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Artificial intelligence and machine learning techniques have proved fertile methods for

attacking difficult problems in medicine and public health. These techniques have

garnered strong interest for the analysis of the large, multi-domain open science datasets

that are increasingly available in health research. Discovery science in large datasets

is challenging given the unconstrained nature of the learning environment where there

may be a large number of potential predictors and appropriate ranges for model

hyperparameters are unknown. As well, it is likely that explainability is at a premium

in order to engage in future hypothesis generation or analysis. Here, we present a

novel method that addresses these challenges by exploiting evolutionary algorithms

to optimize machine learning discovery science while exploring a large solution space

and minimizing bias. We demonstrate that our approach, called integrated evolutionary

learning (IEL), provides an automated, adaptive method for jointly learning features and

hyperparameters while furnishing explainable models where the original features used to

make predictions may be obtained even with artificial neural networks. In IEL the machine

learning algorithm of choice is nested inside an evolutionary algorithm which selects

features and hyperparameters over generations on the basis of an information function to

converge on an optimal solution. We apply IEL to three gold standard machine learning

algorithms in challenging, heterogenous biobehavioral data: deep learning with artificial

neural networks, decision tree-based techniques and baseline linear models. Using our

novel IEL approach, artificial neural networks achieved ≥ 95% accuracy, sensitivity and

specificity and 45–73% R2 in classification and substantial gains over default settings.

IEL may be applied to a wide range of less- or unconstrained discovery science problems

where the practitioner wishes to jointly learn features and hyperparameters in an adaptive,

principled manner within the same algorithmic process. This approach offers significant
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flexibility, enlarges the solution space and mitigates bias that may arise from manual or

semi-manual hyperparameter tuning and feature selection and presents the opportunity

to select the inner machine learning algorithm based on the results of optimized learning

for the problem at hand.

Keywords: artificial intelligence, machine learning, deep learning, optimization, explainability, feature selection,

automated, hyperparameter tuning

INTRODUCTION

The last decade has seen the rapid adoption and implementation
of artificial intelligence and machine learning (AI/ML)
algorithms across the engineering, physical, social, and biological
sciences. Indeed, new and powerful techniques have allowed
for novel applications in science and industry. Perhaps most
prominently, the family of methods known as deep learning
using various types of artificial neural networks (ANN) have
made a significant impact given their demonstrable value in both
supervised and unsupervised machine learning applications. In
biomedical and healthcare research, there has been considerable
interest in applying these techniques to discovery science in the
large, multi-domain datasets that are increasingly appearing in
many fields. Here, practitioners may have available hundreds
or thousands of potential predictors with which to construct
a model. Moreover, in approaching novel problems, rules-of-
thumb or heuristics may not be available for model training
parameters. While not limited to biological and biomedical
science, this type of less- or unconstrained learning environment
tends to be more common in these domains in contrast to
physical science or industrial applications. Three challenges
commonly impede the formulation of optimized, useful AI/ML
models, particularly when the practitioner wishes to investigate
high-dimension, heterogenous biomedical data in a less- or
unconstrained modeling environment.

Firstly, a shared requirement of the large variety of AI/ML
methods is for the practitioner to appropriately parameterize
their designs with hyperparameters that optimize learning
(Claesen, 2015). These settings can have dramatic effects
on results and performance. The problem may be usefully
considered as two related sub-issues: the optimization of
hyperparameters that control learning and determination
of when model training may be terminated. Currently,
hyperparameters are often manually tuned and the number of
model training iterations is empirically selected and frequently
small. For instance, a recent large survey of practitioners found
that the majority pursued ≤50 model fits in computational
experiments (Bouthillier and Varoquaux, 2020). Reliance on
manual hyperparameter search or rules-of-thumb (Hinton,
2012) can affect reproducibility, result in sub-optimal solutions
or become impractical when the number or range of the
hyperparameters is large. In particular, deep learning models are
somewhat notorious for being difficult to “tune,” or optimize.
Moreover, in early-stage or discovery science, rules-of-thumb
may be unavailable because the problem is novel. There is
increasing interest in developing automated methods to perform

hyperparameter tuning and evidence that these outperform
manual approaches (Bergstra. J., 2011; Bergstra and Bengio,
2012). Ideally, such an automated method would select from a
wide range of potential hyperparameter settings and converge
upon an optimized solution in a principled manner.

Secondly, research often takes as its substrate for AI/ML high-
dimension datasets with many potential predictors that may also
be of heterogenous types. In particular, the collection and release
of multi-domain open science datasets for discovery is a strong
trend in biomedicine. While the ability of AI/ML techniques to
simultaneously analyze large predictor sets is a strength over
more conventional statistical methods, the problem of feature
selection (the extraction of a reduced set of features that best
represent the analytic problem) becomes intense in these less-
constrained learning contexts. Deep learning does not require
explicit feature selection and in this sense can be a boon in saving
the practitioner the necessity of performing explicit feature
selection. However, dimensionality reduction effected through
feature selection remains an important step in the analysis
pipeline, especially in exploratory analyses or discovery science
in high-dimension datasets. It reduces overfitting and renders the
training process more computationally efficient. When manual
or semi-manual feature selection is used in machine learning,
model bias or a solution space that is cramped may result.
Moreover, manual feature selection relies heavily on expert
domain knowledge that may not be available when the problem
or data are novel.

Finally, explainability is a priority in biomedical and/or
translational applications. Conventionally, ANNs learn by
constructing machine-generated intermediate features that are
not interpretable by humans. However, in certain applications
such as healthcare this can be a drawback. For instance, the
broad aim of precision medicine is to construct disease models
that predict the risk of an individual patient for a disease
outcome and/or predict their personal response to a specific
intervention. In this case, we will very likely want to know
which original, human-interpretable features act as predictors
in the deep learning model and their relative importance,
since these will likely be the targets of interventions and
treatments. Further, knowledge about which original features are
important can support hypothesis-formation for future work, the
discovery of biological mechanisms and the formation of future
experimental samples.

Motivated by these challenges to modeling in less- or
unconstrained learning environments, we developed a novel AI
method that exploits the principles of evolutionary algorithms to
produce convergent, optimized solutions. Evolutionary learning
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algorithms are metaheuristics inspired by biological evolution
with a rich history in computational intelligence across many
scientific fields (Vikhar, 2016). Here, we present our approach
of integrated evolutionary learning (IEL), which provides
an automated AI strategy for jointly learning features and
hyperparameters while also furnishing explainable machine
learning models where the original features used to make
predictions may be obtained and ranked in order of importance.
IEL is an example of narrow or applied AI, where an
adaptive algorithm functions autonomously in response to newly
encountered data. A machine learning algorithm of choice is
nested inside IEL which acts upon theMLmodel to select features
and hyperparameters over many learning generations based on
an information theoretic fitness function to converge on an
optimal solution. In short, IEL is an AI method which jointly
perform feature selection and leverages evolutionary learning
optimized over the hyperparameters in order to achieve the
best performance i.e., the hyperparameter tuning is optimized
for performance. It was designed to address the problem of
discovery science in large multi-domain datasets and differs from
other automated or semi-automated approaches to either feature
selection or hyperparameter tuning since it selects both features
and hyperparameters within the same adaptive learning process.
Thus it jointly trains and learns features and hyperparameters. To
demonstrate IEL’s potential to optimize AI/ML for translational
applications in health science in complex multi-domain data,
we present a challenging use case in optimizing classification
in bio-behavioral “big” data. Comparison with conventional
training and testing of machine learning algorithms using default
hyperparameter settings is also performed to demonstrate the
performance improvement accruing from the use of IEL.

MATERIALS AND METHODS

Data
Our experiments use data from the ongoing Healthy Brain
Network (HBN) study by the Child Mind Institute (Alexander
et al., 2017). The HBN initiative collects multi-domain data from
youth with at least one behavioral concern aged 5–21 years old
in the New York City area comprising behavioral, social, cultural,
economic, biological and neural data. We selected participants
with at least one complete resting-state functional MRI (fMRI)
scan (365 volumes), available phenotypic data to Release 8 and
complete data for the predictive target measures of interest
(Alexander et al., 2017). Demographic features of the total sample
are presented in Table 1.

The participant sample was randomly split with ∼70% used
for training and testing and ∼30% reserved as unseen validation
data with the data preparation pipeline applied separately. In the
present study, “testing” and “test set” refers to the set of examples
used to jointly learn features and hyperparameter settings. The
terms “validation set” and “validation” refer to the set of examples
used only once to assess the performance (i.e., generalization) of
the fully specified classifiers or regressionmodels. TheHBN study
was approved by the Chesapeake Institutional Review Board. The
present study was deemed not human subjects research by the

TABLE 1 | Demographic and cognitive characteristics of participant sample.

Characteristic Range Mean Median

Age 5.1 to 21.5 10.8 9.9

FSIQ 42 to 147 98.2 100

Autism traits 0 to 47 7.2 4

Handedness (−100) to (+100) 59.4 77.8

Dimensional change 0 to 100 34.2 25.0

Inhibitory control 0 to 99 26.2 19.0

Working memory 0 to 100 41.3 37.0

Pattern recognition 0 to 100 39.0 32.0

Characteristics of 1,120 participants in the study are shown. The sample contained 729

male youth and 391 female youth.

FSIQ = full scale intelligence quotient, assessed with the Wechsler Intelligence Scale

(WISC 5). Handedness was determined with the Edinburgh Handedness Inventory, where

a score of −100 represents maximal left dominance and +100 maximal right dominance.

For cognitive measures, dimensional change was assessed with a card sort task, inhibitory

control with a flanker task and working memory with a list sorting task.

University of Washington Review Board and the University of
Utah Review Board.

Feature and Target Selection and
Preparation
Bio-Psycho-Social Feature Selection and Preparation
HBN collects data from participants in 4 study visits of 3 h with
a standardized protocol: http://fcon_1000.projects.nitrc.org/
indi/cmi_healthy_brain_network/index.html. For continuous
measures, we selected the available summary or total metric.
For 11 instruments (Figure 1) no such metric was available
and we computed a summary measure by applying feature
agglomeration to recursively merge individual items and
generate a single continuous measure. Features with >40%
missing values were discarded, and continuous variables
trimmed to mean ± 3 standard deviations to remove outliers.
Missing values for the remaining variables were imputed using
non-negative matrix factorization. No Matches Found All
features were then scaled using scikit-learn’s MinMaxScaler
(Lee and Seung, 1999; Jain et al., 2013). Features with skewed
distributions were transformed with scikit-learn’s Quantile and
Power transforms and the post-transform feature most closely
resembling a normal distribution was selected for inclusion in the
predictor set. 110 bio-psycho-social features were included in the
study (Figure 1) for predictions of problem behaviors (CBCL)
and 109 features for prediction of life function (WHODAS) and
autism (ASSQ) since theWHODAS and ASSQwere, respectively,
removed from the feature set in experiments where these metrics
served as the target of prediction.

Neural Connectivity Features
We computed gold standard brain functional connectivity
measures from functional MRI (fMRI). HBN acquires multiband
3T resting-state, eyes open fMRI comprising 365 volumes at 2
sites. After removing the first 10 volumes to allow for scanner
equilibration, each participant’s scan was realigned, coregistered,
normalized and smoothed at 6mm full width at half maximum
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FIGURE 1 | Features used in predictive analytics. Developmental, cognitive, behavioral, social, and physiologic features used as predictors in analytic experiments are

shown, organized by type. Terms in italics are those for which feature agglomeration was applied to generate a summative metric. A list of the names of underlying

assessments used to generate each feature and further descriptions of features may be inspected in Supplementary Table 1.

using standard algorithms in SPM12 (https://www.fil.ion.ucl.
ac.uk/spm/software/spm12/). These pre-processed scans were
then submitted to quality control by computing correlation
with a group mask and 21 participants with <90% correlation
with this group mask were eliminated. Head motion was
computed for each participant with the DVARS (Christodoulou
et al., 2013; Power et al., 2014) metric. We then used an
established pipeline to perform group spatial independent
component analysis to extract a whole brain parcellation scheme
representing 15 functional components (Allen et al., 2011)
with the widely used Group ICA of fMRI Toolbox (GIFT)
(Calhoun et al., 2001; Calhoun and Adali, 2012). Spatial ICA

is a standard method to estimate biological gray matter neural
networks from fMRI signals. Components estimated by ICA
were sorted into gray-matter intrinsic functional networks vs.
artifactual noise components with a combination of expert visual
inspection by NdL and the quantitative metrics of fractional
amplitude of low frequency fluctuations and dynamic range
(Allen et al., 2011). Components with poor overlap with
cerebral gray matter or low spectral metrics were discarded
and we retained a set of 10 functional intrinsic neural
networks (IN). We constructed a spatial map for each IN
following an established GIFT pipeline (Allen et al., 2011).
To determine functional connectivity strength among INs, we
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computed Pearson correlations among each possible pair of
spatial maps.

An additional set of dynamic connectivity metrics was
computed by delineating stable dynamic whole-brain
connectivity states from the fMRI ICA timecourses and
applying the temporal ICA (tICA) clustering algorithm to
connectivity windows using an established sliding window
method (Sakoglu et al., 2010; Allen et al., 2014). This approach
aims to construct metrics that describe the fluidity and range
with which participants traverse brain states. We applied the
tICA algorithm to the windowed covariance matrices using the
city method to compute the connectivity patterns (CPs) and
discretized the time-varying, additive contributions made by CPs
to each observed windowed covariance matrix. A 4-dimensional
weight vector was obtained representing the contribution of
each CP to each matrix by regressing the functional connectivity
estimate onto the tICA cluster centroid. Real-valued weights
accruing from this computation were then replaced by a value
in ± (Bergstra and Bengio, 2012; Hinton, 2012; Claesen, 2015;
Bouthillier and Varoquaux, 2020) according to the signed
quartile into which each weight fell. The resulting discretized
vectors are termed “meta-states.” Four metrics dynamism were
computed for these meta-states. Two metrics describe the
fluidity with which subjects traverse the meta-state space: the
number of distinct meta-states passed through by each individual
and the number of times each subject switches between meta-
states. The remaining two metrics describe the high-dimension
dynamic range achieved by subjects: the maximal L1 span
achieved between occupied meta-states, and the total distance
“traveled” by an individual through the state space (sum of all
L1 distances). A total of 50 neural features were included in the
study (Figure 1).

Nuisance regressors of scanner site, DVARS statistic and 6
realignment parameters and their 6 first derivatives for each
participant were regressed from all connectivity models using
the general linear model prior to computing. Scanner site and
head motion (DVARS) were retained as features in the predictive
analytics to assess for any residual effects.

Predictive Targets
Well-validated, widely-used gold standard behavioral measures
were selected from the HBN dataset for use as predictive
targets. Since we selected participants with complete predictive
target data for each experiment, numbers of participants
used for training/testing and validation varied slightly among
experiments. The World Health Organization Disability
Schedule (WHODAS 2.0) was used as a metric of daily
life function. The WHODAS asks about difficulties due to
illnesses such as mental or emotional problems and surveys
communication, mobility, self-care, relationship function and
participation in work and social activities. Predictive experiments
involving the WHODAS used input matrices of size 766 × 159
(subjects × features for train/test) and 326 × 159 (validation).
The Autism Spectrum Screening Questionnaire (ASSQ) is
measures traits and behaviors related to autism with answers
solicited from parents. It is considered to be a useful screen of
autism-related behaviors in “high functioning” youth. Predictive

experiments involving the ASSQ, where the WHODAS was
included as a feature, used input matrices of size 766 × 160
(train/test) and 326 × 160 (validation). The Child Behavior
Checklist (CBCL) is used to detect behavioral and emotional
problems in children and adolescents. It surveys anxious,
depressed, somatic, social, thought, attention, rule-breaking and
aggressive behaviors. Predictive experiments involving the CBCL
used input matrices of size 722 × 160 (train/test) and 310 × 160
(validation), since fewer subjects with complete CBCL data were
available. For each of these continuous measures we used the
total score for regression analyses. To convert these scores into
cases for classifications, a threshold was determined from the
continuous score distribution for each illness target that divided
participants into a group with no appreciable symptoms and
another with a range of symptom severity. The former group
were considered not a case where the latter was deemed a case.
Each sample was balanced as far as possible using synthetic
oversampling with the SMOTEENN algorithm.

Predictive Analytics
We compared the ability of three leading ML techniques to
predict daily life function (WHODAS) and autism traits (ASSQ)
in classification approaches optimized with IEL (Figure 2):
deep learning with ANNs, gradient-boosted decision tree-based
learning and a benchmark linear model. To demonstrate the
ability of IEL to perform in regression, we also performed
regression-based prediction with deep learning for daily life
function (WHODAS) and problem behaviors (CBCL). To
optimize learning performance, each algorithm was applied
within IEL, our evolutionary algorithm framework with k-fold
cross validation in custom Python code. Training and testing
of each individual model within every IEL learning generation
for all ML algorithms was performed with cross-validation as
detailed below (section Cross-validation). After training and
testing over many generations, a small set of optimized models is
identified and final validation performed on the held-out dataset
to determine how well this small subset of optimized models
generalizes to unseen data (section Validation). In addition, each
predictive experiment was repeated for each target and ML
method without IEL using the default hyperparameter settings
for each ML algorithm.

Motivated by the knowledge that not all researchers
have access to multi-GPU environments, each deep learning
experiment in the present study was performed on one
GPU without the use of parallel computing. The code
for predictive algorithms with IEL may be accessed in our
laboratory GitHub (https://github.com/delacylab/integrated_
evolutionary_learning). Pseudocode is also provided as
Supplementary Table 2.

Deep Learning With Artificial Neural Networks
We trained and tested ANNs using the Adam algorithm with
3 layers, 300 neurons per layer, early stopping (patience = 3,
metric = validation loss) and the Relu activation function. The
last output layer contained a conventional softmax function for
classification analyses. The Adam algorithm was selected based
on its established computational efficiency and suitability for
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TABLE 2 | Hyperparameters tuned via integrated evolutionary learning.

Algorithm type and hyperparameters Range Mutation shift

Artificial neural network

Learning rate 0.00001–0.01 0.0001

Beta 1 0.9–0.999 0.001

Beta 2 0.9–0.999 0.001

XGBoost (tree-based)

Maximum tree depth 2–10 1

Node partition threshold (gamma) 0–0.00001 0.0000001

L1 penalty (alpha) 0.1–0.9 0.001

ElasticNet (linear)

L1 penalty 0–1 0.01

L2 penalty 0–1 0.01

For each of the machine learning techniques employed in the study (artificial neural

networks, XGBoost and ElasticNet), model hyperparameters were tuned within Integrated

Evolutionary Learning to optimize model selection. The maximum range of possible

hyperparameter values (Range) for each technique is displayed. For models which

underwent mutation, the value of a single mutation shift is shown (Mutation shift).

problems with a large number of parameters like our study
(Kingma and Adam, 2017). Learning parameters (Table 2) were
tuned with IEL and the relative importance of each risk factor
determined by embedding eli5 (https://eli5.readthedocs.io/en/
latest/index.html), an established permutation algorithm, within
the IEL algorithm (Breiman, 2001). Hyperparameters that we
tuned in the present experiments may be viewed in Table 2

and corollary default hyperparameter settings in Table 7. Deep
learning models were encoded with TensorFlow embedded in
custom Python code.

Gradient-Boosted Tree-Based Learning
We trained and tested tree-based models to predict mental
illness cases with the XGBoost algorithm using the gbtree
booster (Friedman, 2001; Chen and XGBoost, 2016). This
is an ensemble-based method that generates a multitude of
decision trees that “vote” on a composite prediction. It is
accurate (Fernandez-Delgado et al., 2014), resistant to over-
fitting when properly tuned (Kleinberg, 1996) and uses model
residuals (actual–predicted values) to penalize leaves that do
not improve predictions, reducing bias as well as variance.
Empirically, gradient-boosted techniques have been highly
successful (Harasymiv, 2015). Hyperparameters that we tuned in
the present experiments may be viewed in Table 2 and corollary
default hyperparameter settings in Table 7. The importance of
each feature was computed within XGBoost, encoded with the
Scikit-Learn wrapper in custom Python code.

Linear Classification
We trained and tested linear models to classify mental illness
cases with the ElasticNet. This regularization method linearly
combines the L1 penalty of the LASSO (least absolute shrinkage
and selection operator) and the L2 penalty of the Ridge method.
It produces superior results in real world and simulated data,
particularly to the use of LASSO alone (Zou Ha, 2005). The L1
and L2 parameters were tuned using IEL (Table 2). The relative

importance of each risk factor was determined by computing
its linear coefficient (beta). Hyperparameters that we tuned in
the present experiments may be viewed in Table 2 and corollary
default hyperparameter settings in Table 7. We encoded the
ElasticNet model using Scikit-learn algorithm embedded within
custom Python code.

Cross Validation
For each of the three ML techniques every one of the
individual models throughout each IEL learning generation
were fit using stratified k-fold cross validation for classification.
Since the number of features for each model fit could differ
within IEL, k (the number of splits) was set as the nearest
integer above [sample size/number of features]. Cross validation
was implemented for classification analyses with the scikit-
learn StratifiedKFold function. For regression analyses, cross
validation was implemented with the scikit-learn Kfold function.
Cross-validation was similarly incorporated in the comparative
experiments using default hyperparameter settings.

Integrated Evolutionary Learning for
Machine Learning Model Optimization
Each ML algorithm was implemented within IEL to optimize
model selection and performance (Figure 2). IEL jointly learns
features and hyperparameter values over successive learning
generations in an integrated manner based on improvements
in an information theoretic fitness function. In the present
paper, we utilized the Bayes Information Criterion (BIC) as a
fitness function to continuously select higher-performing models
and discard underperforming solutions but other information
theoretic measures such as Kullback-Liebler Divergence could
be substituted. For each machine learning algorithm, a first
generation of n models (in the present experiments n = 100)
is initialized with “chromosomes” consisting of hyperparameter
values selected randomly from a range (Table 2) and 1–50
features selected randomly from the total possible set of ∼160
features. The feature set and hyperameters of each of the n
models is therefore random and different. After training these
initial n models, the BIC is computed for each of the n
solutions. Hyperparameter values and features were subsequently
recombined, mutated or eliminated over successive generations.
Figure 3 shows a schematic of how IEL performs evolutionary
selection of features and hyperparameter values.

In recombination, “parent” hyperparameters of each type
are averaged to form “children.” After computing the BIC for
the first learning generation, the 0.4n best-performing models
(here, 40 models) are recombined. For example, in the ANN
models, the learning rate of the best and second-best performing
models was averaged after a pivot point at the midpoint to
establish a new learning rate for the first ‘child’ model of the
subsequent IEL generation. Thus, hyperparameters of the 0.4n=

40 best-performingmodels of the first generation are recombined
to form new hyperparameter values for 0.2n = 20 new child
models in the next IEL generation. In mutation, hyperparameter
settings are shifted. 0.2n = 20 best models based on BIC values
were mutated to produce the same number of child models by
shifting the requisite hyperparameter by the mutation shift value
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FIGURE 2 | Computational pipeline. The study computational pipeline is shown as detailed in materials and methods for classification experiments. In regression

experiments the pipeline was similar, with the exceptions that only deep learning with artificial neural networks was performed and performance statistics of Mean

Squared Error, Explained Variance and R2 were computed.
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FIGURE 3 | Schematic of the IEL learning process. IEL is an example of a narrow AI algorithm that acts upon a machine learning technique, designed for discovery

science in large datasets. IEL is used to jointly learn features and hyperparameter settings for machine learning models in an integrated, adaptive manner over

successive learning generations in response to new inputs on the basis of an information theoretic fitness function.
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FIGURE 4 | Fitness function during IEL learning. During model training, the fitness function is used by IEL to select best-performing models for recombination and

mutation. Initial learning may be terminated when the BIC plateaus, as shown here for training the XGBoost model to predict autism which plateaus after ∼130

learning generations or ∼400 models, since 3 best-performing models are retained per generation.

(Table 2). For example, the learning rate for an ANN model was
incremented or decremented by 0.0001. The remaining 0.4n =

40 lowest-performing models based on the BIC were discarded.
The next generation of models was formed by adding 0.6n = 60
new models with randomized settings and adding these to the
0.4n = 40 child models formed via recombination and mutation
for a full complement of n models moving forward in the IEL
learning process. Thereafter, an automated process continues to
recombine, mutate and discard nmodels per generation based on
the values of the BIC as new data is encountered by IEL until the
fitness function plateaues (Figures 3, 4). The fitness, features and
hyperparameters of the 3 best performing models per generation
are retained in a queue which is monitored for plateauing in the
fitness function i.e., the convergence condition. Excepting the
ElasticNet model (which has naturally bounded hyperparameter
intervals in [0–1]), possible values for each hyperparameter were
generously set to allow for broad exploration of the potential
solution set.

As described above, features are jointly learned with
hyperparameters during each IEL learning generation. In the
initial learning generation, a random number of features in the
range [1–50] is set for each of the n = 100 models. Here,
predictors are randomly sampled from the set of ∼160 possible
features to create feature sets for each model. After computing
the BIC for this first generation of models, feature sets from the
best-performing 0.4n = 40 models are carried forward to serve
as potential predictors in the child models. For example, feature
sets used by the best-performing 0.4n = 40 ANN parent models
were retained and served as potential predictors in the 0.4n
= 40 ANN child models with hyperparameter settings derived

from recombination and mutation. Feature sets for the worst-
performing 0.6n = 60 models are discarded. Integrated with the
hyperparameter tuning described above, the process was repeated
for succeeding generations until the BIC plateaued as revealed in
the queue of fitness values.

To facilitate computationally efficient modeling, IEL
implements recursive learning. After training models until
the BIC plateaues (Figure 4), we determine the elbow of a
performance metric plotted vs. number of features. In the
present experiments, accuracy was used for the classifications
and R2 for the regressions, but other metrics such as error
or precision may be substituted as the practitioner chooses.
The total number of features available after the warm start
is constrained to that subset of features, thresholded by their
importance, that corresponds to the elbow (Figure 5). For
example, the elbow for regression prediction of the CBCL may
be identified at 14 features, which corresponds to an importance
threshold of 20.0. After the warm start, learning proceeds
by constraining features available for learning at increasing
thresholds in [warm start feature importance + [0–4] standard
deviations]. In addition, we reduce the number of models per
generation to 0.5n = 50 with 0.2n = 20 models recombined and
0.1= 10 models mutated. Otherwise, after restarting the training
process at the warm start threshold ranges an initial generation
of models was randomly initialized and training completed using
the same principles as detailed above (Figure 3).

Validating Results on Held-Out Test Data
After training and testing was completed for each model
in each generation, the best performing n = 100 optimized
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FIGURE 5 | Thresholding for warm start learning. Prior to beginning the recursive training portion of learning, a thresholding process is used to implement feature

selection for a warm start to final learning. Here we show an example of deep learning with artificial neural networks to predict CBCL scores using regression. Plotting

the R2 metric against the number of features reveals that 14 features is optimal. A threshold value is then identified which constrains the available feature set for final

recursive learning after the warm start to the 14 most important features identified during initial learning prior to the warm start.

models were applied to the reserved unseen validation set. We
selected statistical tests that are commonly accepted for ML and
available across all algorithm types used in this study including
deep learning with ANNs. For the classification experiments,
performance metrics of accuracy, precision (specificity or
positive predictive value) and recall (sensitivity or negative
predictive value) were determined. For regression experiments,
mean squared error, explained variance and R2 were computed.
Information theoretic measures are another class of metrics
that are available for both artificial neural networks and other
machine learning algorithm types and we also computed and
report the Bayes Information Criterion. For each experiment
the single best performing, optimized model was selected
based on these performance metrics. Of note, validation testing
did not use synthetic oversampling but was performed on
native data.

RESULTS

Deep Learning With IEL Generalized Most
Robustly to Unseen Validation Data
Deep learning with artificial neural networks robustly classified
individual life function and autism achieving ≥ 95% accuracy,
precision and recall (Table 3) after optimization with IEL.
Similarly, when gradient-boosted decision tree learning was
optimized with IEL, accuracy and recall of over 99% was
realized, though precision was only ∼55–60%. In the baseline

linear ElasticNet models, performance was also relatively good
given that comparison among the methods suggests that this
complex biobehavioral data is better modeled with the non-
linear deep learning and tree-based algorithms. The linear
models offered comparable precision to XGBoost but did not
achieve the very high levels of accuracy and recall seen using
other techniques.

We also performed regression-based prediction for life
function and problem behaviors where the targets were
continuous rather than discretized measures. Here, IEL
again performed well when optimizing machine learning
predictions of life function and problem behaviors, with 46
and 73% explained variance and R2 respectively (Table 4).
Prediction of problem behaviors using the CBCL was more
robust than that of life function using the WHODAS. The
former is noted to offer a smoother continuous scale than
the latter.

IEL Provided Explainable Deep Learning
and Ranked Predictors by Importance
Using the feature selection properties of IEL, we were able to
provide explainable models for all three algorithms including
deep learning with artificial neural networks. This enabled direct
comparisons to be made of the most important predictors
and their relative importance for experiments using different
techniques (Tables 5, 6).
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TABLE 3 | Results of classification using 3 algorithm types optimized with IEL vs. default settings.

Target Accuracy % Precision (Sensitivity) % Recall (Specificity) % Bayes Information Criterion

(a)

Life function (WHODAS) 96.7 94.6 96.8 −1108.1

With default settings 68.4 59.7 70.6 −266.7

Autism (ASSQ) 98.8 98.2 97.9 −1315.6

With default settings 74.5 64.6 75.8 −224.7

(b)

Life function (WHODAS) 99.1 60.7 100.0 −1516.8

With default settings 68.7 57.0 78.1 −216.4

Autism (ASSQ) 99.7 55.2 99.5 −1869.2

With default settings 70.2 50.3 75.1 −289.1

(c)

Life function (WHODAS) 74.5 56.9 85.6 −440.2

With default settings 65.1 56.9 68.2 43.3

Autism (ASSQ) 80.1 51.5 90.1 −504.2

With default settings 67.2 49.9 65.2 15.2

The relative classification performance of (a) Deep learning with artificial neural networks; (b) Gradient-boosted tree-based learning and (c) Linear model with ElasticNet optimized with

Integrated Evolutionary Learning is shown. Each result is directly compared with performance without IEL using default settings for hyperparameters. Performance metrics for the

best-performing model for each algorithm type validated on held-out data to assess the generalizability of the models are shown.

TABLE 4 | Results of regression prediction using deep learning optimized with IEL.

Target Mean squared error Explained variance % R2 Bayes Information Criterion

Life function (WHODAS) 135.1 46.2 45.6 −672.8

With default settings 167.2 0.3 0.3 1988.0

Problem behaviors (CBCL) 34.9 72.6 72.6 1,131

With default settings 477.5 −0.7 −2.8 2246.3

Performance of deep learning with artificial neural networks optimized with IEL for two predictive targets is shown and compared with performance without IEL using default settings for

hyperparameters. Performance metrics for the best-performing model validated on held-out data are shown.

IEL Provided Substantial Performance
Improvements vs. Default Hyperparameter
Settings
Substantially improved predictive performance was obtained by
applying IEL toML algorithms (Tables 3, 4) when compared with
conventional learning using default hyperparameter settings.
The performance improvement obtained with IEL was most
pronounced in deep learning with artificial neural networks,
where we saw 20–35% higher accuracy, precision and recall
in classification and 45–70% better R2 and explained variance
in regressions. IEL particularly improved accuracy and recall
in decision-tree based learning with XGBoost and the linear
ElasticNet models. More modest improvements were seen in
precision statistics in these latter two algorithms.

Table 7 shows the differences between IEL-optimized and
default hyperparameter settings. In all cases hyperparameters
tuned with IEL in our optimized solutions differed from the
default values offered by the nested ML algorithms, in many
cases substantially. For the ANNs, the optimal learning rate was
noticeably higher than the default. In the case of the gradient-
boosted decision tree-based solutions, maximum tree depth was
slightly higher at 7 vs. a default of 6. We found that IEL added

a small value for the node partition threshold (where the default
is 0). The most striking difference from default settings came in
the L1 penalty (“alpha”), where IEL added a substantial amount
of regularization. The default settings in the machine learning
algorithms are 0 for XGBoost and 0.15 for L1 and L2 in the linear
ElasticNet technique. IEL increased the L1 penalty substantially
but preferred a lower L2 penalty than the default.

The Number of Generations Required to
Optimize Learning Varied Across
Experiments
IEL is an adaptive algorithm that learns during optimization
over successive generations as it encounters new data on an
individualized basis for each machine learning technique and
experiment. We found that the number of learning generations
required for the fitness function (Bayes Information Criterion) to
plateau varied among individual experiments (Table 8).

DISCUSSION

Evolutionary learning is a metaheuristic that offers compelling
advantages when applied to machine learning as an AI optimizer:
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TABLE 5 | Optimized predictors of life function and autism.

Life function Autism

Features Imp Features Imp

Deep learning: classification Autism traits (ASSQ)

Hyperactivity traits (SDQ)

Mood symptoms (MFQ)

Social skills (SRS)

Internalizing traits (SDQ)

Social aptitude (SAS)

Repetitive behaviors (RBS)

0.26

0.21

0.20

0.20

0.18

0.16

0.16

Non-verbal communication

(SCQ)

Internalizing traits (SDQ)

Repetitive behaviors (RBS)

Functional impairment (CIS)

Hyperactivity (SDQ)

Gets along with school peers

Mood symptoms (MFQ)

0.29

0.21

0.16

0.15

0.14

0.14

0,14

Deep learning: regression Social skills (SRS)

Functional impairment (CIS)

Internalizing traits (SWAN)

Mood symptoms (MFQ)

−71.2

−29.3

−24.5

−21.3

- -

Decision tree Social skills (SRS)

Visual/language

network connectivity

0.71

0.29

Social skills (SRS)

Annual household income

Takes psychiatric medications

Diastolic blood pressure

Internalizing traits (SDQ)

Mood symptoms (MFQ, P)

Newborn problems

Mother took medication during

pregnancy

Bullied by peers

0.41

0.11

0.11

0.08

0.07

0.07

0.05

0.04

0.04

Linear Social skills (SRS) −0.92 Internalizing traits (SDQ)

Nonverbal communication (SCQ)

Functional impairment (CIS)

−0.42

−0.39

−0.14

For each algorithm type, we show predictors of individual life function and autism and their relative importances (Imp) for the best-performing model (Table 4) after optimization with

IEL. Importances are computed as detailed in materials and methods. Names of the specific psychometric assessment (Supplementary Table 1) used as the basis of the predictor

are shown in parentheses.

it learns adaptively, surveys the search space randomly, is
representation independent (e.g., accepts categorical variables)
and is intuitive and transparent. Metaheuristic methodologies
have been an active area of research for decades and are
often inspired by natural, stochastic phenomena like genetic
selection, particle swarms (which have been applied to model
hyperparameter tuning) or insect colony behavior (Liang et al.,
2020). They have made major impacts in providing practical
solutions to combinatorial problems in diverse scientific fields
(Osman and Laporte, 1996). For example, a conceptually similar
problem exists in constructing models to fit experimental
observations in biochemistry and thermodynamics: evolutionary
algorithms have been applied to overcome local minima
problems arising from dependence on an initial user-provided
“guess” of the standard non-linear least squares technique
(Ingram et al., 2021). Here, we use evolutionary learning in
a novel narrow AI application to jointly learn features and
hyperparameters and thereby optimize machine learning. The
overall aim is to provide practitioners with a principled approach
to unconstrained learning problems in discovery computational
science, particularly in large and/or high-dimension datasets
where many potential predictors are available and approximate
hyperparameter ranges unknown. Evolutionary learning has
previously been selectively applied to hyperparameter tuning
but not to our knowledge to solve the problem of automated

TABLE 6 | Optimized predictors of problem behaviors.

Problem behaviors Features Imp

Deep learning: regression Functional impairment (CIS) −44.1

Externalizing traits (SDQ) −35.1

Social skils (SRS) −31.9

Mother took medication during pregnancy −3.5

Predictors of problem behaviors and their relative performance are shown for regression-

based prediction for the best-performing model (Table 4) after optimization with IEL.

Importances (Imp) are computed as detailed in Materials and Methods. Names of the

specific psychometric assessment (Supplementary Table 1) used as the basis of the

predictor are shown in parentheses.

feature selection. In particular, we are not aware of AI
methods which use evolutionary learning to jointly learn
features and hyperparameters. Comparisons to other methods
for feature selection or hyperparameter tuning are successively
discussed below.

Hyperparameter optimization is of immediate and pragmatic
relevance to machine learning practitioners given its impact on
model training and performance. It is highly germane in deep
learning where hyperparameter “tuning” can be particularly
challenging. Besides manual selection, the standard automated
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TABLE 7 | Hyperparameter values after tuning with IEL.

Algorithm type and

hyperparameters

Optimal

hyperparameters

Default

(a)

Artificial neural network

Learning rate 0.003 0.001

Beta 1 0.984 0.900

Beta 2 0.982 0.999

XGBoost (tree-based)

Maximum tree depth 7 6

Node partition

threshold (gamma)

3.98−06 0

L1 penalty (alpha) 0.46 0

ElasticNet (linear)

L1 penalty 0.49 0.15

L2 penalty 0.08 0.15

(b)

Artificial neural network

Learning rate 0.004 0.001

Beta 1 0.941 0.900

Beta 2 0.941 0.999

XGBoost (tree-based)

Maximum tree depth 7 6

Node partition

threshold (gamma)

9.94−06 0

L1 penalty (alpha) 0.64 0

ElasticNet (linear)

L1 penalty 0.34 0.15

L2 penalty 0.33 0.15

Hyperparameter values achieved after tuning with IEL for classification-based prediction

are shown for the best-performing model in each algorithm class for a Life function and

b Autism.

approaches are grid search and randomized parameter
optimization, both implemented in widely used packages such as
scikit-learn (https://scikit-learn.org/stable/modules/grid_search.
html). The former is probably the most popular technique,
where a grid is constructed of candidate hyperparameters
and all combinations of these are exhaustively attempted
during training to identify the best-performing set. While this
can be computationally manageable if the grid is relatively
small, implementation becomes unwieldy if a large number
or wide ranges of hyperparameters are under consideration as
is the case in unconstrained and/or novel learning problems.
Randomized parameter optimization (Bergstra and Bengio,
2012) attempts to reduce such computational demands by
assembling hyperparameter sets via sampling of distributions
over possible parameter values. Both methods are somewhat
“brute force” approaches that are non-adaptive (i.e., do not
take advantage of prior learning) and select discrete sets of
hyperparameter values, thereby running the risk of limiting
the search space and introducing bias. Unless the entire
search space is sampled, there is no guarantee of finding a
local minimum. More recently, Bayesian techniques such as
Spearmint (Snoek, 2012) (https://github.com/HIPS/Spearmint)

TABLE 8 | Number of generations required for fitness function to plateau during

training.

Experiment Algorithm type Number of generations

Life function classification ANN 107

XGBoost 33

ElasticNet 130

Autism classification ANN 30

XGBoost 133

ElasticNet 140

Life function regression ANN 175

Problem behaviors regression ANN 60

The number of learning generations required for the Bayes Information Criterion to plateau

(Figure 3) during initial training is shown for each algorithm and experiment type.

have gained in popularity and can offer efficiencies in terms of
evaluating the chosen objective function, though this benefit
tends to degrade as the search dimension increases. Bayesian
methods also sample the hyperparameter space to construct a
surrogate model, but can be computationally expensive given
their sequential nature and/or limited to the optimization of
continuous hyperparameters, though newer efforts to parallelize
these techniques and allow better scaling have had promising
results (Snoek, 2015).

In recent years, the potential for evolutionary learning to
address the difficult problem of hyperparameter optimization
for deep learning has been recognized. Hyperparameter settings
in deep learning have complex effects on model performance
that can differ by the type and relative complexity of the
learning architecture and the dataset being analyzed (Bruel,
2015). Early studies applied evolutionary algorithms to optimize
hyperparameters in shallow ANNs with a single hidden layer
and demonstrated superior performance and the promise of
these methods (Cantu-Paz and Kamath, 2005; Fiszelew, 2007).
More recently, several studies have explored the ability of
evolutionary algorithms to optimize hyperparameters for the
deeper, more complex ANNs that are increasingly used in
scientific research. Young et al. applied an evolutionary algorithm
with 500 models per generation over 35 generations and error
as the fitness function, classifying color images from the CIFAR-
10 dataset (Young, 2015). This technique differs from IEL
in that feature selection is not provided and the number of
learning generations is fixed at the outset rather than including
a principled convergence criterion of a fitness function plateau.
Without a dynamic convergence criterion, there is a risk that
training may be terminated too early with a smaller number of
learning generations, foregoing a stable and optimizedminimum.
However, this work did demonstrate that fitness improved over
successive generations using evolutionary learning. Cui et al.
also focused on CIFAR-10, using an evolutionary approach
hybridized with a Gaussian-based Bayesian method to optimize
both hyperparameters and the number of kernels and layers to
improve the classification performance of convolutional neural
networks, again using error as the fitness function over a fixed
number of 1,000 learning generations (Cui and Bai, 2019).
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Interestingly, this technique revealed that hyperparameters
stabilized at minima long before 1000 generations, illustrating
the obverse risk: without convergence criterion, learning can go
on too long and become computationally inefficient. Similarly,
feature selection was not integrated as it is with IEL. We
also note that both methods focus on the CIFAR-10 dataset
– a benchmark machine learning problem that functions as
a constrained system with known predictive features and
approximate hyperparameter ranges.

Our results show that very robust and consistent performance
can be achieved in complex, multi-domain data using IEL,
particularly utilizing deep learning with ANNs. IEL’s performance
offers very substantial performance gains over baseline training
with default hyperparameter settings in both classification
and regression. Including convergence concepts grounded
in information theoretic and performance metrics offers a
principled way to calibrate and quantify the amount of training
required. By performing a variety of experiments in the present
study we show how the number of learning generations (and
computational effort) can vary widely among experiments from
30 to 175 generations, pointing up the value of using a
quantitative convergence horizon as well as an adaptive learning
method. These results suggest that empirically selecting a number
of iterations such as 35, 50, or 1,000 generations to train a
model runs the risk of a sub-optimal solution or computational
inefficiency. Illustrative comparisons can be made to quantify the
value of IEL’s convergence strategy. For example, here we show
that tuning 3 ANN hyperparameters with IEL requires training
30,000 to 175,000 models (100 models per 30–175 generations)
where the requisite hyperparameters (learning rate, beta 1, beta
1) could assume values over a range size of ∼99 (Table 2). To
explore the same sized solution space of 99× 99× 99 with similar
resolution using grid search would require training nearly a
million ANNs per experiment, a much larger computational load.
Similarly, the substantial difference in tuned hyperparameters
after optimization with IEL vs. default algorithms settings may
suggest the value of adaptive optimization in achieving robust
results. Besides the principled approach offered by IEL to
hyperparameter tuning, efficiencies may be garnered thereby
within the machine learning processes. For example, we found a
faster (higher) learning rate was optimal in deep learning than
that suggested in the default parameter, speeding the machine
learning.While methods such as grid search can be efficient when
a constrained or familiar model system is under consideration
with a small number of preselected features and relatively narrow
range for hyperparameters to be tuned, IEL offers advantages
with more unconstrained and/or novel problems where feature
selection is required and “rules of thumb” for hyperparameter
settings are unknown. As well, IEL can be used for exploratory
analyses where practitioners might explore settings for individual
datasets and developing their own “rules of thumb” to constrain
the hyperparameter space for any particular dataset, perhaps
going on to use grid search or Bayesian techniques once these
constrained ranges have been established.

Feature selection is a similarly essential and challenging
part of machine learning at scale, particularly in multi-domain
and/or high-dimension datasets. In discovery science in such

datasets where hundreds or thousands of potential predictors are
available, feature selection is a requirement. Generally, models
with fewer variables are simpler to train, run and understand
and generalize better to unseen data. As with hyperparameter
optimization, a mixture of manual and automated approaches
has been attempted. Historically, practitioners adopted a
“domain-informed” manual approach, selecting predictors from
a larger set based on personal heuristics informed by prior
research, domain knowledge or hypotheses. Besides the risk
of bias, manual feature selection is challenging in hypothesis-
free research or when we have insufficient information to make
determinations. Exploratory data analysis is often undertaken
to narrow the number of predictors. Preliminary preprocessing
steps such as thresholding, identifying correlated variables or
applying information theoretic metrics may help in “tuning
down” the number of potential predictors. However, we are often
still left with many potential predictors and moreover ranking
predictors by importancemay be a useful or explicit experimental
aim. In this case, using model-based feature selection is a
powerful tool to discover the relative importance of individual
predictors and prune those which prove less important. Typically,
practitioners needing to quantify the relative importance of
predictors have turned to linear models and decision tree
algorithms, since these intrinsically provide feature importances.
These can be combined with simple recursive feature selection
(e.g., https://scikit-learn.org/stable/modules/generated/sklearn.
feature_selection.RFE.html) to prune features. However, the
number of features to keep and discard must still be
manually selected.

Applying IEL to feature selection allows the best-performing
features to be learned and underperforming features recursively
pruned in an adaptive, principled and integrated manner. This
application of evolutionary algorithms has been of interest
for some time, and in fact showed much earlier promise
in outperforming other methods with large, noisy datasets
(Vafaie, 1994; Oh et al., 2004). More recently, evolutionary
algorithms have continued to perform well in selecting
features in heterogenous biomedical datasets, for example
electroencephalographic signals (Saibene, 2021), heart disease
(Abdollahi, 2021) and ovarian cancer. In IEL, we extend the
powerful ability of evolutionary algorithms to learn adaptively to
the problem of feature selection by calibrating feature fitness with
an information theoretic metric and combining feature selection
with hyperparameter tuning. This integrated approach allows
IEL to rank features by their importance to model predictions
and prune features in a principled and adaptive manner
based on an objective fitness function. Feature importances to
prediction are returned, even during deep learning. As a result,
we avoid overfitting and retain transparency with respect to
which features are driving predictions across all algorithmic
types, enabling direct comparison of experimental outcomes
among machine learning techniques including deep learning
with ANNs.

Overall, our results show that optimization with IEL provides
excellent, consistent performance, in particular using deep
learning. IEL’s ability to successively prune features and select
the best-performing predictors over generations of learning
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avoids over-fitting and provides robust generalization to unseen
validation data. Substantial performance gains accrue from
applying IEL over conventional training and testing with default
hyperparameters. We demonstrate that this is the case for
multiple ML algorithm types, but it is particularly apparent in
deep learning with artificial neural networks, where 20–70%
improvements across performance statistics were obtained in
both classification and regression. Applied to deep learning with
ANNs, IEL is able to achieve ≥95% accuracy, specificity and
sensitivity in classification in complex bio-behavioral data. Our
primary motivation in constructing IEL was to offer researchers
analyzing complex, multi-domain biological or bio-behavioral
data the ability to not only optimize models but also successfully
reduce the feature space in a principled manner and preserve
feature explainability across a variety of AI/ML techniques
where the problem at hand is novel and/or unconstrained.
IEL opens up the potential to attack bio/behavioral “big data”
for discovery science with techniques such as deep learning
in an efficient manner. We do note that given the adaptive,
evolutionary learning process embodied by IEL, substantially
increased training times are required vs. conventional training.
In the simplest case, training the linear models with IEL takes
5–6min vs. seconds. This penalty increases for decision-trees
and is most severe with deep learning with artificial neural
networks. In the present experiments, training the former took
7–9 h and the latter up to 100 h. While evolutionary techniques
can be time-consumptive depending on the characteristics
of the dataset and experiment, we believe that for multi-
domain, complex data and problems IEL compensates the
practitioner with valuable additional functionality and high-
quality robust solutions that generalize well. In the present
study, we implemented IEL on a single GPU to democratize
our results, since many practitioners (particularly early-stage
investigators) may not have access to larger scale compute
resources. Future directions will likely include a parallelized
implementation of IEL for faster computation in larger datasets

and an evolutionary method including fitness convergence

criteria that focuses only on hyperparameter tuning to enable
instructive comparisons with techniques such as grid search and
Bayesian optimization.
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