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This work proposes a domain-informed neural network architecture for experimental

particle physics, using particle interaction localization with the time-projection chamber

(TPC) technology for dark matter research as an example application. A key feature of

the signals generated within the TPC is that they allow localization of particle interactions

through a process called reconstruction (i.e., inverse-problem regression). While

multilayer perceptrons (MLPs) have emerged as a leading contender for reconstruction

in TPCs, such a black-box approach does not reflect prior knowledge of the underlying

scientific processes. This paper looks anew at neural network-based interaction

localization and encodes prior detector knowledge, in terms of both signal characteristics

and detector geometry, into the feature encoding and the output layers of a multilayer

(deep) neural network. The resulting neural network, termed Domain-informed Neural

Network (DiNN), limits the receptive fields of the neurons in the initial feature encoding

layers in order to account for the spatially localized nature of the signals produced within

the TPC. This aspect of the DiNN, which has similarities with the emerging area of graph

neural networks in that the neurons in the initial layers only connect to a handful of neurons

in their succeeding layer, significantly reduces the number of parameters in the network

in comparison to an MLP. In addition, in order to account for the detector geometry,

the output layers of the network are modified using two geometric transformations to

ensure the DiNN produces localizations within the interior of the detector. The end result

is a neural network architecture that has 60% fewer parameters than an MLP, but that

still achieves similar localization performance and provides a path to future architectural

developments with improved performance because of their ability to encode additional

domain knowledge into the architecture.

Keywords: astroparticle physics, direct-detection dark matter, machine learning, neural network, reconstruction,

time-projection chamber

1. INTRODUCTION

Astroparticle physics has experienced a renaissance during the last decade. For instance,
experiments searching for exotic phenomena related to neutrinos and dark matter particles have
made significant advances in answering fundamental questions in both cosmology and particle
physics (Giuliani et al., 2019; Billard et al., 2021). Often these experiments conduct extreme
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rare-event searches for signals that are challenging to measure,
thereby imposing new requirements on the detector technology
and the accompanying data-analysis methods. The focus of
this paper is developing new data-analysis methods to better
understand these signals and meet the scientific requirements.

Machine Learning (ML), particularly in the form of deep
neural networks (LeCun et al., 2015; Goodfellow et al., 2016),
has also thrived in the last decade and enabled innovations in
many fields, including experimental particle physics (Albertsson
et al., 2018; Radovic et al., 2018). Recent advances in deep
learning concentrate on “daily life” tasks such as computer vision
and natural language processing (LeCun et al., 2015; Shrestha
and Mahmood, 2019). Methodologically, neural networks have
proven adept at such problems, with numerous neural network
architectures appearing that are optimized for data sets in
those fields, usually inspired by the properties of the data
in these fields. Research into physics-specific approaches have
focused on problems closely related to theoretical physics where
the measurement process is abstracted away (Cranmer et al.,
2019; Komiske et al., 2019). For instance, recent research in
physics-informed neural networks (PINNs) focuses on solving
differential equations by introducing additional terms to the loss
function (Raissi et al., 2017). Similar work related to climate
modeling shows that neural networks can emulate non-linear
dynamical systems with increased precision by introducing
analytical constraints into the network architecture (Beucler
et al., 2021). This paper complements and extends these
prior works by developing Domain-informed Neural Networks
(DiNNs) that contain architectural constraints to encode prior
knowledge of signal characteristics and detector geometry.

Our main contributions in the paper include description,
implementation, and evaluation of a DiNN incorporating
physics-detector domain knowledge for localization of particle
interactions within a leading particle-detector technology.
Section 2 describes the detector technology and the domain
problem. Section 3 describes the generation process of the
samples used for training a machine learning model. Section 4
explains the physics-informed neural network and describes the
hard architectural constraints on its hidden and output layers.
Sections 5 and 6 discuss, respectively, the performance of the
prototype DiNN and the impact of the new architecture in
comparison to the state-of-the-art methodology. Finally, Section
7 concludes the paper.

2. PROBLEM OF PARTICLE LOCALIZATION
IN ASTROPARTICLE DETECTORS

The physical properties of an interaction within a particle-
physics experiment, such as the type of interaction, the amount
of energy deposited, and the interaction position, are inferred
using measurements from sensor arrays. The procedure for this
so-called “reconstruction” (a.k.a, inverse problem) depends on
the working principle of the particle detector, while the choice
of detector technology depends upon which science is being
pursued. For dark-matter direct detection, which attempt to
terrestrially measure the Milky Way’s dark matter wind, the

most sensitive experiments use dual-phase liquid xenon time
projection chambers (DP-LXeTPCs), e.g., XENON (Aprile et al.,
2017), LUX (Akerib et al., 2013), and PandaX (Cui et al., 2017).

2.1. Detection Principle of a
Time-Projection Chamber
Time-projection chambers (TPCs) are among the most versatile
particle detectors. The essential feature of TPCs is the ability to
accurately measure the positions of particle interactions inside
the detector. There are many successful applications of TPCs
in collider experiments (Anderson et al., 2003; Alme et al.,
2010), neutrino experiments (Acciarri et al., 2017b; Abi et al.,
2020), as well as in the study of dark matter. DP-LXeTPCs
are the world-leading detectors for dark matter direct detection
(Schumann, 2019) and are proven to be able to find extremely
rare events (Aprile et al., 2019a). Additionally, LXeTPCs are a
compelling technology for future neutrinoless double-β decay
experiments (Albert et al., 2017).

The signal characteristics from a DP-LXeTPC have been
extensively studied and are well-understood. A DP-LXeTPC
consists of a liquid-xenon target observed from above and below
by arrays of photosensors, where there is a buffer layer of xenon
gas between the liquid and the top photosensor array as shown in
Figure 1. Electrodes create strong electric fields throughout the
detector to drift the electrons from the target into the gaseous
xenon region. When energetic particles scatter with xenon atoms
in the target, the resulting recoil excites and ionizes the medium
(This results in scintillation light, often called S1 signal, that
is almost immediately observed by the photosensors.). More
importantly for this study, the ionization process results in
unbound electrons. These free electrons are within an electric
field, so they drift toward the top of the TPC. Once the electrons
reach the top of liquid xenon volume, they are extracted into the

FIGURE 1 | A schematic of the working principle of a DP-LXe TPC detector.

Particles interact and deposit energy in liquid xenon target. An S1 signal is

produced at the interaction location. Ionization electrons are released from the

interaction point and drift toward the top of the TPC, where an S2 signal is

produced and observed.
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FIGURE 2 | (A) Average simulated S2 pattern. (B) A single simulated S2 pattern. S2s are simulated assuming 20 electrons are extracted into the gaseous xenon at

the location of the red marker. The averaged S2 pattern is ideal which allows us to infer the position perfectly, while the actual S2 pattern contains fluctuations, noises

and detector effects that make accurate position reconstruction difficult.

gaseous xenon by the strong electric field, causing an electron
cascade that also produces scintillation light (often called S2
signal). This S2 signal is observed by the same sensor arrays
that observe the S1 signal. The 2D position, in the plane of
the photosensors, of the interaction ExI is inferred from the S2
signal illumination pattern EH ∈ R

nt
≥0, where nt is the number

of photosensors in the top array. In practice, only the top array is
used as it is the closest to the S2.

Without loss of generality, we consider a “generation two”
(G2) TPC for direct-detection dark matter as an example
application for this DiNN work. In our example, we consider
nt = 253 photosensors in the top array and a detector cylinder
of 67 cm in radius. The diameter of each photosensor is assumed
to be 7.6 cm. More details on the simulation of S2 signals used for
training and evaluation can be found in Section 3.

We focus on the challenge of interaction localization as this
problem is difficult and representative of most reconstruction
challenges in (astro)particle physics. In our case of DP-LXeTPCs,
the required uncertainty for the inferred S2 position is less than
1 cm, one order of magnitude smaller than the length scale
of the photosensors. We are considering a rare-event search
where any misreconstructed S2 positions negatively impacts the
sensitivity to darkmatter. Challenges for this task include Poisson
fluctuations in S2 pattern as the S2 signals are small, sometimes
with only 40 photons detected across the entire array resulting
from a single electron (Edwards et al., 2008; Aprile et al., 2014),
and detector effects such as reflection of the S2 photons off of the
wall of the TPC. Figure 2 visually illustrates the fluctuation in the
S2 pattern of a relatively small S2 signal.

2.2. Existing Techniques and Limitations
We summarize S2 localization methods developed for previous
DP-LXeTPC experiments and their limitations. These methods

are either used in the analyses of previous experiments or are
candidates for upcoming experiments.

Likelihood fitters are used for S2 localization for DP-LXeTPCs
(Solovov et al., 2012; Akerib et al., 2018; Simola et al., 2019;
Pelssers, 2020; Zang et al., 2021). While this is the most robust
and accurate method in theory, it is only true if the likelihood
is tractable. The likelihood is often difficult to estimate due to
various detector systematics, such as the difficulty in modeling
the reflectivity of the materials in the detector (Levy, 2014) at
the level required by the science. The reflectivity of materials
also affects other methods, especially within the area close to
the detector wall. Most importantly, likelihood fitters are slow
compared to other methods as they often require computing the
likelihood function multiple times, which makes it more difficult
to be applied within a data analysis pipeline of experiments that
take data at high rate.

The common method for S2 localization relies upon classical
neural networks consisting of a fully-connected network, also
known as multilayer perceptron (MLP) model. Typically, such
networks consist of one or two hidden layers mapping R

nt
≥0 →

R
2 with exponential linear unit (ELU) and LINEAR activation

functions (Aprile et al., 2019b; de Vries, 2020). MLP models are
able to learn a simple mapping from integrated light intensity
seen by a photosensor to 2D coordinates. In practice, MLP
methods are significantly faster than likelihood based methods,
which is important as these algorithms may operate on petabytes
of experimental data with real-time rates of more than 100
MB/s. However, MLP models are the most general form of
neural networks and are therefore sub-optimal for this problem.
There are two major challenges in particular related to the use
of MLP models for our purposes. First, since the number of
trainable parameters in fully connected networks increases rather
quickly as the networks get deeper (Lecun et al., 1998), this
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increases the risk of overfitting due to the larger capacity of the
networks (Lecun et al., 1998; Vapnik, 2000). Second, and perhaps
most importantly, fully connected networks completely ignore
the topology of the input data samples; the ordering of individual
dimensions of data samples into the input layer can be changed
without any effects on the training (Lecun et al., 1998). Both the
density of connections in MLP models and their indifference to
the data topology limit our ability to interpret their outcomes.

Convolutional neural networks (CNNs) (LeCun and Bengio,
1995) are an example of a neural network architecture in
computer vision that uses assumptions about the data topology
to reduce the computational complexity of deep learning.
Specifically, convolutional layers encode the concept of “feature
locality” in the data through learning a kernel that is translational
invariant (i.e., weight sharing) and can therefore e.g., detect
edges and other textures. These CNN models have successful
applications in astroparticle physics experiments (Aurisano
et al., 2016; Baldi et al., 2019), including both liquid-argon
TPC (Acciarri et al., 2017a; Grobov and Ilyasov, 2020; Abratenko
et al., 2021) and a liquid-xenon TPC (Delaquis et al., 2018).
However, the nature of DP-LXeTPC experimental data—and
particle-physics detectors more generally—does not often lend
itself to CNN techniques as the nature of this data is not image
based. Specifically, the photosensors typically are not arranged
on a grid, or square lattice. It is possible to construct a contrived
mapping of the photosensors array onto a square lattice for
some certain arrangements (Hoogeboom et al., 2018; Abbasi
et al., 2021), but this geometrically distorts features in the data
while also affecting the performance due to artificial empty pixels
from the transformation. In addition, CNN models built with
plain convolutional layers are not ideal for coordinate transform
problems including localization problems (Liu et al., 2018).

3. SIMULATION OF S2-SIGNAL SAMPLES
FOR TRAINING AND EVALUATION

Here we describe how we simulate S2 patterns based on the
generation mechanism of S2 signals in DP-LXeTPC for training
and evaluating the algorithms for S2 localization. The photons
of one S2 signal are considered to be released from a point
source at where the electrons enter the gaseous xenon and the
number of photons in a S2 signal is proportional to the number
of electrons entering the gaseous xenon. The number of photons
recorded by photosensors obey Poisson distributions Pois(µ),
where the expectation value µ is calculated by multiplying the
light collection efficiency LCE(x, y) of each photosensor and the
number of photons in the S2 signal. The number of photons
can be calculated by multiplying the number of electrons that
generate the S2 signal Ne by the scintillation gain SG(x, y) which
is the conversion factor between the number of S2 photons and
the number of electrons. The recorded S2 signal intensity of each
photosensor fluctuates due to the resolution of photosensors,
which is considered to obey a normal distribution Norm(1, σ )
with σ being the resolution of photosensors. Thus, the S2
intensity recorded by photosensor i can be expressed as a product
of a Poisson random variable and a normal random variable:

TABLE 1 | The model parameters used for this work for the intensity seen by an

individual photosensor (Equation 2) with ρ in the unit of cm.

E0 a b p d

1.18× 10−2 2.39 10.3 −6.77× 10−7 9.86× 10−5

Hi = Pois
(

Ne × SG(x, y)× LCEi(x, y)
)

×Norm(1, σ ), (1)

where (x, y) is the coordinate of the true position of the S2
signal. The light collection efficiency function LCEi(x, y) heavily
depends on the location of the photosensor and could change
dramatically between photosensors.

We use a model that assumes the same light collection
efficiency for all the photosensors as well as uniform scintillation
gain. The light collection efficiency is modeled using an
empirical function of the distance between the S2 position
and the photosensor position similar to the one used in
Akerib et al. (2018):

LCE(ρ) = E0 ×
1− b

(

(ρ/d)2 + 1
)p + aρ + b, (2)

where ρ is the distance between the S2 position and the
photosensor position. E0, a, b, p and d are parameters that
determine the shape of this function with values shown inTable 1
used in this work.

This light collection efficiency model does not take into
account the optical effects of reflection from certain detector
components. For example, the reflection from the detector
wall which could largely change the light collection efficiency
of photosensors placed close to the detector wall. When
implementing any S2 localization algorithm trained on samples
generated using the above model for an actual DP-LXeTPC
detector, it is necessary to compare the model to both a data-
driven and a simulation-based light collection efficiency model
to ensure the appropriateness of the above approximations.

4. METHOD: DOMAIN-INFORMED NEURAL
NETWORK ARCHITECTURE FOR
INTERACTION LOCALIZATION

4.1. Encoding Signal Characteristics Using
Graph-Constrained Hidden Layers
We encode our knowledge of the S2 signal characteristics into
the network architecture through connectivity constraints. The
photosensors closer to the S2 position Ex have more photons
incident upon them than those farther away, and thus provide
more localization information. Moreover, photosensors outside
the S2’s field-of-view might record other signals uncorrelated
to the S2 signal, such as position-uncorrelated single-electron
S2s (Aprile et al., 2014), which may bias the inference of the
S2 location. Therefore, we expect that encoding this intrinsic
“locality” will be more efficient—and potentially more effective—
at localizing S2s. Our motivation is the success of CNNmodels in
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computer vision, which rely on local connections and locality as
discussed above.

This is achieved by limiting the receptive field of neurons
in the hidden layers. The input vector EHt ∈ R

nt
≥0 to the

network corresponds to an S2 pattern on the top sensor array,
which means that there is a one-to-one relationship between
photosensor positions and neurons in the input layer to the
neural network model. We introduce an architectural constraint
by assigning each neuron in the following layer a 2D position,
and only making edges to neurons in the following layer if
they are within some distance threshold d within (x, y) from
neurons in the input layer. In this way, every neuron only receives
information from a small cluster of nearby photosensors in the
receptive field of a circular disk with radius d centered at the
neuron’s position and ignores others, as shown in Figure 3. This
differs from the standard fully-connected technique where each

FIGURE 3 | Schematic of the locality constraint. The distance between the

highlighted neuron and photosensors in the blue area is smaller than a

threshold. Photosensors inside the blue area are connected to the highlighted

neuron while photosensors outside the blue area are not, limiting the receptive

field of the highlighted neuron to be the blue area.

neuron is connected to all neurons in the input layer. However, if
the distance threshold is sufficiently large to include all neurons,
the two techniques are equivalent. This technique contrasts
CNNs as each neuron has its own receptive field without weight
sharing as translational invariance is not guaranteed, and is
similar to the idea of locally connected layers which is used in
an other work in particle physics (de Oliveira et al., 2017).

In practice, the network is constructed by placing the neurons
and the photosensors on the same 2D plane and constructing a
graph using the rule described above, where part of the adjacency
matrix of this graph is used to mask the weight matrix of the
neural network layer. With the input to this layer represented by
EHl−1 ∈ R

N , the operation of this layer can be represented as

EHl = f (WlAl
EHl−1 + Ebl), (3)

where Wl and Ebl are the trainable weight matrix and the bias
vector, respectively, f (·) is an activation function, and Al is the
adjacency matrix that represents the connection between the
input layer and the proceeding layer. We refer to this layer as
graph constrained layer in the following sections.

The graph constrained layer requires neurons in its input
layers to have 2D positions. With neurons being interpreted as
points in a 2D plane, we can extend a neural network model by
adding another graph constrained layer after one.

4.2. Encoding Detector Geometry Using a
Geometry-Constrained Output Layer
We describe the design of a hard detector-inspired constraint on
the output space for the neural network model. This constraint
enforces the model to produce physically meaningful predictions
located only within the detector.

We must modify the output layer of the network to
incorporate this constraint. Historically, the localization

FIGURE 4 | The analytical mapping from square to circle. (A) A square in 2D space T =
{

Ex ∈ R
2
: |x| < 1, |y| < 1

}

. (B) Unit circle, mapped from the square using

Equation (4). The lines in the square are mapped onto the curves in the circle.
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regression is performed using two neurons with linear activation
functions at the output layer since we are predicting a 2D
position. The possible output space for these models is R

2.
Meanwhile, S2s can only be produced inside the detector, which
means the physically meaningful output space is a circular

disk D(RTPC) =
{

Ex ∈ R
2
: ‖Ex‖2 =

√

|x|2 + |y|2 < RTPC

}

.

It is important to require that the predicted positions are
within the detector D(RTPC) as there are position-dependent
corrections for each interaction that otherwise are ill-defined.
Furthermore, due to the self-shielding properties of liquid
xenon, most S2 signals are near the edge of the detector and

are at higher risk of being localized outside the detector. This
effect is also more significant for smaller S2s as they are harder

to localize.

The first part of this hard constraint is constraining the

output space to be the limited space instead of the infinite

R
2 space. We use the TANH activation function in the

output layer to make a temporary output in a 2D square

T =
{

Ex ∈ R
2
: |x| < 1, |y| < 1

}

. The second part is analytically

mapping the temporary square T into a unit circle D(1) using

Fernandez Guasti squircle (FG-squircle) mapping, as shown in

Figure 4. Gausti (1992), Fong (2015), and Lambers (2016) and

FIGURE 5 | The architecture of the implemented prototype model. The dots in graph constrained layers represents the assigned positions of the neurons. The

numbers in brackets are the number of parameters if the neurons are fully connected for graph constrained layers.
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FIGURE 6 | Radial error R̂− R on 100 electrons simulated S2s. A positive

radial error means the S2 is localized further away from the center of the

detector than the true position and vice versa. Both the DiNN and MLP model

cannot localize S2s in R > 60 cm region as accurate as S2s in R < 60 cm

region, resulting in a wider spread in R > 60 cm region and the positive radial

error is suppressed by the constrained output in the region extremely close to

the detector wall for the DiNN.

scale it to the radius of the TPC RTPC. The square to diskmapping
is shown in Equation (4).

x′ = RTPC
x
√

x2 + y2 − x2y2
√

x2 + y2
, y′ = RTPC

y
√

x2 + y2 − x2y2
√

x2 + y2

(4)

4.3. Implementation
We implemented a prototype neural network model using the
graph-constrained layer and the constraint on the output space.
The architecture of this neural network model is shown in
Figure 5. The input vector EHt ∈ R

nt
≥0 is embedded into an

input layer with dimension 253 alone with the positions of
photosensors. After the input layer there are 6 graph-constrained
layers, with dimension [217, 169, 127, 91, 61, 37] respectively. In
each layer, the assigned positions for the neurons are arranged
in rings and distributed roughly uniformly in a circle that is
approximately the same area as the TPC cross section. The
threshold for connection used for this model is 30 cm and
justification for this choice is discussed in Section 6. There are two
fully connected layers after the graph-constrained layers, with the
last one using TANH squashing function to produce a temporary
output constrained to a filled square. The FG-squircle mapping
is implemented to map the temporary square output onto the
desired disk output space. The number of trainable parameters
in this model is 22,921, less than 0.2 times the number of
parameters in a fully connected network of the same architecture
as this model.

The model is implemented with TensorFlow (Abadi et al.,
2015). We train the model on 5 × 105 simulated S2 patterns for
250 epochs with Adam optimizer (Kingma and Ba, 2014) using
mean squared error as loss function. A adaptive learning rate

scheduler is applied to lower the learning rate when the validation
loss hits a plateau for more than 10 epochs. This model is referred
to as a DiNN model in the following sections.

5. EVALUATING PERFORMANCE OF
INTERACTION LOCALIZATION

Here, we define the metrics used to evaluate the performance
of methods developed for S2 localization. The models are tested
on simulated S2 signals with known true positions, which is
needed for the calculation of these metrics. We then compare
the performance of the DiNN model and a 4-layer MLP model
trained on the same data set with the same optimizer and training
configuration using these metrics. The MLP model, which is
very similar to the one used in Aprile et al. (2019b), has 57,842
trainable parameters.

We use Ex to denote the true S2 position used in simulation

and Êx to denote the prediction based on the model for a given
S2 pattern. R = |Ex| is the distance of the true S2 position from
the center of the detector, commonly called the radius of S2. The

difference between the true and predicted S2 positions, Êx − Ex, is
the localization error. As mentioned in Section 3, the S2 pattern is
dependent on the number of electrons that generate the S2 signal.
Wemainly use simulated S2s generated by 100 electrons, referred
to as 100 electron S2s, because this is approximately the intensity
of S2 signals caused by dark matter particle interactions.

When searching for rare events, such as dark matter particle
interactions, the radius of an interaction is more commonly
used than the (x, y) coordinate in statistical inference (Aprile
et al., 2019b). Figure 6 shows the distribution of the difference
between the true and predicted S2 radii, R̂ − R, on simulated
100 electron S2s as a function of the true radius, R, for the MLP
and DiNN model. Notice in the R < 60 cm region, the S2s are
localized with radius error less than 1 cm, and R̂ − R has no
dependence on true radius, which is compatible with the goal
of setting the uncertainty of S2 localization to be one order of
magnitude lower than the scale of the photosensors. In the R >

60 cm region, both the GCN and MLP models cannot maintain
the same performance as they do in R < 60 cm region. The
deteriorated performance could result from incomplete sampling
of S2 signals in this region since there are no photosensors
outside the detector. The large difference in the behavior in the
R < 60 cm and R > 60 cm regions by both the DiNN and
MLP models motivates a comparison of the two regions using
other metrics.

While the (x, y) coordinate is not directly used for physical
analysis, it is useful for diagnostic analysis for the detector. A
high position resolution is crucial for identifying the topology
of interactions (Wittweg et al., 2020). Thus, the distribution of

localization error, Êx − Ex, is useful for evaluating the performance
of the models. The distribution of localization errors is shown in
Figure 7. We calculate themean value and the root mean squared
(RMS) of the localization error for quantitative comparison. A
small mean value in both the x and y direction indicates that the
localization is not biased toward any direction, which appears to
be the case for both the DiNN and MLP model in both R < 60
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cm region and R > 60 cm region. A smaller RMS indicates more
accurate localization. The DiNN model has similar RMS in both
regions to the MLP model.

The difficulty of localizing S2s varies with the intensity of
S2. The 90th percentile of localization error can provide us an
intuitive understanding of the resolution of localization as a

FIGURE 7 | Distribution of localization error, Êx − Ex, for a test set of simulated 100 electron S2 signals. S2 signals with R < 60 cm (top) have a smaller RMS than

interactions with R < 60 cm (bottom).

FIGURE 8 | The 90th percentile of localization error as a function of S2 intensity, for (A) R < 60 cm and (B) R > 60 cm. S2s with higher intensities are localized with

smaller error by both models, and S2s at R > 60 cm region are localized with larger error than S2s at R < 60 cm region, both as expected.
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FIGURE 9 | Radial distribution of simulated single electron S2 signals. The

MLP model localizes 2,346 of 250,000 S2s outside the detector, while the

DiNN model localizes all of them inside the detector with the output constraint.

FIGURE 10 | The RMS of localization error (left axis) and the number of

trainable parameters in the DiNN model (right axis) as functions of threshold

used for the graph constrained layers in the model. The RMS decreases as the

threshold increases until the threshold reaches 30 cm, but the number of

parameter still increases as the threshold increases. The RMS is calculated on

models’ prediction of simulated 100 electron S2s and averaged over x,y

dimension.

function of S2 intensity level. As shown in Figure 8, the 90th
percentile of localization error drops for both the DiNN and
MLP model as S2 intensity increases. Again the 90th percentile
of localization error is much larger in R > 60 cm region. In both
regions the DiNN model has marginally smaller 90th percentile
of localization error than the MLP model, which is consistent
with the result from 100 electrons S2s shown in Figure 7.

As stated in Section 4, smaller S2s are more sensitive to being
localized outside the detector by the MLP model. We tested both
the GCN andMLPmodel on simulated single electron S2s, which
are the smallest possible S2s in the DP-LXeTPC detectors, to
demonstrate the effect and determine how it is changed by the

constrained output. Figure 9 shows the result of this test. The
MLPmodel localizes a considerable amount of single electron S2s
outside the detector, while the DiNN model localizes all the S2s
inside the detector.

6. OPTIMIZING THE TUNABLE
PARAMETERS IN THE METHOD

We introduced a parameter (distance threshold) in the graph
constrained layer to determine its connections to the input
layer. A smaller threshold means sparser connections and
weaker representation power. A larger threshold means denser
connections and stronger representation power, but also more
parameters in the layer. When the threshold is large enough, the
layer becomes fully connected, which is identical to the basic
building block of MLP models. Intuitively, a threshold roughly
equal to the scale of the region where a photosensor can receive
light is the most meaningful and thus should work well. A
well-selected threshold is essential for models built with graph
constrained layers to achieve maximum performance with the
least parameters.

To find the optimal threshold for the DiNNmodel, we trained
a series of models of the same architecture, but with different
distance thresholds. We also trained a DiNN model with a
sufficiently large threshold so that all the graph constrained layers
are fully connected. The purpose of this model is to set the
limit for the performance that can be reached by the DiNN
model. The total number of trainable parameters in the fully
connected DiNN model is 133,906. All the models are evaluated
on a test set of simulated 100 electrons S2s and the result is
shown in Figure 10. When the threshold is small, the network
does not have enough parameters to represent the mapping from
S2 patterns to S2 positions. Increasing the threshold lowers the
RMS of the distribution of localization errors. However, when
the threshold is larger than 30 cm, the RMS reaches the same
level as that using the fully connected DiNN model. Further
increasing threshold does not lower the RMS of the distribution,
but still increases the number of parameter in the DiNN model.
In conclusion, a threshold of 30 cm appears to be optimal and
thus is used for building the prototype DiNN model.

The two components of the DiNN model, the main body
built with graph constrained layer and the geometry-constrained
output layer are not closely related and could be applied to
models separately. Particularly, the TANH activation function
and the FG-squircle mapping used for the constrained output
layer introduces nonlinearity into the model, which might create
difficulty for the model to learn the mapping from S2 patterns
to S2 positions, especially at the regions close to the detector
wall. To evaluate the effect of the main body built with graph
constrained layer and the geometry-constrained output layer, we
build and train MLP models and DiNN models with both linear
output and geometry-constrained output and compare the RMS
of the distribution of the localization errors on 100 electrons
simulated S2s. The results are shown in Table 2. The models with
constrained output have similar RMS in both R < 60 cm region
and R > 60 cm region, which indicates that the nonlinearity
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TABLE 2 | Results for different combinations of neural network architectures and

output layers.

Architecture Output RMS [cm]

(R < 60 cm)

RMS [cm]

(R > 60 cm)

4-layer MLP Linear 0.2363 0.3558

4-layer MLP Constrained 0.2331 0.3406

DiNN Linear 0.2314 0.3470

DiNN Constrained 0.2280 0.3419

4-layer MLP with linear output is the same as the MLP model discussed in Section 5 and

DiNN with constrained output is the same as the model shown in Figure 5. The RMS is

calculated on models’ prediction of simulated 100 electron S2s and averaged over x,y

dimension.

introduced by the constrained output is not too complex for
neural network models to learn and is not making localization
at the region close to the detector wall difficult.

7. CONCLUSION AND FUTURE WORK

We introduce the concept of Domain-informed Neural
Networks (DiNNs) for the application of the localization of
S2 signals in experimental astroparticle physics. Using our
prior knowledge of the S2 signal characteristics, we introduce
an architectural constraint that limits the receptive field of
the hidden layers. Using our prior knowledge of the detector
geometry, we additionally introduce a constraint and geometrical
transformation on the output layer.

A prototype DiNN model built with these two constraints
is trained and tested on S2s simulated from a generic G2 dark
matter search. This prototype model reached the same level
of performance as a multilayer perceptron (MLP) model while
containing 60% fewer trainable parameters. Therefore, with a
careful selection of the distance threshold related to how far
a sensor ‘sees’, the graph-constrained layers within the DiNN
can greatly reduce the number of trainable parameters without
degrading the performance of the prototype DiNN model.
Additionally, the network is more interpretable in the sense that
the output constraint puts meaningful and practical limit on
the outputs of this regression problem for the first time. Such
a constraint can also be used for other neural network models

for regression problems that predict positions within a detector
using sensors with a limited field of view. The physics-informed
locality constraint can further be applied to other astroparticle
detectors such as liquid argon TPCs. Additionally, the method
used for constructing this constraint can be transferred to other
problems with irregular sensor arrangements.

The idea behind graph-constrained layers has some
similarities with attention-based methods, which have proven
successful in many tasks including localization-related computer
vision task (Carion et al., 2020) as they focus on parts of
the inputs. The attention mechanism allows neural networks
to focus on parts of the input in a way that is learnt from
data, but requires more computational resources. We are
interested in efficiently combining our method with features
that are learned in a data-driven manner by attention-based
methods. Our future work is aimed at using these models
on the spatiotemporal data, with a focus on calorimetry or
signal detection.
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