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Successful knowledge graphs (KGs) solved the historical knowledge acquisition

bottleneck by supplanting the previous expert focus with a simple, crowd-friendly one:

KG nodes represent popular people, places, organizations, etc., and the graph arcs

represent common sense relations like affiliations, locations, etc. Techniques for more

general, categorical, KG curation do not seem to have made the same transition: the

KG research community is still largely focused on logic-based methods that belie the

common-sense characteristics of successful KGs. In this paper, we propose a simple

yet novel three-tier crowd approach to acquiring class-level attributes that represent

broad common sense associations between categories, and can be used with the

classic knowledge-base default & override technique, to address the early label sparsity

problem faced by machine learning systems for problems that lack data for training.

We demonstrate the effectiveness of our acquisition and reasoning approach on a pair

of very real industrial-scale problems: how to augment an existing KG of places and

offerings (e.g. stores and products, restaurants and dishes) with associations between

them indicating the availability of the offerings at those places. Label sparsity is a general

problem, and not specific to these use cases, that prevents modern AI and machine

learning techniques from applying to many applications for which labeled data is not

readily available. As a result, the study of how to acquire the knowledge and data needed

for AI to work is as much a problem today as it was in the 1970s and 80s during the

advent of expert systems. Our approach was a critical part of enabling a worldwide local

search capability on Google Maps, with which users can find products and dishes that

are available in most places on earth.

Keywords: map, knowledge graph, crowdsourcing, class-level attributes, common sense, knowledge acquisition

1. INTRODUCTION

From the outset, knowledge graphs (KGs) have prominently used crowdsourcing
for knowledge acquisition, both from the perspective of scaling out graph creation
and long-term maintenance, solving the historical knowledge acquisition bottleneck
by revisiting the expert systems assumption that knowledge should be acquired
from experts. As a result, popular KGs like Freebase (Bollacker et al., 2008)—now
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Google’s Knowledge Graph—and WikiData (Vrandečić and
Krötzsch, 2014) are composed primarily of popular “common
sense” entities and relations in the world that people are exposed
to regularly and that can be acquired from and validated by
the crowd.

Similarly, today Google Maps overlays data on maps about
the different places or establishments (stores, restaurants,
hospitals, etc.) worldwide, and crowdsourcing plays a central
role in the acquisition and maintenance of this information,
as discussed in Lagos et al. (2020). Users contribute opening
hours, locations, reviews, etc., as well as categorical information
about places such as whether it is a supermarket, department
store, etc., which makes KGs a natural representation for this
information.

Despite such heavy and widespread success of KGs for
representing entities in the world and their properties, Taylor
(2017) points out that there has not been much attention paid
in the research community to class-level attributes in KGs:
graph edges between nodes that represent categorical terms,
what they might mean and how to acquire them. For the
purposes of this paper we use the words type, category, class
interchangeably, as well as attribute, property, relation. Practical
and industrial KG edges remain almost exclusively at the
instance level (e.g., McDonalds serves Big Mac), and a few
KGs may encode class-level domain/range constraints (e.g.,
Restaurants serve Food), but no KG includes attributes of
classes that represent our common-sense knowledge about them
(e.g., Burger Joints serve burgers). There has certainly been
a lot of research published in the sub-fields of Knowledge
Representation on axiomatic knowledge acquisition, for example
Ji et al. (2020), but these methods are not well-suited for
crowdsourcing and have not made the transition to any industrial
KG settings.

In this paper we explore the question of acquiring common
sense class-level attributes from the crowd and applying those
attributes effectively with other sources of information to solve a
knowledge-base completion (KBC) problem, as defined in Bordes
et al. (2013), where success is measured by the precision and
recall of graph edges. We take a particular problem, that of
understanding what is offered at each establishment on earth.
Such a KG could be used to answer questions like, “Where can
I buy an umbrella nearby?” (see Figure 1), “Where can I eat
lamyun?”, or “Where can I get a flu shot?”, etc. We call this
problem local offerings and it is one that is of interest to search
engines like Google.1

Local offerings, compared to on-line, poses a significant
practical knowledge acquisition problem because real-world
transactions do not occur on-line or the data is heavily siloed,
and therefore data about what products are being sold at what
stores, or what dishes are served at what restaurants, is not
broadly available; it is a sort of “dark matter” of the web—
we know it’s there but can’t directly observe it. Although it
may seem familiar to us—e.g., brick and mortar shops that
support on-line ordering and in-store pickup—such exceptions
are actually quite rare, by the numbers. Less than 30% of stores

1https://support.google.com/merchants/answer/9825611?hl=en

worldwide having a website and even fewer that include a product
catalog.2

Indeed, our data shows that web pages and merchant feeds
account for less than 0.001% of the total matrix of products at
stores. To address this shortage of web information, we harness
the crowd in three tiers: users around the world who have visited
stores and voluntarily provide instance-level product availability
(e.g., Ajay Mittal Dairy sells Milk); a much smaller set of paid
raterswho curate class-level attributes connecting common sense
store and product categories (e.g., Grocery Stores sell Milk); and
a very small set of paid operators who call stores to confirm the
instance-level associations as evaluation ground-truth labels. The
intuition behind this combination is that a lot of the instance-
level associations are obviously true or false at the categorical
level, and that acquiring knowledge at that level can jump-start
the instance-level acquisition and help it be more productive:
don’t waste a user’s efforts answering about milk or asphalt at an
individual grocery store when simple common sense tells us the
answer. Due to the prominence of common sense curation in our
approach, we call the project CrowdSense (CS).

To our knowledge, acquiring class-level attributes from the
crowd in order to jump-start a KBC problem has not been
attempted before, and there are very few examples of KBC
problems at this scale (tens of millions of stores wordwide and
more than 10k products). The project and approach led to a
successful worldwide launch of local shopping results overlaid on
Google Maps, and involved many complexities beyond the scope
of this paper, including more than 2 years of data collection at a
worldwide scale. Due to this complexity and scope, we focus here
on the real-world knowledge acquisition aspect of the work, and
present a few simplified experiments that demonstrate how the
acquired knowledge can be used for KBC. The contributions of
this paper are primarily:

• To demonstrate that class-level bipartite knowledge
acquisition can be effective in approximating instance-level
knowledge (Section 5.5) as a solution to label sparsity;

• A crowdsourcing approach to acquire such class-level
knowledge for the local shopping problem (Section 5.4);

• Experimental results that show the effective combination of
class- and instance- level knowledge from various sources used
in the launched system (Section 6.3).

The approach has generalized to other bipartite relations between
places and types of entities that are organized in a taxonomy,
such as dishes at restaurants, services at professional offices, etc.,
as well as a wide range of other bipartite graph problems where
common sense or categorical knowledge prevails as defaults,
such as ingredients for dishes, linnean taxonomies of living
creatures, etc.

2. FORMALIZATION

We start with an initial knowledge graph G′(IP ∪ C,RT ∪

RSC), where C = CP ∪ CO forms the set of all categories,

2https://www.forbes.com/sites/jiawertz/2018/05/17/how-brick-and-mortar-

stores-can-compete-with-e-commerce-giants/#2019f5a23cc0
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FIGURE 1 | Google Maps local shopping search results for umbrellas in NYC shows stores that sell them.

partitioned into place {cp ∈ CP} and offering {co ∈ CO}

categories (e.g., hardware-store, power-tools, resp.), and {ip ∈

IP} the set of all place instances (i.e., the establishments such as
stores and restaurants themselves). The edges of the graph are
the class/instance (also known as type) relation between place
instances and place categories {〈ip, cp〉 ∈ RT}, and the subclass
relation {〈cp, c

′
p〉 ∈ RSC} with a disjointness constraint

〈x, y〉 ∈ RSC H⇒ {x, y} ⊂ CP ⊕ {x, y} ⊂ CO

so that the relation is only defined over pairs of categories
belonging to the same type. Lastly each of these primitive sets are

disjoint IP∩CP = IP∩CO = CP∩CO = ∅, making G′ tripartite. As
usual,RSC forms a partial order within each (place and offering)
category partition, and is transitive over the subcategory relation
so that 〈x, y〉 ∈ RT ∧ 〈y, z〉 ∈ RSC → 〈x, z〉 ∈ RT . This is meant
to capture a traditional kind of knowledge-graph scenario.

Problem 1. The local offerings problem is the extension of G′ to
G(IP ∪ C,RT ∪ RSC ∪ RI ∪ RC) through the addition of the
class-level offering availability relation {〈cp, co〉 ∈ RC} and the
instance-level offering availability relation {〈ip, co〉 ∈ RI}.

The place instances {ip ∈ IP} represent individual physical
places like Trader Joe’s at 142 14th St. (TJ142), each of which
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FIGURE 2 | Example subset of graph G with a place instance ip, a place

category cp, its parent category c′p, a offering category co, its parent c′o and

the class- and instance- level offering availability relations between them.

is typed with some number of place categories {cp ∈ CP} like
Supermarket. The offering categories {co ∈ CO} represent the
types of offerings at all places, such as Milk or Dairy, so that
{〈TJ142,Milk〉 ∈ RI} means that particular Trader Joe’s sells
Milk. Note that a more complete definition of the local shopping
problem would include the extension of CO to instances (i.e.,
place inventory), but we do not have access to that data, and use
this definition as a simplification that serves to answer most local
offering queries. A simple example is shown in Figure 2, showing
four categorical graph nodes and one instance node, with each of
the relation types shown as edges.

This simplification is best understood as a matrix R : IP × CO

representingRI , where Ri,j are observations (or predictions) that
place i offers j. With enough observed Ri,j, collaborative filtering
methods (e.g., matrix factorization) can be exploited to predict
unobserved values from observed ones. Moving between matrix
and graph representation can be done in a variety of ways, such
as thresholding matrix values into discrete edges in RI , or using
a graph formalism that supports confidence values on edges, as
described in Noy et al. (2006).

We argue that the real world grounding of the RI association
in people’s everyday experience allows us to exploit meaningful
common sense categorical knowledge for the problem of
acquiring the edges in RC, and use simple defeasable methods
to then infer the edges in the graph for the relationRI .

3. VOCABULARY

The local offerings system and all the experiments described in
this paper use the open Google My Business (GMB) categories3,4

for place categories (CP) and Google Product Taxonomy5,6 for
the offering categories (CO). Each set comes with a taxonomic
structure that we encode as theRSC relation, every category has at

3https://support.google.com/business/answer/3038177/#categories
4https://bayareawebsitedesigner.com/gmb-categories/
5https://www.google.com/basepages/producttype/taxonomy.en-US.txt
6https://feedonomics.com/google_shopping_categories.html

least one parent category with the exception of the top-level (most
general) categories, and a few categories have multiple parents.

This project began with shopping and was extended to dining
by adding a number of dishes to CO. These dishes are from
Google’s KG, and most of them can be found in Freebase under
the type /food/dish. The restaurant categories are already
part of the GMB set.

There are roughly 15k products categories in CO, that are
similar in semantics to UPCs (Universal Product Code, the bar
codes on most packaged products), grounding out in 19 top-level
categories. There are roughly 10k dishes in CO, that are similar
to menu items, with very little taxonomic structure. The GMB
categories that comprise in CP include many that are unrelated to
local shopping or dining, so we restrict (CO) to those below store
and restaurant, resulting in roughly 3k with those two roots.

These taxonomies have different graphical structure: the
product taxonomy is fairly deep, and the place taxonomy is fairly
shallow, yet they align surprisingly well. For example, there is a
deep taxonomy of products under “Grocery,” and a store category
“Grocery Store.” There are a few misalignments, for example
“Batteries” are under “Electronics” but are sold at “Drugstores.” A
few of these misalignments are ameliorated by hybrid categories
like “Household products,” which is an additional ancestor for
“Batteries.” The food taxonomy we used from Freebase is nearly
flat, making for an interesting comparison on the usefulness of a
good taxonomy. Note that we do not change the taxonomies or
memberships; as defined in Section 2, we treat the initial graph G′

as given.
Finally, Google Maps has tens of millions of establishments

worldwide that form the set of places IP; each has a category label
which is displayed in the maps UI under the place name and user
rating, giving us the edges in RT . A large part of these labels are
assigned by merchants, some by users, some by operators and
others by machine automation. These labels are generally high
quality, with precision over 0.8. The largest source of inaccuracies
are store labels that are more general than they need to be, when
a more appropriate category exists. The labeling infrastructure
requires a single “primary” category, while many places could be
categorized in several ways. A Glossary of terms defined in this
paper has been provided in Table 1.

4. A THREE-TIERED CROWD

The system for which we performed the crowdsourcing described
in this paper is quite large and complex, and is launched and
available to users worldwide through search. It uses a DNNmodel
to predict RI pairs from many signals that include information
extraction (IE) from store web pages, direct merchant feeds,
store type, and dozens of other features that include a significant
amount of user-generated content (UGC).

The well-known bipartite problems that have been solved by
machine learning have the advantage that the organizations that
solved them had a lot of labeled data for those problems. For
example, Netflix has millions of 〈user, movie〉 pairs, and can use
this massive data to seed big machine learning systems to better
predict what movies a user make like. A vast number of practical
bipartite problems, however, have very little data, resulting in
label sparsity.
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TABLE 1 | Glossary of terms.

Terms

Place An establishment (store or restaurant) on Google Maps

Offering A product or dish available at a place

KBC Knowledge Base Completion

GMB Google my Business (source store categories)

GPT Google Product Taxonomy (source product categories)

UGC User Generated Content–user responses to yes/no questions

CS Crowd Sense, our approach

WebIE Information extraction of offering names from place web pages

WALS Matrix factorization using WALS to predict 〈ip, co〉 pairs

Knowledge graph

{ip ∈ IP} Set of place instances

{cp ∈ CP} Set of place categories

{co ∈ CO} Set of offering categories

〈cp, c
′
p〉 ∈ RSC Place subclass/superclass relation

〈co, c
′
o〉 ∈ RSC Offering subclass/superclass relation

〈ip, cp〉 ∈ RT Place instance/class type relation

〈cp, co〉 ∈ RC Class-level offering @ place availability relation

〈ip, co〉 ∈ RI Instance-level offering @ place availability relation

G ′ Base KG of place/offering classes and place instances

G G ′ extended with RC and RI

Ri,j Likelihood that place instance i sells offering class j

Crowd task

wx,o Rater score for place (class or instance) x and offering class o

αc,o Number of “always” answers for class-level pair 〈c, o〉

νc,o Number of “never answers for class-level pair 〈c, o〉

yi,o Number of “yes” answers for instance-level pair 〈i, o〉

ni,o Number of “no” answers for instance-level pair 〈i, o〉

Label sparsitymeans thatmachine learning systems don’t have
enough data to make reasonable predictions, and the only way
to move forward is to acquire it. Acquiring the data needed to
seed large scale AI systems is as much a problem today as it
was during the bygone era of expert systems, where, according
to Shortliffe and Buchanan (1975) and many others, the bulk
of the research focus was on algorithmic solutions to rule-based
reasoning problems, but the bulk of the difficulty and work was
in knoweldge acquisition. This history continues to repeat itself;
Sambasivan et al. (2021) point out that knowledge acquisition is
viewed as less glamorous than inventing new neural algorithms
and architectures. As noted above, for the local shopping and
dining problems, existing sources gave us less than 0.001% of the
total matrix R, leaving a huge knowledge acquisition problem.
We developed a novel three-tiered crowd to gather the data
discussed in this paper:

• CrowdSense (CS): We collected 25k class-level 〈cp, co〉 ∈ RC

pairs for shopping and 20k for dining, from a pool of paid
raters. Though a relatively small crowd effort, this ends up
being the largest source of instance-level 〈ip, co〉 ∈ RI pairs
through default inference (full details in Section 5), yielding
billions of instance-level pairs.

• UGC: Google Maps provides the facility for users to
voluntarily add reviews, photos, venue categorization, and

FIGURE 3 | Example question used to gather UGC.

attributes (e.g., “has Wi-Fi”) to places they’ve visited. Through
the UGC framework, users answer yes/no questions about
product and dish availability at places they’ve visited, shown
in Figure 3. While Google’s deployed local search system does
use all the UGC data, including reviews and photos, etc., in this
paper we only describe and analyze the impact of the yes/no
questions, which comprise the largest crowdsourcing element
of the system, at millions of answers per day. Each user is
given a set of 〈ip, co〉 pairs to answer, giving us a distribution
of yes and no answers for each pair. In the experiments shown
in Section 6, we show the growth in coverage over time as
more answers are collected, yielding hundreds of millions of
instance-level pairs over the course of this study (2 years for
shopping and 15 months for dining).7

• Gold: We collected 40k gold standard 〈ip, co〉 pairs for
shopping, and 20k for dining, by having paid operators call
each place ip and ask them if they sold or served co. The places
were selected from among more than 50 countries with the
top-5 countries beingUS (20%), JP (5%), IN (5%), GB (5%), BR
(4%); places within each country were sampled uniformly to
provide a microcosm of representative demographics. Clearly
the highest fidelity and most expensive data, it is by far
the smallest.

One of the critical obstacles to gathering this data from people
in all tiers is the class imbalance: less than 4% of the possible
store-offering pairs are positive. Gathering 96% negative results
is a waste of human labeling resources and, far more critical,
makes for an unsatisfactory user experience—users want to feel
helpful and answering 9/10 negative questions is frustrating.
Moreover, particularly obvious negative questions, like fish heads
at a hardware store, confuse some users into saying they are
unsure—the questions are so obvious they feel they must be
missing something. Finally, a few of these obvious negatives end
up on social media as jokes, which is embarassing.

Active learning (AL) is a known method for dealing with
class imbalance—sampling near the classifier boundary typically

7Collection continues, these windows were used for this paper.
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yields a good balance between positives and negatives and,
thus, provides utility for training the model. Unfortunately for
problems where there is also label sparsity, there is not enough
data to train a model and so nothing to base AL on. Our class-
level approach offers a solution to this problem as well. As
described in more detail in Section 5, we gather a distribution
of judgements on class-level pairs, and the resuling pairs fall
into three categories: obviously available (e.g., grocery store,
milk), obviously unavailable (e.g., hardware store, fish heads), and
possible (e.g., hardware store, 9 inch nails). The possible category
of class-level pairs captures products that are available at some,
but not necessarily all, stores in the class, and provide excellent
guidance for selecting instance-level pairs to ask users.

Even after we’d acquired enough data to begin training a
model and use AL, the possible category offered an additional
benefit. In the early stages of acquiring training data, known
as the explore (vs. exploit) stage, 〈ip, co〉 pairs with enough
evidence to be close to the classifier boundary are very likely to
be positive, so much so that the class balance of margin sampling
was 80% positive. Clearly a 50% class balance could then be
achieved by up-sampling pairs that are further below the classifier
boundary, however such an approach is very likely to choose
these problematic obvious negatives discussed above. A mix of
possibles with margin sampling was able to achieve a 50% class
balance with high utility and no embarassment.

For the Gold data, class imbalance presents as much of a
problem as for UGC, however since this data set is used to
measure the quality of the CS data, we did not want to bias our
evaluations by using CS as a guide. Instead, to achieve better class
balance, the WebIE baseline data (q.v. below) was used to guide
the collection toward pairs that had an increased chance of being
true; for example, if a places’s webpage mentioned an offering
we would try to call places of the same type and ask about that
offering. We enforced a positive/negative class balance of 50%,
and targeted a stratification of the sampling that preserved the
30/70 balance of places with and without websites.

5. CROWD SENSE

The obvious way to gather the edges in RI would be to use
store inventory or transaction records. The problem with this
approach is that local offerings is still mostly an off-line or
highly siloed process worldwide, and we did not have access
to transactional data that gives us these observations. Google
provides merchants a free way to share their menus or inventory
on-line, but much fewer than 1% of places worldwide had made
use of it. Our data showed that web pages and merchant feeds
together accounted for less than 0.001% of the space of the matrix
R, giving us the label sparsity problem. Filling the cells of matrix
Rmeans acquiring the edges inRI , andwe propose to accomplish
this by starting with the acquisition of edges inRC, the class level
attributes, and inferring those values as defaults forRI .

5.1. Crowd Hypothesis
The intuition driving our approach is that the crowd can provide
the class-level knowledge (RC) by appealing to their common
sense experience; everybody knows that, e.g., “All supermarkets

sell milk.” Reality is more complicated, and since the problem
space is sparse, the class-level data is also dominated by what
offerings are obviously not available. Far behind the obvious
negatives are, as discussed above, the possibles—offerings that are
usually, but not always, available at some type of establishment.
Wasabi Peas, while they are found almost exclusively in grocery
stores, are not found in all of them. What we really aim for the
crowd to provide is a distribution of the offerings available at
places of a given type. This is where a lot of existing knowledge
graph methods fail, especially at the class-level, as they rely on an
assumption of discreteness.

It may seem that we could ask individual people to answer a
question like, “What percent of stores of type cp sell product co?”
However, research in human computation such as Surowiecki
(2005) has shown that individuals cannot reliably answer such
questions. Using (Welty et al., 2012; Aroyo and Welty, 2014,
2015) as a starting point, we hypothesized:

Hypothesis 1. Asking multiple raters about the same categorical
pairs would produce a distribution of answers that approximate
the real world distribution ofRI .

In other words, if 70% of raters say that oat milk is sold at grocery
stores, then 70% of grocery stores will sell oat milk.

Before testing our hypothesis, we ran numerous pilots to tune
the hyper-parameters of the crowd task in the shopping domain,
asking raters questions about 11k 〈cp, co〉 pairs from 154 store
types and 3600 products in five countries.We experimented with:
the number of raters per pair, testing between 5 and 25 raters
per pair; the size of the rater pool, ranging from 100 to 500;
the question phrasing; and the answer options. Based on manual
analysis of the cost and quality, we settled on these task hyper-
parameters: five raters per pair, randomly selected from a pool
of 130 raters in six countries, sourced from contracted operators
through an in-house crowdsourcing platform, and the question,
“Would you expect to find co products in stores of the category
cp?” with four answer options (“Always Available,” “Sometimes
Available,” “Never Available,” “I don’t know”). For dishes, the
question was rephrased, “Would you expect to find co dishes in
restaurants in the category cp?”

Under these settings, our final PRODCAT task (see below)
gathered 25k class-level (〈cp, co〉) pairs with 5 labels per country,
that through inference (q.v. Section 6.1) resulted in billions
of 〈ip, co〉 pairs, 99% of which were negative. It took 6 weeks
to run and analyze the pilots, and 2 weeks to run the final
task. For dishes, the MATRIX task collected 15k class level
pairs from 5 raters per pair in 2 weeks, resulting in billions of
instance-level pairs.

Raters were supplied by a set of contractors who are obligated
to follow Google’s Code of Conduct, and were managed by an
administrator outside our group. The MATRIX and PRODCAT
task designs (q.v. below) grouped between 200 and 400 pairs in a
single matrix, raters were assigned a matrix by the administrator
based primarily on availability. Many raters were assigned
multiple matrices over time, but in our analysis we did not
account for individual characteristics of raters (such as expertise),
even though we know from Aroyo and Welty (2014) this can
yield improvements.
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5.2. Data Collection Tasks
Another way to state our hypothesis is that the categorical
crowd disagreement should reflect the real world distribution,
but disagreement can have many causes that are not related to the
desired distribution. The various pilot tasks we ran represented a
gradual refinement of the data and task descriptions to eliminate
disagreement from other causes. We report here on four different
approaches for the shopping domain:

5.2.1. RANDOM

To confirm the sparsity of RC, we randomly and independently
selected category pairs from CP × CO, weighing the selection
from CP proportionally to the number of stores belonging to each
category (i.e., larger categories are more likely to be selected).
Pairs were presented to 5 raters from the same country. This
RANDOM task confirmed that the vast majority of pairs are
“obvious” negatives (asphalt at grocery stores, cars at violin shops,
etc.), as more than 95% of the pairs resulted in 5 “Never” ratings.

5.2.2. SINGLETON

To address the sparsity shown in RANDOM, we leveraged web
signals (see Section 6.1) to select pairs with more likelihood to
be available at places within a given category, and presented
one pair at a time to 5 raters from the same country. This
resulted in a distribution of rating scores ranging from all-5
“Always Available” to all-5 “Never Available” skewing toward
the positive (always) side. The SINGLETON task results showed
disagreement from other causes, described in Section 5.3.

5.2.3. MATRIX

To address the disagreement due to ambiguity (Section 5.3), we
designed a novel matrix presentation of class-level pairs, with
four {co ∈ CO} as the columns and a set of 100–200 {cp ∈

CP} as the rows, depending on our ability to match offerings
to the place categories using web signals. Figure 4 shows the
matrix presentation (with data sampled through the PRODCAT
method below). The advantage of this presentation is that raters
familiarized themselves with a category and answered many
questions related to it, rather than having to understand one
pair at a time. This approach still produced some unwanted
disagreements due to difficulty understanding some of the
products, esp. very specific ones, and we were concerned that the
web signals were biasing our sample toward availability patterns
of online places, rather than our target class of establishments
without web pages. Most importantly, the amount of time the
raters spent per 〈cp, co〉 dropped by 50%.

5.2.4. PRODCAT

The final crowdsourcing task used the MATRIX presentation but
changed to a dynamic method that sampled the 〈cp, co〉 pairs
starting at the top of the product taxonomy, and working down
the RSC relation from most general to most specific. It was not
useful to treat the store taxonomy this way, as it is very shallow,
and we did not have a dish taxonomy. When a pair was given
an overall negative label, we did not sample any subcategories of
co and inferred a negative label for all descendents. For example,

since Auto parts stores do not sell Grocery and 〈Dairy,Grocery〉 ∈
RSC, we did not ask 〈Auto parts stores, Dairy〉.

The product taxonomy is not a strict tree, but a DAG,
and when reconciling conflicting ratings from multiple parents,
we retained the most positive rating. Electronics are not sold
at Pharmacies, whereas HouseholdProducts are sometimes sold
there, and Batteries are a subcategory of both Electronics and
HouseholdProducts, so we do ask about 〈Batteries, Pharmacies〉.

This top-down taxonomic pruning eliminated any need for
the web signals, and accounted for the sparsity at a very high level,
since (by accident or ontology) the store and product categories
were well aligned: e.g., Auto parts stores sell Auto parts and do
not sell Groceries. Higher level categories also made a lot more
sense to raters when presented with a sub-category, e.g., Sports
and Outdoor Electronics with Fitness Trackers, and since our
rater pool did not vary much, they became familiar with the
taxonomic distinctions as they progressed down the taxonomy,
which was evidenced by a reduction in visits to the taxonomy
element descriptions over time.

5.2.5. Dish MATRIX

To gather the class-level pairs 〈cp, co〉 for the dining domain, we
were not able to fully reuse the PRODCAT method, since the
dishes in our KG did not have taxonomic organization, which
was the key to the improvements of PRODCAT over MATRIX.
Instead, we used the MATRIX method, presenting the class-level
pairs in a matrix, selected by their popularity in web signals. As
with singleton, this approach favored positive pairs, indeed our
raters appear to have been overly positive in their answers.

5.3. Ambiguity
In the pilot experiments run for shopping we observed
disagreement in the results that did not support our crowd
hypothesis, but were caused by ambiguity such as:

• product is a material, substance (e.g., plastic, starch, arugula)
or some product aspect (e.g., color, size)

• product is a brand (e.g., Avian, Kleenex) or contains a brand
name (e.g., Nike Sneakers, Todd’s boots)

• place or offering is too specific (e.g., duck sauce, goat meat,
vanilla orchids, banner store)

• place or offering is too generic (e.g., gift, organic food,
chicken, restaurant)

• offering is regional (e.g., Harissa, Jajangmyeon)
• offering is seasonal (e.g., christmas trees, flip-flops)
• offering is polysemous in a way that is resolved by the store

type, e.g., “fish” in a grocery store vs. a pet store
• flashy menu item (e.g., nacho fries bellgrande, del

monde delux).

In MATRIX and SINGLETON, for example, raters seem more
willing and able to answer the question, “Is milk sold here?”
compared to “Is dairy sold here?” In the latter case, there is
uncertainty over what minimum set of dairy items (milk, cheese,
butter, yogurt, etc.) would be needed for “sells dairy” to be true,
yet the equally rich sub-categories of milk (whole milk, skim
milk, organic milk, etc.) did not cause the same uncertainty.
When presented with the categories in a top-down fashion, raters
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FIGURE 4 | Partial view of the PRODCAT data collection template with example answers from one rater.

first dealt with their uncertainty about “dairy” and applied it to
the subcategories as well, and this handled most of the general
and specific ambiguity, and for many store types, raters were
willing to give definite answers about the other sub-types in
subsequent tasks.

We specifically addressed the material, aspect and brand
problems by removing them from the product set, their treatment
is the subject of future work. We instructed the raters to treat
seasonal products as “year round,” after confirming that users
are less likely to search for such products out of season. We
updated the task design to allow raters to explore the two
taxonomies to help with polysemy, but we found that grouping
store categories by taxonomic (sibling and parent) relations in
PRODCAT obviated this exploration.

Regional products produced disagreement esp. across
countries, where for the final tasks we sourced raters in six
countries (US, IN, BR, FR, JP, IN). Often this showed up merely
as “I Don’t Know” answers which were not used in predicting
RI , but do show up in IRR. More interesting cases included
when a product had a slightly different meaning, or was sold
in different types of stores, in different regions. For example,

“syrup” in France is sold in drug stores, and raters in other
countries did not agree. This is because in France “syrup” is

cough syrup, and this association did not exist elsewhere that we
tested. We had many expectations for the role of, and differences

between, raters in different countries, described in more detail
in Section 5.6. Despite these anectdotal examples, class-level

ratings from one country were generally worse at predicting

instance-level availability within the same country, and better at

predicting other countries. In the final system, we ignored the

country of the class-level ratings, treating all raters as equal.

Flashy menu items, in which superlatives and other postive-

sentiment modifiers are added to dish names, were an additional

problem in dining that we did not observe in the shopping
domain. This is in part due to the taxonomy curation of the

shopping data, in which such modifiers had been removed to
create a fairly neutral set of categories. For dining, which lacked
the taxonomy, some raters were able to identify the superlatives
as meaningless, or were familiar with the dish names because
they came from well-known chains, while other raters didn’t
have that knowledge and would answer either negatively or
uncertainly. Our scoring method effectively neutralizes such dish
names (see Section 5.5), as the disagreement moves the score
close to zero, and we did not choose to address it otherwise.
Our current work seeks to address this problem through the
automatic development of a taxonomy.

5.4. PRODCAT Data Collection Task
The final design of the PRODCAT task, which was only used
in the shopping domain, presented a matrix of 〈cp, co〉 pairs to
raters in six countries, five raters per country, and consisted of
several elements:

• a list of store categories, cp ∈ CP

• a list of product categories, co ∈ CO

• cp, co pairs presented in an n×4 matrix, where each cp is a row
and each co is a column; n ranged from 40 to 200 depending
on our ability to find suitable products
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TABLE 2 | Example CrowdSense ratings on RC pairs.

Category Product Always Some Never

Auto parts store Pita 0 0 5

Bakery Longline Vests 0 0 5

Beauty supply store Aromatherapy 5 0 0

Bicycle store Home furnishings 0 0 5

Butcher shop Quicklime 0 0 5

Chinaware store Watches 0 0 5

Clothing store Women’s shirts 5 0 0

Clothing store Petite negligee 5 0 0

Clothing store Truck tailgate caps 0 0 5

Clothing store Chameleon 0 0 5

Clothing store Typewriter ribbon 0 0 5

Coffee store Instant coffee 4 0 1

Cosmetics store Non-dairy milk 0 0 5

Drugstore tarragon 0 0 5

Electronics store Canister vacuums 5 0 0

Feed store cybex 0 0 5

Fresh food market Work dresses 0 0 5

Fruits and vegetables Turkey sausage 0 1 4

Furniture store Canopy beds 4 1 0

Furniture store Box springs 4 0 1

Grocery store Smart light bulbs 0 0 5

Grocery store Frozen clams 5 0 0

Grocery store Soy nuts 4 1 0

Home goods store Storage baskets 4 1 0

• the matrix was prefaced with: “Would you expect to find in
country the products (in the columns) in stores of the types (in
the rows)?”

• each cell in the matrix connected one pair with four possible
answers: “Always available,” “Sometimes available,” “Never
available,” and “I Don’t Know”

• the row and column headers co and cp included links to
an image, a short description, and the position in the
respective taxonomy

• raters were encouraged to explore the taxonomies in order to
better understand categories

• The column product types were chosen such that three were
taxonomy-related (sibling or more-specific child) and one
was not, e.g., “aspirin,” “notebooks,” “paper supplies,” and
“lined paper.”

The final matrix PRODCAT crowd template is shown in Figure 4
with an example of answers provided by one rater. Based on
rater feedback andmetrics shown in Section 5.5, this presentation
helped resolvemany forms of polysemymentioned in Section 5.3.

5.5. Error of Class-Level Ratings
Table 2 shows a small sample of the CS task results forRC pairs;
we have intentionally downsampled the “5-never” pairs to show
a mixture of different vote ratios.

In Welty et al. (2021) we showed that inter-rater reliability
(IRR) cannot reflect the quality of ratings where disagreement

is the desired result, so we report the error of different RC

pairs in predicting the distribution of RI pairs, by comparing
ratings-based scores onRC pairs against UGC scores onRI pairs
obtained from users (see Section 4). Each class and instance level
pair has a score:

wx,o =

{

(αx,o +
1
2σx,o)/(αx,o + νx,o + σx,o) if x ∈ CP

yx,o/(yx,o + nx,o) if x ∈ IP

where αx,o is the number of “always” answers for class-level pairs
〈x, o〉, σx,o the number of “sometimes,” and νx,o the number of
“never” answers; and yx,o is the number of “yes” answers for store
instance-level pairs 〈x, o〉 and nx,o the number of “no” answers.

Next let Ic = {i :〈i, c〉 ∈ RT} be the instances of place category
c under RT . The mean absolute error of class-level pair 〈c, o〉 is:

MAE(〈c, o〉 ∈ RC) =

∑

i∈Ic
|wi,o − wc,o|

|Ic|

The idea is that if the class-level scores (wc,o) are an accurate
prediction of the availability distribution at the instance level,
then they should model user observations at individual stores
(wi,o), averaged over the size of the store category (|Ic|). Figure 5
shows the distribution of MAE scores per category pairs for the
three shopping and one dining data collection tasks. Despite
PRODCAT being a harder task for raters due to the sampled
pairs, it performs much better than the other shopping tasks,
with nearly half of its categories scoring in the lowest error
range, clearly supporting our crowd hypothesis: the disagreement
on 〈cp, co〉 pairs approximates the distribution of 〈ip, co〉 when
〈ip, cp〉 ∈ RT , according to user observations. For Dining, we
only ran the MATRIX task, to replicate as much as possible the
results from Shopping. As expected, the MAE is lower than for
PRODCAT on shopping, but considerably better than MATRIX
for shopping. One explanation for this is that our raters were
more familiar with dining around the world than shopping, and
there was less disagreement caused by not understanding the pair.

5.6. Error of International Ratings
Another hypothesis we formed early on was that raters in our
class-level rating pool, which was international, would know their
own countries better than other countries, and the initial design
of the system called for increasing the weight of in-country class-
level ratings over out-of-country ratings when calculating wx,o

(see above). In our analysis of CrowdSense errors in the pilot
studies, we certainly saw examples of raters misunderstanding
dishes and products from other countries (see Section 5.3).

This hypothesis was mostly supported by our analysis of the
shopping data, but it turned out to be largely false for dining,
to our great surprise, as shown in Figure 6; as with Figure 5,
the charts show the distribution of the normalized MAE from
CrowdSense predictions, but in each chart we’ve restricted the
actual restaurants to those within the indicated country, and
calculated the wx,o scores for CrowdSense for raters in the
country (solid blue bars) and for raters not in the country (hashed
red bars). With the exception of Japan, outside raters have a lower
error rate, as their distributions are shifted significantly to the left.
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FIGURE 5 | Histogram of Normalized-MAE on CrowdSense pairs for three shopping and one dining (Section 5.5) class-level crowd task designs. Bins to the left

indicate the relative number of pairs with lower error, making Shopping-PRODCAT the clear leader. Dining-MATRIX performs better than shopping MATRIX.

FIGURE 6 | Distribution of CrowdSense errors (Normalized-MAE) for ratings in four countries, comparing CrowdSense predictions from raters in each country to

raters outside that country. A shift of scores to the left indicates lower overall error; surprisingly, for all countries except Japan, out-of-country CrowdSense raters are

more accurate than those within the country.

In Brazil, the effect is small, in the US it is large and in India
the largest. In Japan, the expected effect is dramatic—Japanese
CrowdSense raters were far better at predicting the distribution

of dishes at Japanese restaurants than non-Japanese raters. We
ran the experiment for Germany and Indonesia (not shown) with
similar results as the US and India.

Frontiers in Artificial Intelligence | www.frontiersin.org 10 March 2022 | Volume 5 | Article 830299

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Welty et al. Class-Level Attributes

For the US, this may be explained by the fact that there are
far more chain restaurants that dominate the numbers when
calculating the MAE, and many of these chains are familiar
abroad, so while US raters are making their decisions based on a
broader perspective of chains and non-chains, non-US raters are
making their decisions based only on chains, and these capture a
larger piece of the US restaurant landscape. In addition, the US
has far more restaurants serving international cuisines than any
other country, making it possible for international raters to know
something about more US restaurants. For Japan, more than any
other country, there are many restaurants that serve only a very
specific kind of food, and this is well known in Japan and not as
much outside it. A possible explanation for the counter-intuitive
results in the other countries is that the restaurant taxonomy
does not cover those regions very well, leaving more restaurants
mis-categorized.

6. INSTANCE-LEVEL PREDICTION
EXPERIMENTS

6.1. Data Sources
We compare and contrast several approaches for acquiring and
predicting the relations inRI :

CrowdSense (CS): Class-level associations 〈cp, co〉 ∈ RC

and an associated score for each pair wcp ,co , collected through
PRODCAT (as described above) for shopping, and MATRIX for
dining. In our experiments, we treated the CS data as a static
set, although in practice it could grow or change over time like
UGC. We collected 25k pairs in the shopping domain and 20k
for dining.

User Responses (UGC): As described in Section 4, we
collected more than 100M instance-level pairs for shopping from
volunteer users around the world over a 2 year period, and
roughly half that amount over a 15-month period for dining.
Most of the UGC pairs have a distribution of yes and no
answers, and more sophisticated processing of the answers is
possible, but for simplicity we use the majority vote as the label
in the experiments below, where we break the data into sets
representing the first n ∈ [1, 24]months of collection, to illustrate
the growth of the data over time.

Web baseline (WebIE): The baseline approach to supporting
local queries is the Web: using product or dish names mentioned
on each place’s registered web site as part of an inverted index that
are matched to search queries for those products. As discussed
above, this approach for local shopping is limited by the coverage
of local (aka brick and mortar) stores and restaurants on the
web, which was under 30% (60% for the US) at the start of this
project in 2017, and has not increased substantially in the years
hence. We used a named entity recognizer to extract instance-
level pairs (RI : IP × CO) for places with a web site that mention
offerings on any of the site’s pages, and used the extraction
confidence probability threshold yielding 80% precision. WebIE
is only able to obtain positive labels, leaving negatives to be
inferred from the complement. We chose the 80% precision
threshold as this is roughly the precision of the CS inferred
data (see Figures 7, 8), which we compare to this and other

data sources. While other Web sources (user reviews, coupons,
photos, search keyword click-throughs, etc.) and more advanced
entity extraction techniques such as Wang et al. (2020) might
improve the recall, for most places this information simply is not
available. We treated the Web as a single unchanging dataset; for
our experiments, the change over time was not significant enough
to measure.

WALS(UGC): Since predictions of the instance-level pairs
form a matrix, R, an obvious approach is to use matrix
factorization on the matrix formed from data gathered using the
above methods. We used an off-the-shelf WALS implementation
based on Koren et al. (2009) trained on the UGC scores discussed
below. SinceWALS does not use “features,” but rather a matrix of
real values, we did not include other inputs to WALS in Figure 7

or Figure 8.

6.2. Evaluation
Ultimately our goal is to enable offering queries like, “where
can i buy a raincoat?” or “where can i get sesame chicken?” to
return nearby places on maps as well as (web) search results;
however, direct application impact metrics from our system,
which launched in mid-2020, are proprietary. Here we focus on
the knowledge acquisition part of the system using metrics of
knowledge-based completion, see for example (McNamee and
Dang, 2009; Welty et al., 2012).

We collected 40k gold standard 〈ip, co〉 pairs for shopping, and
20k for dining, by having paid operators call each place ip and
ask them if they sold or served co (see Section 4). We used these
pairs as a test set in the experiments below. When evaluating
against the gold standard, any instance-level pairs that are present
in the gold set but missing in the evaluated data are counted as
false negatives toward recall. Table 3 shows a small sample of the
shopping gold standard pairs, and Figures 7, 8 show the results
on 24 and 15 months of UGC data, resp. Note that since WebIE
was used to guide the collection of the gold standard, it has a
slight advantage in the evaluation.

6.3. Results
6.3.1. WebIE

Since the values on the WebIE data for each 〈ip, co〉 ∈ RI are
fractional in [0, 1], we determined the lowest threshold with at
least 0.80 precision and computed recall based on that, resulting
in a recall of 0.136 at 0.80 precision for shopping, and a near-
identical 0.139 for dining. This recall reflects the fraction of places
with web pages, the fraction of offerings (products or dishes)
mentioned on those pages, and the recall of the named entity
recognition. We did not independently measure these other
factors, as Web performance was merely a baseline. WALS on
WebIE data was not able to show very significant improvement,
and the results are not shown.

6.3.2. CS

The primary hypothesis of this paper is that the acquisition of
class-level associations in RC from the crowd is an effective way
of rapidly jump-starting instance-level associations in RI . As
described in Section 5, we acquired 25k class-level pairs from a
paid crowd for shopping and 20k for dining, each with a score
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FIGURE 7 | Precision, Recall, and F-measure for different ways of predicting RI for shopping.

FIGURE 8 | Precision, Recall, and F-measure for different ways of predicting RI for dining.

wx,o (see Section 5.5), and chose the following simple procedure
to infer the instance level pairs:

wx,o > 0.5 ∧ x ∈ CP H⇒ 〈x, o〉 ∈ RC

〈x, o〉 ∈ RC ∧ 〈y, x〉 ∈ RT H⇒ 〈y, o〉 ∈ RI

In other words, for class level pair 〈x, o〉, if x is a place category,
and the majority of raters (wx,o > 0.5) answered that you can
find o at places of that type, add a class-level edge to G, and an
instance-level edge to every instance of place category x.

We then measured the effectiveness of the CS by comparison
of the inferred edges in RI to the Gold set, achieving a recall
of 0.238 with a precision of 0.788 for shopping, and 0.214 with
a precision of 0.788 for dining. While this shows a distinct
improvement over WebIE, of interest is the combination, which
improves recall to 0.351—near perfect complementarity—while
slightly losing precision at 0.782 (for simplicity we do not show
this in Figure 7 or Figure 8). The combination uses the WebIE
or CS signal if the other is not present, and the CS signal if they
are both present, since the CS data includes negatives andWebIE
does not. (WALS inference was ineffective here; see below).

6.3.3. UGC

The UGC dataset grows over time as more users visit places
and answer questions, while we treat the Web and CS data as
constant (see above). We expect that, given enough time, UGC
will overtake CS and WebIE in recall, so an important question
is how much time the CS data is worth compared to UGC, and
whether it continues to show value. In Figures 7, 8, the blue
line shows the precision, recall, and F1 score of the UGC data

using the majority vote as the label, and the red line shows the
CS performance, which, as noted above, doesn’t change. In both
shopping and dining, the UGC line crosses the CS line at around
11 months, indicating that CS is worth about 11 months of UGC
collection in both domains.

6.3.4. WALS(UGC)

We populated the matrix Rp,o from UGC wp,o scores, factorized
R using WALS, and measured the resulting dot-products against
the Gold Standard dataset, shown in Figures 7, 8 in green. Since
WALS produces real-valued predictions, we chose the 0.8 prec.
threshold, the comparable precision of the CS andUGCmethods,
and measured the recall at that threshold with increasing UGC
over time.

Note that some of the 〈p, o〉 pairs in the Gold set were in the
training set, however the labels used in the training matrix may
be different than Gold, making it a fair comparison. As in the
previous experiments we broke the dataset into sets representing
the first n ∈ [1, 24] months of collected user responses. WALS
clearly improves over UGC.

6.3.5. CS+UGC

While 11 months is the intersection point of the metric values
for CS and UGC independently, the CS data is supposed to
complement as well as jump-start the knowledge acquisition. We
tested the role of CS over time using a simple “CS as default”
combination, shown in Figures 7, 8 as CS+UGC, in which the
UGC label is used if present, and the CS label is used if not.
This line tracks the improvement in recall over time from UGC
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TABLE 3 | Example gold standard RI pairs.

Store Category loc Product Available

7-Eleven Convenience store US Distilled water FALSE

ALDI Grocery store US Fruitcake TRUE

AURORA MKT Store US Men’s Gloves FALSE

Adams Pharmacy Pharmacy US Kool aid TRUE

Ag construcciones Building materials PY Blinds TRUE

Alanyurt Gıda General store TR Razor blades TRUE

Amorino Ice cream shop FR Meat FALSE

Barnes and Noble Book store US Blankets FALSE

Barstow Buick Car dealer US Crown victoria TRUE

Barstow Buick Car dealer US Gears TRUE

Bazar bazar BR Mary kay FALSE

collection, while jump starting at the recall of CS. This is a clear
demonstration of our core research hypothesis.

Of particular interest is the comparison of WALS(UGC)
with CS+UGC. The former does eventually surpass the latter
for shopping after roughly 18 m (Figure 7), but the CS+UGC
combination is a strong contender from an extremely simple
method. This is again clear evidence of our core hypothesis.
However, for dining the story is not so clear, as the WALS(UGC)
very quickly reaches near-parity with CS+UGCafter only 5
months, and starts to improve over it in the 11th month of
UGCcollection (Figure 8). The reason for this is not entirely
clear, the dining matrix is smaller than shopping—the number
of restaurants and the number of dishes are both smaller—
meaning the same amount of data collection is a higher part of
the total matrix. There may be something slightly easier about the
restaurant problem as well—restaurant menus tend to be much
smaller than the number of products sold in most stores. Perhaps
most importantly, for the early part of gathering shopping UGC,
we did not have the crowd sense data to guide the collecting, that
was available after 6 months, whereas for dining we collected the
crowd sense data first and it guided the collection from the start.

Other ways of filling the initial trainingmatrixR by combining
CS, UGC, and WebIE signals in various ways were tried but not
included as they do not outperformWALS(UGC). Of note is that
the CS signal does not work well with WALS, since it effectively
does what WALS itself should do with enough data - filling in
giant portions of the matrix with default values. Other machine
learning approaches are certainly possible, indeed the launched
local search system uses a deep neural network with many more
features that are beyond the scope of this paper, and measured
at the scale of the web. The three signals reported here are very
signifant features of that system, and the full system improves
significantly over search alone.

7. RELATED WORK

The core of this work is overcoming a knowledge acquisition
bottleneck in acquiring data reflecting the availability of products
at millions of brick and mortar stores worldwide. The approach
of harnessing class-level knowledge to infer instance-level

knowledge is based on a long standing idea in knowledge
engineering, dating back at least as far as Minsky (1974). Other
methods in the formal knowledge representation (KR) field have
never scaled to the level necessary for our problem, nor have they
considered the problem of how to acquire distributions instead
of discrete facts.

Information Extraction (IE) methods perform knowledge
acquisition of real-world entities fromweb text, and are discussed
in Zang et al. (2013). Martínez-Rodríguez et al. (2020) present
a survey of IE techniques for populating semantic structures,
e.g., entity extraction and linking. In the context of shopping,
research has mainly focused on product information extraction,
e.g., crawling the Web for offers to maintain product catalogs
as in Nguyen et al. (2011) and Qiu et al. (2015a), extracting
product specifications and attributes as with Kannan et al. (2011),
Qiu et al. (2015b), Zheng et al. (2018), and Wang et al. (2020),
and IE methods for building product knowledge graphs such as
Dong (2020) and Xu et al. (2020). Our paper defines a method
for linking these already defined entities similar to Dong (2020),
incorporating product and store taxonomy knowledge.

Knowledge Base Completion (KBC) is the problem of inferring
missing entities and/or relations in an existing knowledge graph
based on existing ones, such as via link prediction as in
Bordes et al. (2013) or from a combination of sources such
as Riedel et al. (2013). Our product × store category matrix
(Figure 4) is inspired by the item-based collaborative filtering
matrix introduced in recommender systems found in Sarwar et al.
(2001) and Ekstrand et al. (2011), and we leverage a well-known
collaborative filtering approach introduced in Koren et al. (2009)
for KBC to demonstrate the additional power of inference on our
knowledge graph.

We use a knowledge graph as the basic representation and, like
most well known KGs, employ no general-purpose reasoning;
hence, any inference we do must be defeasible. The most
relevant KR area would be reasoning with defaults (e.g., Reiter,
1978; Lang, 2000), as our CS+UGC baseline mechanism for
combining 〈cp, co〉 with 〈ip, co〉 pairs treats the first as a default
and the second as an override. Beyond this simple combination
strategy, which was first proposed in Quillian (1967), more
sophisticated combinations of CS+UGC with other forms of
evidence are done using optimizations from machine learning.
The full local shopping system uses many signals, of which we’ve
described only three, that are combined using a deep neural
network that optimizes the prediction of observed labels for
many billions of 〈ip, co〉 pairs. While we exploit the taxonomies
in CP and especially CO to optimize the selection of class-
level pairs to acquire from workers as discussed in Lees et al.
(2020), taxonomy-based reasoning was only used for negative
associations. This negative inheritance was first observed by
Deng et al. (2014).

IE and KBC techniques have advanced the state-of-the-art
in capturing human knowledge in machine-readable form, but
there is still the need for human curation and crowdsourcing.
Important milestones for crowdsourcing knowledge acquisition
at scale are Wikidata (Bollacker et al., 2008) and Freebase
(Vrandečić and Krötzsch, 2014), where the crowd defines or
curates real world entities and some relationships between
them, typically driven by Wikipedia. With respect to KBC,
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Revenko et al. (2018) propose a method for crowdsourcing
categorical common sense knowlegde from nonexperts for
adding new relationships between nodes in the graph and
ensuring consistencey with existing relations. However in all
these sources, Taylor (2017) has pointed to the sparsity of graph
edges expressing relations between the class-level nodes. Our
work focuses directly on that problem by acquiring both class-
level and instance level graph edges, and scaling the latter from
the former.

The crowdsourcing approach we propose in this paper is
grounded in the theoretical framework of Aroyo and Welty
(2013) and Aroyo andWelty (2014), which breaks the constraints
of typical methodologies for collecting ground truth, showing
disagreement is a necessary characteristic of annotated data;
when interpreted correctly, Dumitrache (2019) showed it can
make evaluation of machine learning models more attuned to
real-world data.

The immense body of research on common sense and
crowdsourcing has directly influenced our work. The UGC and
Crowd Sense tasks drew on our knowledge of Games-with-a-
purpose such as Verbosity for collecting common sense facts (von
Ahn et al., 2006), Common Consensus for gathering common
sense goals (Lieberman et al., 2007), GECKA for common sense
knowledge acquisition (Cambria et al., 2016), Concept Game for
verifying common sense knowledge assertions (Herdagdelen and
Baroni, 2010), the FACTory Game for facts verification (Lenat
and Guha, 1989) and many others. Rodosthenous and Michael
(2019) refer to common sense as “knowledge about the world"
and propose a hybrid (machine and human tasks) workflow to
gather general common sense knowledge rules.

Active learning investigates efficiency for acquisition and
learning when acquiring training data for ML models. In
essence, the early stages of KG acquisition strongly represent
the exploration side of the exploration vs. exploitation tradeoff
introduced by Bondu et al. (2010). MLmodels during exploration
do not have enough knowledge of the space to be able to offer
reliable judgements as to which items (in this case, 〈ip, co〉 pairs)
to acquire labels for. As noted in the Section 6.1, class-level pairs
can serve as a guide for recognizing obvious 〈ip, co〉 pairs that
likely do not need labels, and conversely, high-disagreement pairs
are very likely to have instances that do. Thus the 〈cp, co〉 pairs
can serve to stratify the 〈ip, co〉 space, and make the job of active
learning easier by narrowing down their targets. In Section 4 we
discussed using these possible class-level pairs to guide sampling
for UGC.

The problem ofmining “interesting” negative statements from
Wikidata was investigated in Karagiannis et al. (2019), Arnaout
et al. (2020), and Arnaout et al. (2021), which in principle could
be used to supplement our active learning strategies for selecting
difficult training examples to improve the model. Specifically,
these could be combined with the obvious (positive and negative)
class-level pairs to find exceptions at individual stores, e.g., a
grocery store that does not sell milk or that sells certain tools.
Our approach would be slow to find such exceptions, since we
don’t ask users and would need other sources of evidence used
by the larger production syste (e.g., a web page, a user review,
etc.). Peer-based detection, which compares triples with other
triples that share entities in the same category, is similar in

spirit to collaborative filtering (CF) though they did not compare
experimentally against a CF method such as WALS. Pattern-
based detection, presented in Karagiannis et al. (2019) and
Arnaout et al. (2020) seems better suited for mining (negative)
trivia than for product availability, since it is unlikelymany online
users write about e.g., why supermarkets don’t sell asphalt.

Perhaps the most similar crowdsourcing work to ours studies
the problem of approximating aggregation queries presented in
Trushkowsky et al. (2013), such as “How many restaurants in
San Francisco serve scallops?” While this approach works well
for estimating counts, clearly it does not scale for KBC.

8. CONCLUSIONS

The CrowdSense approach was an integral part of a successful
worldwide launch of local search results to queries for products
or dishes, overlaid on Google Maps, as shown in Figure 1.
Due to the complexity and scope of the deployed project,
we focused on the real-world knowledge acquisition aspect
of the work, and presented a few simplified experiments that
demonstrate how the acquired class-level knowledge can be used
for KBC at the instance level. These experiments may seem
over-simplified, but they accurately capture the impact of the
three-tiered crowdsourcing approach on the deployed product,
in particular the rapid jump-start of the place-offering edges in
the knowledge graph.

To achieve these results, we augmented an existing knowledge
graph of most stores and restaurants on earth, their categories,
dishes and a product taxonomy, by adding place to product
and place to dish edges. We combined web-based information
extraction (WebIE) and direct user observations collected over 2
years (UGC) with a novel collection of class-level 〈store, offering〉
pairs from the crowd (CS), which were inferred to the instance-
level based on class membership. In 2 weeks of data collection
we achieved a recall of 0.24 at 0.80 precision against gold
standard instance-level labels for shopping, and 0.21 for dining.
The class-level data for shopping combined with WebIE to
achieve 0.35 recall, which was the recall of a WALS model with
18 months of UGC input. For dining the same combination
also produced 0.34 recall, which was the WALs recall for 11
months of UGC. We conclude that the Crowd Sense approach
uses human common sense knowledge to rapidly jump start
the kind of generalization that ML systems are good at with
a lot of data. This has implications for practical ML and
Human Computation.

Our class-level crowdsourcing results show that the
disagreement in categorical knowledge collected from the
crowd can indicate the distribution of that knowledge at the
instance level, rather than assuming the class-level associations
are universally true: in other words, if 80% of raters say “Grocery
stores sell oat milk,” then ∼ 80% of grocery stores sell oat milk.
These results held also for dishes at restaurants.

The taxonomy of products was used to guide the sampling of
class-level pairs in a way that helped us address the sparsity of the
CP × CO space, and only the negative class-level attributes were
accurate when inferred to more specific categories, as in Deng
et al. (2014), as opposed to the more traditional view that positive
attributes are “inherited.”
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FIGURE 9 | CrowdSense search results in NYC for knapsacks.

We found the categorical pairs which were rapidly acquired
were extremely useful in guiding the collection of instance-
level labels, since we did not have to ask users about obviously
available or unavailable products—this has implications for active
learning, and held also for dining.

We expected the class-level ratings we acquired from a small,
international, pool of paid raters, to show bias toward ratings
coming from the same country of a restaurant. In other words, we
expected class-level ratings from Indian raters to have lower error
for restaurants in India than class-level ratings from raters in
other countries. This turned out to only be true for Japan, and for
all other countries it was the opposite. This may tell us something
about the way the place categories model the real world, more
investigation is required.

We believe Crowd Sense is a general technique for knowledge
acquisition that can provide a rapid jump-start to the process
by acquiring more general, common-sense defaults as a first
step, while more precise but time-consuming acquisition (i.e., at
the instance level) proceeds over time. We have shown that the
original local shopping idea, first presented inWelty et al. (2021),
can generalize to other establishment domains with similar gains,
in this case dining, and we have considered many other bipartite
problems that meet the basic requirement that there is a strong,
common-sense understanding of the relation at the categorical
level, for example:

• Dish contains ingredient. Dishes have associated recipes and a
strong notion of taxonomy8, andmany ingredient associations
are ridiculous at a class level, such as Apple Pie and Curry.

• Cuisine includes dish. Dishes are also associated with
cuisines, a pairing that could be useful for recipe datasets,
and understanding menus. Many cuisines are regional,
introducing a different kind of partial order (containment
rather than generalization, see Guarino and Welty, 2009) on
one side of the bipartite relation.

• Wildlife inhabiting a region. Several NGOs track wildlife
populations through remote cameras and citizen science
collection of photos, and identify animals using automatic
methods.9 Such methods would benefit from large scale
understanding of obvious negatives (tigers are not found
in Africa). Like cuisines, this involves treating locations as
a partial order based on containment, and the Linnaean
taxonomy for animals is well established.

• Animal has body part. In the early days of AI, much ink
was spilled on modeling defaults and exceptions such as
“Elephants have trunks” and “Humans have two legs.” This
work was summarized nicely in Brachman (1985). Modern
AI systems do not use this information and rely on the

8e.g., https://www.wikidata.org/wiki/Wikidata:WikiProject_Food/Taxonomy.
9Examples include wildlifeinsights.org and inaturalist.org.
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formation of embeddings that bely human understanding, but
such systems have been shown in Aroyo and Paritosh (2021)
to make “silly” categorical mistakes. An approach that forces
large models to formmeaningful intermediate representations
such as parts of the body, as described by Hinton (2021),
could avoid silly mistakes with this form of common
sense curation.

• Company owns patent. Finding patents is a difficult search task
that continues to be a focus of AI systems. While these systems
do not generally lack data, they do often suffer from silly
mistakes, as image understanding systems do, which reflect a
lack of common sense. Adding categorical associations such as,
“Tech companies do not own pharmaceutical patents” would
eliminate some of these mistakes.

To see CrowdSense at work, type the name of a product or
dish into Google Maps (or Google Search). Results that say “Sold
here: product” come from the data we published (see Figure 9,
as opposed to “In stock” (merchant feeds) and “Webpage says.”
Anyone with a Google account can participate in UGC (user
generated content) acquisition. Users with location tracking
turned on (so that maps knows what places the user has visited10)

10See https://support.google.com/local-guides/answer/6225846.

can navigate to the “contribute” tab that allows them to rate
and leave reviews, as well as review facts and answer the yes/no
questions regarding locations they have visited.
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