berry mask, which
is explained in the following subsection, for both domains. We
denote the aligned patch pair xN = {xNocc, x

N
non}, where x

N ∈ XN.

3.2.3. Semantic Segmentation Mask (Berry Mask)
Besides the acquired images, we use a berry mask, obtained
with a semantic segmentation approach, presented by Zabawa
et al. (2019). The identification of regions containing berries
and the detection of single berry instances is performed

with a convolutional neural network. The network uses a
MobilenetV2 (Sandler et al., 2018) encoder and a DeepLabV3+
decoder (Chen et al., 2018). The network assigns each image
pixel to one of the classes background, berry-edge, or
berry, which corresponds to the grayscale values 0, 127,
and 255. In contrast to a standard semantic segmentation
without distinguishing between different instances, we use the
additional class berry-edge to ensure the separation of single
berries, which allows the counting of berries using a connected
component approach.

For our task of generating a highly probable scenario behind
leaves, the berry mask supports the discriminability of relevant
information like the berries from the surrounding information in
the image, and the generation of separated berries. In addition,
since the berry masks contain a masking of existing berries, it
provides further knowledge about which areas in the images do
not show occlusions and should be preserved in the revelation
process and where potentially occlusions might appear, which are
areas that are unmasked.

Since we are interested in scenes in the image that depict
berries, we only integrate patch pairs in training and testing,
whose berry mask of the non-occluded domain contains
more than 1/24 background pixels and mask of the occluded
domain contains at least one pixel whose class differs from the
background class.

3.2.4. Synthetic Data
One challenge for our application is that the amount of paired
data from both domains containing both, occluded and non-
occluded regions of berries, is limited for training a reliablemodel
and for evaluation. We, therefore, resort to generate artificially
modified images, where berries are artificially occluded, based on
natural images of defoliated plants. This allows us to generate a
large dataset to ease the described lack of natural images of both
domains. We denote this synthetic dataset with XS. The natural
patches xNnon of the non-occluded domain serve as a basis. We
create paired patches {xSnon, x

S
occ} where x

S
non = x

N
non.

To generate xSocc, we apply artificial data modification on both
training and test data. We artificially occlude the patches using 24
different wine leaves (Figure 5B) with various shapes extracted
from the natural dataset and use them as occluding objects in
the patches. We use 18 leaves for augmenting the training set
and six leaves to augment the test set. On the basis of one image
patch x

S
non, we create up to nine corresponding synthetically

augmented versions of x
S
occ for the training set, resulting in

nine aligned image patch pairs. During the procedure, a leaf
is randomly selected from the set of leaves and rotated by a
randomly chosen angle α ∈ {−50,−30,−10, 0, 10, 30, 50, 70}.
Converted to grayscale, it randomly overlays the grayscale
patch and occludes parts of the visible berries. These steps
are also performed for patches x

S
non of the test set. However,

here only three new patch pairs are created. After applying
artificial data modification, the proportion of test data amounts
to ∼18–23% of the extracted patches depending on the type of
defoliation (see Figure 6B). The split of the data into training
and test data is illustrated visually and numerically in Figure 6.
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FIGURE 5 | (A) Visualization of synthetic data creation. The visualization indicates the use of an artificial leaf to calculate the corresponding mask of xSocc of the

occluded domain instead of using the segmentation mask prediction based on the occluded RGB-image.Exemplary leaves used for data augmentation. (B) Shows

exemplary leaves used for data augmentation.

FIGURE 6 | Dataset composition. (A) Shows the visual division of training and test data for the two data sets semi minimal pruned hedge (SMPH) (see Figure 3C)

and vertical shoot positioned system (VSP) (see Figure 3F) which were collected in the years 2019 and 2020. The data sets are taken from different rows R. Each row

corresponds to one of the two sets. In 2020 the same rows were run twice. Once left (R15.1 and R8.1) and once right (R15.2 and R8.2) of the row. Orange marked

areas are used for training, blue marked ones for testing. The table shown in (B) indicates the corresponding numbers of training and test data patches.

The test data is taken from the dataset collected in 2020
(see Figure 6A).

For each synthetic grayscale image, we calculate a
corresponding berry mask. However, depending on the
used procedure, the appearance of the berry mask differs. In our
work, we create the masks for the two domains, as illustrated
in Figure 5A. The mask of the non-occluded patch x

S
non is

based on the segmentation step, described in Section 3.3.2,
which needs RGB images as input. We compute the mask
of xSocc by overlaying the pixels of the non-occluded mask of
x
S
non that are covered with a leaf in the RGB, or respectively
grayscale patch. These pixels in the berry mask are assigned
to the class background. The leaf pixels adjacent to berry
pixels are changed to berry-edge pixels. In this way, the
overlapped berries have a closed contour. By adding these edges,
the synthetic data thus has the same characteristics as berry
masks derived from the natural data. With this step, we create
two corresponding masks, xSocc and x

S
non, which match exactly in

the non-occluded pixel.

Another way to define the occluded mask is a direct
computation as for xSnon using the segmentation step to create
a predicted mask of the patch. Since the berry mask is an
estimation, the class of individual non-occluded pixels may differ
between x

S
non and x

S
occ. For a simplified analysis, we have chosen

the first option.
Overall, for dataset VSPXS, we obtain 20.556 synthetic patch

pairs, and for dataset SMPHXS, we obtain 30.972 synthetic patch
pairs Figure 6B.

3.2.5. Challenges
Various challenges occur in the data, which influence our
training and thus our results. Since our reference masks are not
manually derived but are estimations, uncertainties can occur.
For example, not all visible berries are entirely shown in the
images of the non-occluded domain. Therefore, it can happen
that either berries are missed or only partly detected in the mask.
Additionally, the estimated contour in the berry mask may not
be closed and parts of the berry region may be classified as
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background. Thus, these errors in the reference could be learned
in the model. Furthermore, there are images in the non-occluded
domain, which contain leaves despite defoliation. In an ideal
case, the model learns to ignore these faults in defoliation. Other
challenges are the varying sharpness of the patches. This can be
caused by resizing the data, shadows, or the varying distance of
the berries to the camera. Furthermore, the illumination varies
within the data, e.g., due to the coverage by surrounding objects
like branches or leaves or the distance of the berries to the camera.
Also, worth noting are the different growth stages of the grapes in
2019 and 2020, so the grapes have different sizes due to different
berry sizes.

3.3. Model Evaluation
3.3.1. Data Post-processing
After the test phase, the generated masks do not only contain the
values 0, 127, and 255. There are also mixed pixels that are not
clearly assigned to one of the three classes. We use thresholding
to ensure that only the values 0, 127, and 255 appear in the mask.
We use the following class assignment.

• Pixel values in the interval [0, 50] are set to value 0 and
assigned to class background.

• Pixel values in the interval [50, 180] are set to value 127 and
assigned to class berry-edge.

• Pixel values in the interval [180, 255] are set to value 255 and
assigned to class berry.

3.3.2. Evaluation Metrics
In the following, we describe several evaluation metrics used for
our experiments. The first metric we use is the area Fc, that we
define as the number of pixels within a mask that correspond to
a class c with c ∈ {background,berry-edge,berry}. With
area Fc and the generated area F̃c, which is based on the generated
mask of the cGAN, we calculate the intersection over union IoU
by dividing the area of overlap by the area of union.

IoUc =
Fc ∩ F̃c

Fc ∪ F̃c
(3)

The IoU compares the similarity between two arbitrary shapes.
The second metric we use is the pearson product-moment

correlation coefficient. It gives a measure of the degree of linear
relationship between two variables. The correlation coefficient
is obtained by the correlation coefficient matrix Q, which is
calculated by means of the covariance matrix C,

Qi,j =
Ci,j√

Ci,i · Ci,j
(4)

where i and j indicate the row and column index, respectively.
The values of Q are between−1 and 1, inclusive. The correlation
coefficient ρ between two variables can then be expressed by
ρ = Q0,1. A correlation coefficient ρ equals 1 indicates that both
input variables are equal. We use the correlation to compare the
generated images x̃non from the model with the input xocc as well
as the target output xnon on pixel level.

The coefficient of determination, also denoted by R2, indicates
the relationship between a predicted value with respect to a
reference value. It provides a measure of how well-observed
references are replicated by the model. In our case, we use the
R2 value for the comparison between the predicted number of
berries generated by the model and the reference number from
the berries manually counted in the non-occluded domain. Plots,
as illustrated in Figure 10, represent the generated distribution
of the model compared to the reference. Please note, that the
gray line represents the reference values. The optimal generated
samples are distributed along this line, reflected in a R2 value
equal to 1.

The counting is based on the procedure described in the work
of Zabawa et al. (2020). The counting is performed based on
the masks, which are predicted with the convolutional neural
network presented in their work. The classes background
and berry-edge are discarded, and the counting is solely
performed with pixels of the class berry. Before counting
the number of connected components of the berry mask, we
introduce geometrical and qualitative filter stages to improve
the count. Filtering follows the observations of Zabawa et al.
(2020) (Table 3) which show that when the filter is applied, the
misclassifications for VSP cutting decrease by 9% and for SMPH
cutting by 11%. For the first step of filtering, we discard elements
that are smaller than 25 pixels, since these artifacts are too small
to represent berries. Secondly, we exploit the knowledge that
berries are roughly round by removing objects with a minor-
major-axis ratio below 0.3 and an insufficient area. The actual
area of each component is compared to the expected area based
on a radius, which is computed as the mean of the minor and
major axis of the component. Lastly, we check how well each
object is surrounded by an edge, since most high confidence
predictions are well surrounded by an edge. For further details,
we refer the reader to Zabawa et al. (2019).

Another metric we use for a visual comparison is the
generation map. Generation mapping is used to visualize the
differences between two masks. In our case the distances are
calculated between (1) the input mask xocc and the generated
mask x̃occ (Figure 7A), (2) the target output mask of xnon and
the generated mask of x̃non (Figure 7B), and lastly (3) the
target output mask of xnon and the generated mask of x̃non

including only two classes, where berry and berry-edge
are considered as one class (Figure 7C). We denote this mask as
binary mask.

The different colors allow us to make a statement about the
area in which, for example, berries are generated where none are
present in the reference. The colors can be analyzed as follows:
For Figures 7A,B, at pixel positions with a medium orange and
medium blue discoloration, either the class berry is predicted to
be an edge or the class edge is predicted to be a berry. These two
cases are acceptable for our task, since we do not want to map
the reference, but generate images, which provide highly probable
results with a distribution that matches the input. The other pixel
values are to be avoided, since at these positions for a light and
dark orange discoloration the classes berry and berry-edge
are generated, where in the reference background occurs. At
the positions with a light and dark blue discoloration the class
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FIGURE 7 | Example representation of generation maps in (A) the occluded domain, and (B,C) the non-occluded domain for the berry mask (B) and a binary mask

(C) where classes berry B and berry-edge BE are combined to one class. Background is indicated by BG and if there is no class change it is indicated by NC

for no change.

background is generated, where in the reference the class
berry or berry-edge is present. The generation map, where
only two classes are included, highlights the non-acceptable pixel
regions in the generated map.

4. RESULTS

4.1. Experimental Setup
Our experiments are designed to apply a domain-transfer using
cGANs (section 3.1.2) to (1) learn a distribution by which we can
generate a highly probable scenario of how occluded grapes could
look like depending on the input, and (2) improve the counting of
grapevine berries in images. To address the challenge of limited
amount of natural data XN, we perform four experiments based
on a synthetic dataset XS. In Experiment 5 (section 4.6), we show
the applicability to natural data XN based on the models and
results learned in earlier experiments.

For our experiments, we define five different datasets, which
are listed in Table 1. In addition to the natural data, described in
section 3.3.1, we introduce a synthetic dataset in section 3.3.3. All
five datasets, Dataset 1-5, will again be divided into the different
types of defoliation SMPH and VSP. For our experiments, we also
distinguish the set of input channels used. We claim that using a
combination of grayscale image (G) and berry mask (B), denoted
as GB, gives more accurate results both visually and in respect to
berry counting than using the berry mask alone without grayscale
information. We support this claim in Experiment 1. In the
following experiments, the datasets are accordingly used with
GB channels.

We resize all image patches to a uniform size of 286 × 286 px
with nearest neighbor interpolation. During training, we follow
the procedure of Isola et al. (2017) and add small variations to
the data in each epoch by randomly cropping patches of size
256 × 256 px from the given patches. Additionally, patches are
randomly flipped vertically, and the values within the patches
are scaled and shifted to the range [−1, 1]. For testing, only
scaling and shifting of the values to the range [-1,1] is carried
out. The network output is scaled back to the value range [0, 255]
for visualization.

TABLE 1 | Definitions of the used datasets.

Definition
N S SMPH VSP GB B Experiment

1 2 3 4 5

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

The table shows which kind of data is used for which experiment.

To train the models, we use an Intel Core i7-6850 K 3.60 GHz
processor and two GeForce GTX 1080Ti with 11 GB RAM. The
models are trained over 600 epochs. We use the Adam optimizer,
where the learning rate is constant at 0.0004 for the first 300
epochs and is reduced linearly toward 0 for the last 300 epochs.

4.2. Experiment 1—Comparison of
Generation Quality Based on GB and B
Data
With the first experiment, we analyze how the grayscale channel
influences (i) the reproduction of hidden berries and (ii) the
counting of berries per image. With the help of the grayscale
channel G, it is possible to derive information about the presence
of objects such as berries, leaves, and branches. Theoretically, this
information helps to identify positions in the image where berries
might be generated, for example, behind leaves or branches.
In practice, however, in the non-occluded reference, a part of
the berries is not present, since a proportion of berries is still
occluded due to leaves or bigger branches not being cut away.
This makes training more difficult, since it is generally learned
that new berries should not be generated at the position of
branches that have not been cut away. This implies, that we
cannot expect to make new berries visible in the generated output
x̃non while testing, that are never present in the reference data
xnon of the training set.

To get further insights into this, we analyze whether ignoring
the G channel leads to a generation of berries in areas such as
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FIGURE 8 | Visual representation of generated test results x̃non in the non-occluded domain of Dataset 1 including GB channel and Dataset 2 including only B

channel in comparison to reference target output xnon of the non-occluded domain and input xocc of the non-occluded domain. Three example (A–C) are shown. The

first row shows the G channel of XGB. The second row illustrates the mask B of XGB. The last row represents the corresponding result of XB.

branches. Moreover, we investigate if using channel B only is
better suited on natural data, because information such as color,
exposure, and lighting conditions have no influence. Thus, this
experiment determines that the G channel adds value to the
experiments and shows what this added value looks like.

4.2.1. Used Data, Model, and Evaluation Metrics
For this experiment, we train a cGAN model on each of the
training sets of Dataset 1 and Dataset 2. The evaluation is based
on the corresponding test sets. Since we want to determine
the value of the G channel with this experiment, we limit the
used data exclusively to defoliation type VSP. SMPH type shows
proportionally similar outcomes to the VSP results.

To compare the two datasetsXB andXGB, we use the described
metrics in Section 3.4.2. We compare the correlation and the
IoU in the occluded domain between the input xocc and the
generated input x̃occ, as well as in the non-occluded domain
between the target output xnon and the generated output x̃non for
both datasets. The generated input x̃occ is computed by taking the
generated output x̃non and occlude the same pixels in the berry
mask which are occluded in the input by a synthetic leaf.

4.2.2. Results
Figure 8 shows three example results to visually compare XB and
XGB. The first two columns of an example show the reference
of the two domains, where the third column represents the
generated output x̃non. The first row shows the grayscale channel
of GB, the second row shows the mask channel of GB, and the
bottom row shows the mask channel of B.

Using data without the G channel leads to higher
generalizability regarding different varieties such as color,
lighting conditions, and occlusions. Remarkable for the mask
of B (row 3) is that for input patches containing many berries,
proportionally too large and therefore too few berries are
generated in x̃non of the test results. This applies to the entire
dataset and is demonstrated by Figures 8A,B. Generated berries

in x̃non of XGB adapt better to existing berries in mask xocc than
x̃non of XB. Furthermore, it turns out that the model trained
on XB has problems in generating patches with many berries.
The berries are not only too big, but also in general berries are
difficult to represent in their shape, as seen in Figures 8B,C.

Another positive aspect of XGB is the already mentioned
point that background information of the grayscale patch
is included in the generation of new berries. The model
learns to recognize where background is present in the patch
and thus does not generate new berries in x̃non in contrast
to the model trained on XB. This is particularly obvious
in Example 1 (see Figure 8A), where a whole grape bunch
is generated in the center of the mask. In the reference
input and output of G, it is visible that on this position,
background occurs.

In the following, we will take a look at the objective metrics
described above. If we compare them regarding the XGB and
XB input, we notice that the results for correlation between
xocc and x̃occ are similar (see Figure 9A). For XB, there are
more generated patches with a correlation smaller than 0.8
and, therefore, less with a higher correlation. The correlation
histogram between xnon and x̃non, shown in Figure 9B, shows
different distributions for the datasets. While the correlation
histogram of BG, presented in orange, shows a left-skewed
distribution, the amount of test patches of B increases on
average with increasing correlation. At a correlation in the
interval of [0.99, 1], represented by the right bar, the distribution
shows a striking peak. However, there is a larger proportion
of values below a correlation of 0.85. Even in the interval
[0.85, 0.99], the percentages of patches for GB are higher than
for B.

Figures 9B, 10C present a counting comparison of the
different models in the non-occluded domain using a R2-Plot.
Additionally, Figure 9A shows the counting results without
domain-transfer, i.e. no additional generated berries. Counting
applied to the target xnon in the non-occluded domain serves
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FIGURE 9 | Mask-based comparison of GB and B data with respect to (A) the correlation between input patch xocc and generated input patch x̃occ in the occluded

domain, and (B) the correlation between target output xnon and generated output x̃non in the non-occluded domain. Shown is the percentage of test images that are

assigned to a specific range of correlation. One bar corresponds to the range of 0.01.

FIGURE 10 | Graphical visualization of the berry counting by a R2-Plot. Row 1 illustrates the results for VSP defoliation while row 2 illustrates the results for SMPH

defoliation. (A,D) Show the input of the occluded domain and (B,C,E) of generated berries in the non-occluded domain. Shown is the relation between the generated

output x̃non in relation to reference xnon for data with input channel B (B) and GB (C,E). The coloration of the data points in the plots (B–D) indicates the added

number of berries compared to the non-occluded domain.

as the counting reference and is represented by the diagonal
gray line. We observe that the results with input GB give
the best matched results with respect to the reference. This
is indicated visually as well as by the R2 value of the
different models, which is the highest for our approach in
the non-occluded domain with input GB. As in the visual

evaluation, the counting plot for input B in Figure 10B

shows that the model indicates problems generating berries
with a larger number of berries per patch. Also in the GB
results, we observe that, especially with a reference counting
number of more than 150 berries, the model does not reach
the reference.
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4.3. Experiment 2—Real vs. Generated
Results in the Occluded Domain
In this experiment, we investigate whether the regions showing
berries in the occluded domain stay unchanged in the transferred
non-occluded domain. Furthermore, we verify that new berries
are generated exclusively in the occluded area, and thus, the
model detects where the appearance of berries is very likely.

4.3.1. Used Data, Model, and Evaluation Metrics
For this experiment, we use synthetic Dataset 1 of the VSP
defoliation. For evaluation, we use different masks: The first mask
is the so-called generated input mask x̃occ, for which we take the
generated output x̃non of the test set and overlay it with the leaf
used for data augmentation of the synthetic input xocc. The other
mask is the so-called baseline mask xnon,leaf of this experiment.
For this purpose, we use the target output xnon and overlay it
likewise with the leaf used for data augmentation of the synthetic
input xocc. Thus, only the non-occluded pixels of xocc will remain
visible in x̃occ and xnon,leaf. The evaluation is then performed on
the pairs {xocc, xocc,leaf} and {xocc, x̃occ}.

We use IoU and correlation as comparative metrics for this
experiment. Additionally, we create generationmaps which show
the differences between the masks within each of the pairs
{xocc, xocc,leaf} and {xocc, x̃occ}, as illustrated in Figure 11. For this
experiment, the first three rows are of interest to us. The first row
shows the respective grayscale patch of the generation maps. The
second row shows the differences within the pair {xocc, xocc,leaf}.
Row three shows the differences within the pair {xocc, x̃occ}. The
columns indicate different patch examples.

4.3.2. Results
The reference correlation within the mask pair {xocc, xocc,leaf}
is above 0.98 for all test patches. With our method, we
manage to achieve a correlation of over 0.98 within the pair
{xocc, x̃occ} for about 65% of the test images (see Figure 9A,
orange). The remaining 35% are largely distributed over a
correlation within the interval [0.75, 0.98]. The correlation
strongly correlates with the IoU calculation of the berry
area. The low correlations are either due to artifacts in the
generated masks or to test images with a high number of
berries. In this case, the model does not transfer all non-
occluded pixels one to one into the non-occluded domain. The
effect of the amount of berries in the patch is shown in the
generation maps in Figure 11 {column 1, row 3} and {column
3, row 3}.

For the patch examples in columns 2, 4, and 5, the
generation maps of the pairs {xocc, xocc,leaf} are almost
identical to the generation maps of the pairs {xocc, x̃occ}.
Such maps correspond to correlation values close to 1.
It is noticeable that in all five examples, the border of
the leaf used for data augmentation is highlighted in
the generation maps. The coloring occurs at transitions
between the leaf and the adjacent berry-edge and
berry pixel.

4.4. Experiment 3—Real vs. Generated
Results in the Non-occluded Domain
In this experiment, we investigate the similarity of our generated
output x̃non compared to the target output xnon in the non-
occluded domain.

4.4.1. Used Data, Model, and Evaluation Metrics
In this experiment, Dataset 1 is used to train the model. Since
we are aiming only for a highly probable result rather than the
exact position and shape of specific berries, for our evaluation,
we additionally create a binary mask based on the berry mask,
which includes only the classes berry and background.
For this, we merge the classes berry and berry-edge.
We compare the mask pair {xnon, x̃non} of the non-occluded
domain in respect to the berry and binary mask. We evaluate
the correlation and IoU within this pair. Furthermore, we
create generation maps that illustrate the difference between
this pair. Exclusively for the berry mask, we calculate the
area and diameter of all individual berries in the entire test
data set.

4.4.2. Results
The correlation (Figure 12A) shows a similar left-skewed
distribution for berry mask and binary mask. The majority of
the test images show a correlation of above 0.8. Although our
approach does not aim to generate the exact position and shape
of berries, the results indicate that the similarity of the generated
results and the reference are high. The IoU in Figure 12B also
supports this finding. The IoU of the binary mask has on average
higher values and is closer to the possible maximum than the
berry mask. The generation maps from Figure 11 also show this
property in the fourth and fifth row. The fourth row shows
example results for the berry mask, where two cases can be seen.
Case 1: Themedium orange andmedium blue colors in the fourth
row illustrate pixels where the classes berry and berry-edge
are confused. This incorrect generation is acceptable due to the
desired property of highly probable results instead of exactly
matching results. Case 2: Dark and light blue, and dark and light
orange are incorrectly generated classes that need to be avoided.
In the fifth row, these pixel regions are highlighted by dark blue
and dark orange. These regions either represent berries where
there are no berries in the reference, or vice versa. Such incorrect
generations shift the position and size of the grape bunches. In
the example maps, however, it can be seen that Case 1 occurs
predominantly. It is obvious that berries are predicted in the right
areas, but their shape and position do not correspond exactly to
the reference.

At the transition from image areas with berries to
background pixels, the second case occurs where too
small or too large grape bunches are produced, because either too
few or too many berries are generated. This is illustrated by the
second and fourth column. The generation maps of the binary
masks only highlight the areas that contradict the property of
highly probable results.

To further check the similarity between generated and
reference data, we consider the distributions for area and
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FIGURE 11 | Generation maps between target berry masks and generated output berry masks, as described in Section 3.4.2. The first row illustrates the respective

grayscale input image. The second row shows the input xocc compared to the target output occluded by the leaf used for creating the input xnon,leaf. The third row

shows the maps in the occluded domain. The input xocc is compared to the generated output occluded by the leaf used for creating the input x̃occ. Second and third

row occur in the occluded domain. The fourth and fifth row show the maps of the non-occluded domain. The target output xnon is compared to the generated output

x̃non. In the fourth row all three classes are included. The last row illustrate the same, but including only two classes. Classes berry-edge BE and berry B are

combined in one class. Background is indicated by BG and if there is no class change it is indicated by NC for no change.

diameter within the berry masks shown in Figures 12C,D.
The distributions of the metrics are highly similar between
generated result end reference. For both metrics, there is a
slight tendency toward an increase in area and diameter for the
generated berries.

4.5. Experiment 4—Counting in the
Non-occluded Domain
Since the number of berries is of high importance for yield
estimation, we investigate the estimation of this number in
this experiment. We compare the counts based on the input
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FIGURE 12 | The upper plots show a mask-based comparison within the non-occluded domain between berry mask and binary mask including only two classes for

the metrics (A) correlation between xnon and x̃non and (B) IoU of the berry pixel in xnon and x̃non. The lower plots (C,D) show a comparison of area and diameter per

berry between target output xnon and generated output x̃non in the non-occluded domain. Only areas up to 1,300 px and diameters up to 45 px are plotted.

patches in the occluded domain and the target patches in the
non-occluded domain with the generated results of our approach.

4.5.1. Used Data, Model, and Evaluation Metrics
For this experiment, we use the synthetic datasets Dataset
1 and Dataset 3 based on VSP and SMPH defoliation. Our
model is trained on both training sets and evaluated on the
corresponding test sets. During testing, we consider only the
mask of the data patches. For the evaluation, we use the R2-
Plot to plot the absolute count of the input (Figures 10A,D)
and the absolute count of the generated output of our method
(Figures 10C,E) with the reference count from the target mask,
respectively. Furthermore, we examine the distribution of the
relative deviations from the reference (see Figure 13).

4.5.2. Results
Counting in the occluded domain, presented in Figures 10A,D,
shows that there is an underestimation of the number of
berries compared to the reference. Our model shows a shift of
the number of berries toward the reference for both types of
defoliation. In both cases, the R2 value increases compared to
the R2 value of the occluded domain, which corresponds to a
better approximation of the data compared to the reference. It is
important tomention that not only the sample distribution shifts,
but also compresses and concentrates along the reference line.

Figure 13 supports this observation. The plots show the
relative difference of the counted berries in the occluded domain

and our method in the non-occluded domain compared to
the reference counting. Our method (blue) depicts a normal
distribution with a mean near zero. If the values of the occluded
distribution (orange) were increased by a factor, this would lead
to a shift in the distribution, but it would still be more stretched
than ours. The peaks at value 0 correspond mostly to synthetic
images where the synthetic leaf does not cover any berries. This
is the case, for example, with images that show few berries.

Both models exhibit problems in the generation of patches
that depict more than 150 berries. This is the case for VSP
(Figure 10C) and SMPH (Figure 10E). For both types of
defoliation, a trend is nevertheless evident above the critical value
of 150 berries. Even though an underestimation of berries tends
to be counted above this value, the count fits the reference better
than the count in the occluded domain.

In the occluded domain, there are data points that differ
strongly from the reference. Our method reduces the amount
of such points and also reduces the deviation of the highly
deviating points.

4.6. Experiment 5—Application to Natural
Data
One of the contributions of our work is to investigate the
applicability of our approach to natural data. In detail, we
evaluate whether our model generalizes to natural images when
it is trained on synthetic data.
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FIGURE 13 | Counting in the occluded domain (orange) and after applying our approach in the non-occluded domain (blue) relative to the reference counting in the

non-occluded domain. The plots illustrate the results for (A) VSP defoliation and (B) SMPH defoliation. A negative value means that fewer berries are counted than in

the reference and vice versa. Each bar corresponds to a width of 2%.

4.6.1. Used Data, Model, and Evaluation Metrics
We use the synthetic datasetsDataset 1 andDataset 3 to train our
model. For the test phase, we use the natural datasets Dataset 4
and Dataset 5. One dataset each for VSP defoliation and one for
SMPH defoliation.

The differences of the natural dataset to the synthetic dataset
are the stronger coverage by a denser leaf canopy, the resulting
deviating exposure ratios, and the lower contrast whereby the
contours of the leaves are not easily distinguishable from berries.
Other differences are found in the transformation applied to the
natural dataset, since non-occluded areas are not identical in both
domains, as already pointed out in the introduction. Depending
on the patch position in the non-occluded domain in the original
image, the transformation goes beyond the boundaries of the
original image in the occluded domain. To achieve a patch size
of 656 × 656 px which is equivalent to the cropped patch size of
the dataset, the appropriate borders of the patch are filled with
black spixels.

We perform our evaluation visually, whichmeans we compare
the input from the occluded domain with the generated
output of our approach in the non-occluded domain. Due to
the transformation issues, direct numerical comparison and
evaluation between target and generated output are not useful
for the majority of patches. However, we would like to give an
impression of the results by means of the visual representation.

4.6.2. Results
In Figure 14, we provide example results of our approach applied
to natural data. For each example, the first column shows
the input xocc of the occluded domain, the second column
the reference xnon in the non-occluded domain, and the last
column our generated output x̃non in the non-occluded domain.
The first row visualizes the G channel of a patch and the
second row the corresponding mask. The results show that
the canopy is reduced and important areas in the patch are
reproduced. Generally, the observations from the previously
described experiments can be repeated. Using our generative
approach, berry and berry-edge pixel regions in the input

mask are also transferred to the generated output for the natural
data. For input patches of the occluded domain being similar
to the synthetic data (Figures 14A–C), the results show an
expansion of the existing berry region. Our approach is also able
to deal with transformation problems, as in Figure 14A where
the transformation goes beyond the original image boundaries.
There are examples, like seen in Figure 14C, that look similar to
the target, or examples that look real compared to the input but
do not reflect the target output (Figure 14B).

For the majority of natural data, exact transformations are
not available, so this is challenging to evaluate. In examples
like the one in Figure 14D transformation, rotation and scale
fit, but due to defoliation, the orientation of the grape bunch
is different in input and output target. In the input, the grape
bunch is more horizontal. In the target, it is vertical. The example
in Figure 14E shows that grape bunches are also completely
different in translation due to the different weights attached to
the branches. In this example, the grape bunch that is visible in
the input is only partially visible at the top of the patch in the
target output. The generated output adapts to the input and is
also expanded, but is not comparable to the target.

Furthermore, we observe checkerboard artifacts that appear in
the generated G patches (see Figures 14A,C). The artifacts occur
more in patches that present a dense canopy.

5. DISCUSSION

5.1. Experiment 1
Our results confirm that our model trained on GB data learns
where background is present. This is an important factor for
realistic generated images. We found that the model trained only
with berry mask B has more problems with images containing
many berries than the model trained on GB data, both visually
and in the counting results. The deficits in counting are explained
by the fact that there are relatively few patches in the dataset
with a number greater than 150 compared to the number
of patches containing <150 berries. This is also true for the
underestimation of the count with the GB dataset. However,
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FIGURE 14 | Visual representation of generated result based on natural data input. (A–C) Examples with a good transformation between the patches. They are

present as a minority in the natural dataset. (D,E) Show examples with a insufficient transformation between the patches. (F) Shows an example with artifacts in the

generated mask.

by using the additional G channel, the result images can be
generated more precisely. More detailed analyses of the berry
counting can be found in Experiment 4. Taking into account the
correlations and with the goal to generate highly probable results
with a distribution that matches the input, rather than the exact
image content of each image, Dataset 1 leads to better results on
average as claimed in the beginning of the results section.

5.2. Experiment 2
We found that a high percentage of the results is correctly
transferred from occluded to non-occluded domain. The
occurring deviations between {xocc, x̃occ} can be traced back to
the test results, which not only show the class values 0, 127, and
255 within the mask, but also pixels with values in between. This
means that the model does not clearly assign the respective pixel
to a class. At this point, we apply data post-processing to our
generated data, as described in Section 3.4.1. Pixel in areas of
class boundaries are particularly affected here, which is why the
differences arise in these areas.

The deviations at the edges of the leaf are due to an additional
edge with a width of about three pixels, which was added
during the creation of the synthetic occluded input mask. The
masks x̃non and xnon, on which the masks x̃occ and xocc,leaf used
in this experiment are based on, show a continuation of the
depicted grape branches exactly at these transitions. This results
in variations between the paired masks at this location.

The key findings from this experiment are that despite
individual deviations, the visible part of the mask of the occluded

domain is safely transferred to the non-occluded domain and
stays unchanged. We assume that the model will make no result-
altering changes.

5.3. Experiment 3
Although our approach does not aim to generate the exact
position and shape of berries, the results indicate that the
similarity of the generated results and the references are high.
The observed high IoU indicates a similar position of the grape
bunches independent of the berry objects in the generated result
compared to the reference. Berries are predicted in the right
areas, but their shape and position do not correspond exactly to
the reference. An increasing area and diameter suggest, that if the
area of the total berry pixel per patch remains the same, there
is a possibility that too few berries are predicted.

5.4. Experiment 4
In the berry counting, the underestimation of the amount of
berries per patch is clearly evident in the concealed area, which
can be explained by the occlusion covering part of the berries. The
results indicate that we obtain better results with our approach
than when we apply only a factor to the counting. We explain the
deteriorating results above a berry number of 150 by the fact that
the proportion of training images with a count above the critical
value is relatively small in contrast to the number of images
with an amount below the critical value. Our method reduces
the number of outliers and additionally reduces the variance of
the highly deviant points. We achieve a shift of the distribution
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as well as a compression and concentration along the reference
line, so that our results are more accurate than those in the
occluded domain.

5.5. Experiment 5
Generally, our findings from the previously described
experiments can be confirmed within this experiment. Although
it is apparent that the model trained only on the synthetic
data mentioned above is not yet strong enough to obtain
similarly good results for the more complex natural data as
for the synthetic data, we consider the results promising. We
assume that mixing natural and synthetic data or using more
complex synthetic training data can improve the results. The
checkerboard artifacts that we observed could be reduced
by improving the generator (Odena et al., 2016). This could
also result in reduced artifacts, like they occur in the mask in
Figure 14F. The artifacts occur more in patches that present a
dense canopy.

5.6. Future Directions
To make the model more robust and generalizable to variations
between natural and synthetic data, the synthetic data can be
designed with more complex changes, for example, by increasing
the synthetic occlusion through the use of more leaves per
patch. In addition, brightness and contrast could be varied,
for example, to reduce the dominant white background of the
synthetic data and thus make it more difficult for the model to
detect the occlusion. Interesting future work is the application
of the model to other varieties and to see how it behaves. We
assume that the model applied on varieties with a comparable
or smaller grape bunch size and a similar data appearance will
behave similarly to our presented results. With a larger grape
bunch size and thus a larger number of berries, the model might
have to be re-trained in order to achieve an accurate result for
a large number of berries. Another promising future direction is
to train the model from a combination of synthetic images and a
limited amount of natural images. In this case, the transformation
between the two required domains needs to be accurate enough
and suitable data must be selected. Another possibility would
involve extensive manual work on the transformation between
the domains or more sophisticated techniques such as image
warping. In the future, the checkerboard artifacts that occur in
data could be reduced by replacing the transpose convolution
layer of the decoder in the U-Net generator with bi-linear up-
sampling operations, as described by Odena et al. (2016).

6. CONCLUSION

In this work, we have demonstrated the suitability of a
conditional generative adversarial network like Pix2Pix to

generate a scenario behind occlusions in grapevine images that
is highly probable based on visible information in the images.
Our experiments have shown that our approach has learned
patterns that characterize typical berries and clusters without
occlusions so that areas where berries are added and other areas
where the image remains unchanged can be identified without
having to provide prior knowledge about occlusions. Compared
to counting with occluded areas, we show that our approach
provides a count that is closer to the manual reference count.
In contrast to applying a factor, our approach directly involves
the appearance of the visible berries and thus better adapts to
local conditions.

We have trained our conditional adversarial network-based
model on synthetic data only in order to overcome the challenge
of lacking aligned image pairs. We show that the model is also
applicable to natural data, given that the canopy is not too dense
and the variation between natural data and synthetic data is not
too high.
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