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Stock market prices are known to be very volatile and noisy, and their accurate

forecasting is a challenging problem. Traditionally, both linear and non-linear methods

(such as ARIMA and LSTM) have been proposed and successfully applied to stock

market prediction, but there is room to develop models that further reduce the forecast

error. In this paper, we introduce a Deep Convolutional Generative Adversarial Network

(DCGAN) architecture to deal with the problem of forecasting the closing price of stocks.

To test the empirical performance of our proposed model we use the FTSE MIB (Financial

Times Stock Exchange Milano Indice di Borsa), the benchmark stock market index

for the Italian national stock exchange. By conducting both single-step and multi-step

forecasting, we observe that our proposed model performs better than standard widely

used tools, suggesting that Deep Learning (and in particular GANs) is a promising field

for financial time series forecasting.

Keywords: Generative Adversarial Networks, time series forecasting, stock price forecasting, deep learning,

neural networks, forecasting, financial time series

INTRODUCTION

The systematic practice of developing instruments for the forecasting of economic phenomena
is relatively recent. Indeed, it started to become possible only in the twentieth century, as a
consequence of the development of quantitative tools for analyzing the evolution of business cycles
(Persons, 1916).

Modern society is characterized by the need of accurate forecasting. For example, governments
want to predict the trend of many indexes, such as unemployment, inflation, industrial production,
as well as the expected revenue from taxation in order to formulate effective policies. Marketing
managers want to predict product demand, sales volumes, and shifts in consumer preferences
in order to take appropriate decisions about current and future policies and, more generally, to
formulate adequate strategic planning.

At its core, forecasting is very much linked to pattern recognition: to make a guess of what could
happen in the future is based on recognizing repetitive patterns in past realizations. Of course, to
make predictions based on the past is founded on the belief that the future does not reserve any
significative innovation compared to what we already can observe. This is not always the case:
examples are the unexpected crashes of the stock market prices around March 2020 (due to the
surge of the COVID-19 pandemic) and during the financial crisis of 2007–2008. It should therefore
come as no surprise that mathematical forecasting methods sometimes give poor results, even if
applied correctly (Richardson, 1979).
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In particular, to predict the performance of a financial stock
just by observing at its previous closing prices is not a simple
task. Over the years, more and more accurate programs have
emerged to help in determining when to sell or buy a security,
and both investment banks and listed companies now heavily rely
on algorithmic trading to establish how to act on the financial
markets (Gomber and Zimmermann, 2018). If we exclude the
news that can influence the performance of a stock, the shift
in prices is in large part affected by the conclusions that these
algorithms draw from price fluctuations. In a sense, the fact
that the interactions in the financial markets are increasingly
guided by algorithms makes it easier to forecast the trend of the
closing price of a stock (Verheggen, 2017), because algorithms
act following certain patterns, and the “human factor” that could
introduce heterogeneity and potential irrationality (Heiner,
1983) assumes an increasingly marginal role in decisions.

The paper is structured as follows. In Section Literature
Review, we provide an overview of the literature on stock
price forecasting, motivating the introduction of our model. In
Section Background, we discuss the theory behind Generative
Adversarial Networks. We explain our proposed model in
Section The Model. In Section Empirical Analysis, we describe
the empirical analysis we conducted, and we present the obtained
results in Section Results. Section Conclusion concludes.

LITERATURE REVIEW

The idea of rigorously analyzing stock market time series data
dates back at least to 1965, when Eugene Fama analyzed if there
was a correlation between stock prices over time, that is, the
existence of a correlation between past and future realizations
(Fama, 1965). He concluded that there was no correlation, and
that each realization was random, establishing that it was not
possible to simply predict stock market prices by observing their
past realizations.

Over the years, Fama’s conclusions have been repeatedly
questioned. There are now numerous papers that try to forecast
stock market prices (to name a few of them: Pai and Lin, 2005;
Chang and Fan, 2008; Tsai and Wang, 2009; Sen, 2017; Khashei
and Hajirahimi, 2018), using various techniques.

The most “baseline” and widely used models are undoubtedly
ARIMA models. There exists a large literature of methods for
forecasting stock market prices based on or originated from
ARIMA (for example: Devi et al., 2013; Adebiyi et al., 2014;
Banerjee, 2014; Alwadi et al., 2018).

The growth of technology allowed digital trading platforms
to be born, and to perform what is called “technical analysis”, to
better interpret the behavior of a stock price given its past prices.

Only recently, with the development and widespread
deployment of artificial intelligence techniques, innovative
models that seek to improve the performance of the existing tools
have been born, especially in the context of forecasting.

The use of Artificial Neural Networks (ANNs) in developing
forecastingmodels for financial markets gave promising results in
“hybrid” models, where ANNs were combined with econometric
models, such as ARIMA (Areekul et al., 2010) or GARCH

(Gurusen et al., 2011). The introduction of more sophisticated
neural networks designed for handling sequences of data, namely
the Long Short-Term Memory (LSTM) networks, gave birth
to several works that exploited their peculiarities (Roondiwala
et al., 2017; Baek and Kim, 2018; Tan et al., 2019; Moghar and
Hamiche, 2020). Other papers exploited Convolutional Neural
Networks (CNNs) for stock price prediction (Tsantekidis et al.,
2017; Hoseinzade and Haratizadeh, 2019) or Recurrent Neural
Networks (RNNs) (Rather et al., 2015; Selvin et al., 2017).
Researchers also used reinforcement learning techniques to build
models to improve stock market trading strategies (Nevmyvaka
et al., 2006).

Remaining in the field of Deep Learning, researchers have
recently tried to adapt Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014) with the goal of analyzing and
forecasting time series data. A detailed description of how GANs
work is provided in Section Background but, in short, they are
composed by a discriminative and a generative network that
interact with each other: the former trying to distinguish whether
a certain instance is real or fake, and the latter trying to confuse
the discriminative network by generating increasingly realistic
data. In 2018, Zhou et al. (2018) developed a GAN that used an
LSTM as a generator and a CNN as a discriminator to forecast
the high-frequency stock market. In the same year, Luo et al.
(2018) proposed a similar model for predicting crude oil prices.
The next year, Koochali et al. (2019) introduced a conditional
GAN to compute probabilistic forecasts on web traffic data;
again, in 2019, Zhang et al. proposed a GAN with a Multi-Layer
Perceptron (MLP) acting as a discriminator for forecasting the
closing price of some stocks of S&P 500 Index and PAICC, among
others. All these works compared the obtained performances
with those of other machine learning and time series models,
such as LSTM and ARIMA, obtaining promising results. In
2020, Zhou et al. (2020a) compared their GAN with other
models (such as ARIMA, Temporal Convolutional Network,
and LSTM) by testing them on public benchmark datasets,
concluding that the generative network achieved comparable
forecasting accuracy with the other methods. In the same year,
Zhou et al. (2020b) published another work on a web traffic
dataset, further confirming that GAN results were neither better
nor worse than the other considered models. On the other
hand, Lin et al. (2021) obtained superior results using GANs but
evaluated the considered models over the time series of a single
stock (Apple Inc.).

In recent years, GANs have shown promising results in
solving many complex problems (e.g., realistic image and video
generation, image-to-image and text-to-image translation) but to
show that they can provide better results also for financial time
series forecasting (compared to more traditional approaches)
remains a challenge yet to be solved.

The contribution of the present paper is 2-fold. First, we
propose a novel and stable deep convolutional GAN architecture,
both in the generative and discriminative network, for stock price
forecasting. Second, we compare and evaluate the performance
of the proposed model on 10 heterogeneous time series from
the Italian stock market. To the best of our knowledge, this
is the first GAN architecture applied to stock price forecasting
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that uses convolutional layers both in the generator and in
the discriminator. We also propose a modification to the loss
function of the generator, adding further terms that improves
the forecasting process. Furthermore, as highlighted in Section
Results, our proposed model is much more stable (in the
sense that the standard deviation of the results is lower)
compared to previously proposed GAN architectures for time
series forecasting.

BACKGROUND

Generative Adversarial Networks are a class of generative models
that has shown remarkable results in many tasks, in particular
image generation and image-to-image translation. In its original
formulation, a GAN is composed by two neural networks (the
generator G and the discriminator D) that compete against
each other in a zero-sum non-cooperative game. The generator
produces “fake” samples by mapping a vector of random noise
z ∈ Z, z ∼ p(z), where Z denotes the latent space, and
p(z) is the random noise distribution (typically a uniform or
a Gaussian distribution). The goal of the generator is to fool
the discriminator into believing that the generated sample is
real (i.e., it wants to capture the characteristics of the real
data distribution), while the discriminator acts as a classifier
that must distinguish between fake and real data samples,
outputting a scalar D (a) ∈ [0, 1], which can be understood
as the probability that the discriminator assigns to the sample
a to belong to the real distribution. More formally, G and D
are trained by playing the following minimax game with value
function V(G,D):

min
G

max
D

V (G,D) = Ex∼p(r)
[

log (D (x))
]

+Ez∼p(z)
[

log
(

1− D
(

G(z
))]

, (1)

where p(r) denotes the real data distribution of the samples x. If
we denote with x̃ = G(z) the output of the generator, we can
rewrite Equation (1) as:

min
G

min
D

V (G,D) = Ex∼p(r)
[

log (D (x))
]

+Ex̃∼p(g)
[

log (1− D (x̃))
]

, (2)

where p(g) is the generator’s distribution over data x. We can
appreciate the adversarial nature of the game by noticing that, in
the second term of Eq. 2, the discriminator cares about correctly
classifying fake samples, while on the other hand the generator
wants it to classify them as true. During training, each network
forces the other to improve. If we denote with θD and θG the
parameters of the discriminator and the generator respectively,
the update at iteration n + 1 is described by the following
two rules:

θDn+1 ← θDn + ηD

(

∇θD
1

m

m
∑

i=1

[

log
(

D
(

xi
))

+ log
(

1− D
(

x̃i
))]

)

,

θGn+1 ← θGn − ηG

(

∇θG
1

m

m
∑

i=1

[

log
(

1− D
(

x̃i
))]

)

,

that are calculated by sampling m real and fake samples, where
ηD > 0 and ηG > 0 are the learning rates of the discriminator
and the generator, respectively.

Figure 1 shows the architecture of the described GAN.
The training process is supposed to continue until Nash

equilibrium, that is, when D (x) = D (x̃) = 0.5 and p
(

g
)

=

p(r). In practice, reach equilibrium in non-convex games is
difficult1. Without reaching equilibrium GANs can nevertheless
produce good results, despite existing however a number of other
unresolved problems with the original GAN implementation:
in particular, vanishing gradients (when the discriminator does
not provide a useful feedback) and mode collapse (when the
generator finds how to trick the discriminator by producing
samples with low variety).

In their paper, Goodfellow et al. (2014) showed that if the
discriminator is trained to optimality before each update in
the generator, then by minimizing V (G,D) the generator is
minimizing the Jensen-Shannon (JS) divergence between p(r)
and p(g). However, it can be shown that the JS divergence induces
a strong topology, and it might be discontinuous, often leading in
applications to the vanishing gradient problem since it is difficult
to maintain the discriminator at the same level of the generator
for the whole training process.

To overcome this problem, Arjovsky et al. (2017) introduced
a variant of the original GAN based on the Wasserstein distance
(WGAN), which is shown to induce a weaker topology and it is a
more sensible cost function when we care about convergence in
distribution. The Wasserstein-1 distance (also known as Earth-
Mover distance) between p(r) and p(g) is defined as:

W
(

p (r) , p
(

g
))

= inf
γ ǫ5(p(r),p(g))

E(x,x̃)∼γ
[

||x− x̃||
]

, (3)

where 5
(

p (r) , p
(

g
))

denotes the set of all possible joint
distributions of p (r) and p

(

g
)

, and γ (x, x̃) informally denotes
how much “mass” has to be transported from point x to point
x̃ in order to transform the fake distribution p

(

g
)

into the
real distribution p (r). W

(

p (r) , p
(

g
))

is continuous everywhere
and differentiable almost everywhere, leading to higher stability
in training and a non-saturating discriminator. However, it is
computationally intractable to consider all the possible joint
distributions γ ǫ 5

(

p (r) , p
(

g
))

to compute the infimum. By
applying the Kantorovich-Rubinstein duality, we can rewrite
Equation (3) as:

W
(

p (r) , p
(

g
))

= sup
||F ||L≤1

Ex∼ p(r) [F (x)]− Ex̃∼ p(g)

[

F (x̃)
]

,(4)

where the supremum is taken over F , the set of 1-Lipschitz
continuous functions2. Since now the loss function measures the
Wasserstein distance between p (r) and p

(

g
)

, the discriminator in
Equation (4) takes up the role of learning an appropriate function
to compute such distance, rather than directly discriminating

1Technically, even only finding these points is NP-hard.
2Given any x1, x2 ∈ Rn, a function f :Rn → R is called 1-Lipschitz continuous if it

satisfies
∣

∣f (x1)− f (x2)
∣

∣ ≤ ‖x1 − x2‖.
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FIGURE 1 | Stylized architecture of the original GAN.

between fake and real samples. The minimax game is now
defined by:

min
G

max
D∈F

V (G,D) = Ex∼p(r) [D (x)]− Ex̃ ∼p(g)
[

D (x̃)
]

, (5)

where the notation is consistent with above. However, in order
for the discriminator’s gradient to be informative, we have to
enforce 1-Lipschitz continuity on the discriminator. In their
paper, Arjovsky et al. (2017) did so by clipping the weights of the
discriminator, constraining them within a compact space, but the
authors themselves mentioned that such approach is not optimal
and might lead to training instability.

A further improvement on the WGAN architecture moved in
the direction of finding a more suitable way to enforce Lipschitz
constraints. Gulrajani et al. (2017) proposed using gradient
penalty (WGAN-GP) to deal with the problem, exploiting the
fact that a function f is 1-Lipschitz if and only if

∥

∥∇f
∥

∥ ≤ 1
everywhere. They added a further penalty term to the value
function defined in Equation (5), which acts as a regularization
by penalizing ‖∇D‖ 6= 1:

min
G

max
D∈F

V (G,D) = Ex∼p(r) [D (x)]− Ex̃∼p(g)
[

D (x̃)
]

−λEx̂ ∼p(i)

[

(
∥

∥∇x̂D(x̂)
∥

∥− 1
)2
]

, (6)

where λ is a hyperparameter (Gulrajani et al., 2017 observed
λ = 10 to work empirically well on a wide number of tasks) that
controls the tradeoff between the new regularization term and the
other terms. Since enforcing the unit gradient norm everywhere
is intractable, the authors considered sampling interpolated
points x̂ between the real samples x and the fake samples x̃:

x̂ = αx+ (1− α) x̃,

with α ∼ U[0, 1], x̂ ∼ p(i). Empirically, the added regularization
term works well, and WGAN-GP is less prone to mode collapse

and vanishing gradient problems than other architectures. More
explicitly, from V (G,D) in Equation (6) we can separate the loss
functions for the discriminator and the generator in WGAN-GP:

LD = Ex̃∼p(g)
[

D (x̃)
]

− Ex∼p(r) [D (x)]

+ λEx̂∼p(i)

[

(∥

∥∇x̂D
(

x̂
)∥

∥− 1
)2
]

, (7a)

LG = −Ex̃∼p(g)
[

D (x̃)
]

, (7b)

where LD and LG denote the loss functions of the discriminator
and the generator, respectively.

THE MODEL

We propose using a Deep Convolutional Generative Adversarial
Network (DCGAN) for the task of accurately forecasting the
stock price evolution. The idea behind why we use an adversarial
network is because we want to mimic the learning process
of a financial trader: using a set of available predictors, the
unexperienced trader (the generator in the first epochs) makes
certain predictions about the stock price, which are then
progressively corrected by looking at the real realizations (the
work of the discriminator), until he/she becomes experienced
(the generator in the last epochs).

Since GANs are mainly used for generative modeling, the
generator traditionally receives in input a random vector z from
the latent space, and thanks to the learning process it tunes
its own parameters to map that vector into a realistic object
(very often, an image). However, when dealing with time series
forecasting, it makes more sense to provide as input to the

generator the matrix of predictors X =











x1,1 x2,1 . . . xi,1
x1,2 x2,2 . . . xi,2
...

...
. . .

...
x1,t x2,t . . . xi,t











,
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FIGURE 2 | Stylized architecture of our DCGAN.

TABLE 1 | The 10 selected stocks.

Company Ticker Sector

Atlantia ATL Industrial Transportation

Azimut AZL Financial Services

Buzzi Unicem BZU Construction & Materials

Enel ENEL Electricity

Eni ENI Oil & Gas Producers

Exor EXO Financial Services

Generali G Non-life Insurance

Interpump Group IP Industrial Goods & Services

Mediobanca MB Banks

Recordati REC Pharmaceuticals & Biotechnology

where we include i variables observed over t time steps, and
use X to forecast the value in t + 1 of the variable of interest y
(which might or might not be a variable included in X). We can
think of the problem as wanting the generator to learn the data
distribution of yt+ 1.

On the other hand, as for the data input for the discriminator,
we constructed the fake samples by adding the generator’s output
to the real data sequence, ỹ =

{

y1, y2, . . . , yt , ỹt+1
}

, and the real
samples by adding the true realization, y =

{

y1, y2, . . . , yt , yt+1
}

.
Following Zhang et al. (2019), the idea of providing sequences to
the discriminator instead of just ỹt+1 and yt+1 is because we want
it to also extract and learn useful information on the correlation
over time steps.

There are also other two important aspects that need to be
mentioned. First, following Chintala (2016), we normalized the
data to lie within [−1, 1]. This also has the benefits of bringing all

the predictors to the same range. Second, following the WGAN
paper, we trained the discriminator five times more than the
generator, during each training iteration. The idea behind this is
that inWGAN the discriminator will not saturate, so themore we
train it the closer to optimality we get, obtaining therefore more
reliable gradient information for the training process.

Due to their useful properties, we used both the Wasserstein
distance and gradient penalty as suggested in the WGAN-GP
paper but, since we are dealing with time series, we modified
the loss function of the generator (Equation 7b) by including
further information to “guide” the generator into producing
good samples:

LD =
1

m

m
∑

i=1

[

D
(

ỹi
)]

−
1

m

m
∑

i=1

[

D
(

yi
)]

+ λ
1

m

m
∑

i=1

[

(∥

∥∇ŷD
(

ŷi
)∥

∥− 1
)2
]

, (8a)

LG = −
1

m

m
∑

i=1

[

D
(

ỹi
)]

+ ψ1
1

m

m
∑

i=1

(

yi − ỹi
)2

+ ψ2
1

m

m
∑

i=1

∣

∣sgn
(

yi
)

− sgn
(

ỹi
)∣

∣ , (8b)

where the two losses in Equations (8a) and (8b) are computed
over a batch ofm samples. The second term in the generator loss
computes the MSE (penalizing large errors between the real and
fake samples), while the third term further guides the generator
into producing fake samples that have the same sign (i.e., that are
close to) the real samples (recall that we normalized the data to
range between −1 and 1). ψ1 and ψ2 are two hyperparameters
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TABLE 2 | List of the variables we considered for the empirical analysis.

Variable Description

Close Closing price of the stock at the end of day

Closed Difference in the stock price compared to the previous close

Closep Percentage change in the stock price compared to the previous close

Ope Opening price of the stock

Oped Difference in the stock price compared to the previous opening

opep Percentage change in the stock price compared to the previous opening

high Highest price reached by the stock on the trading day

highd Difference in the highest price reached by the stock compared to the previous day

highp Percentage change in the highest price achieved by the stock compared to the previous day

low Lowest price reached by the stock on the trading day

lowd Difference in the lowest price reached by the stock compared to the previous day

lowp Percentage change in the lowest price reached by the stock compared to the previous day

SMA5 Simple Moving Average of the closing price calculated at 5 days

SMA10 Simple Moving Average of the closing price calculated at 10 days

EMA12 Exponential Moving Average of the closing price calculated at 12 days

EMA26 Exponential Moving Average of the closing price calculated at 26 days

MACD Moving Average Convergence/Divergence. It is a technical indicator to reveal changes in the strength, direction, momentum, and duration of a

trend. It is calculated as the difference between the EMA26 and EMA12

MACDsign The exceeding of MACD values on MACDsign and vice versa are useful signals to identify possible trend reversals in prices. It is calculated as a

9-period exponential moving average of the MACD line

volume Number of shares traded on the day

volumed Difference in the number of traded shares compared to the previous day

volume Percentage change in the number of traded shares compared to the previous day

RoC13 Rate of Change. The ROC calculates the ratio of today’s closing price to the closing price of (in our case) 13 previous days

K15 Stochastic Oscillator. The Stochastic Oscillator compares the closing price of the stock with the range of prices in the considered time period (15

days, in our case)

D5 Simple Moving Average of the values of the variable K15 calculated at 5 days

SMA20C Simple Moving Average of the closing price calculated at 20 days

BOLlow Bottom line of the Bollinger Bands

BOLup Upper line of the Bollinger Bands

BOL Percentage BOL, a volatility index of the stock. It is constructed as the ratio between the difference of close and BOLlow with the difference

between BOLup and BOLlow

MOM12 Momentum, an indicator that measures the change in closing prices. Unlike the ROC, the momentum is calculated as the difference between

today’s closing price and the closing price of the previous period (12 days, in our case)

that weight the importance of these added loss components,
and we found ψ1 = ψ2 = 0.5 to work well across the
considered time series, but some tuning might be necessary for
different applications. Notice that, at least theoretically, these
added components are not strictly necessary: if D (.) is trained
to be close to optimality in each epoch, we could in principle
use only its gradient to update in a reliable way the generator.
However, empirically we found that these added loss components
significatively speeded up the training process, requiring less
epochs to convergence (after 300 epochs, the measured loss was
half the one observed in the standard formulation). We trained
our architecture for 1,200 epochs.

For the generator network, we selected a CNN-BiLSTM
architecture. First, we stacked a one-dimensional convolutional
layer (32 filters, with a filter size of 2) to process the input values.
Long Short-Term Memory networks (LSTMs) (Hochreiter and
Schmidhuber, 1997) have been proven to be very effective

in dealing with sequence data, so the results obtained from
the convolutional layer are passed to a Bidirectional-LSTM
(BiLSTM) layer with 64 units, the bidirectionality being useful
in order to provide more context for the forecasting process.
Finally, we stacked 2 fully connected layers of 64 and 32 neurons,
respectively. The output layer is composed by a single neuron
when we are forecasting only the next time step, and 5 neurons
when we are forecasting the next 5 days.

For the discriminator network, we selected a CNN
architecture, which is appropriate when we have to compare and
discern two types of sequences (real and fake). To avoid possible
imbalances while training, it is useful to have a symmetric
architecture between the generator and the discriminator.
Therefore, we stacked 2 one-dimensional convolutional layers
(32 and 64 filters each, with a filter size of 2), followed by 2 fully
connected layers of 64 and 32 neurons, respectively. Since the
discriminator has to output a single scalar that represents how
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FIGURE 3 | Correlation matrix for EXO of the considered technical indicators.

real the input sequence is, the output layer was made by a single
neuron without any activation function.

Regarding the activation functions, we applied Leaky Rectified
Linear Unit (Leaky ReLU) to all the hidden layers in the generator
(except the BiLSTM layer that uses just standard ReLU) and in the
discriminator. Its equation is given by:

LeakyReLU (x) =

{

αx x < 0
x x ≥ 0

where we set α = 0.1. To allow for a positive slope in the negative
region is helpful when we might suffer from sparse gradients, as
in GANs training.

To avoid overfitting and obtain greater regularization, we
applied Dropout (Srivastava et al., 2014) in each hidden layer

of the generator and the discriminator, with the exception of
convolutional layers, where it is less effective. Since the number
of neurons is not too high, we found a moderate dropout
rate p = 0.2 to work well in practice (in the BiLSTM layer
we applied p = 0.3).

We initialized the weights of the two networks by using

a zero-centered Gaussian distribution with standard deviation

0.02, as in Radford et al. (2015). As for the optimization
algorithm, we selected Adam (Kingma and Ba, 2014), but we

tuned its hyperparameters to obtain more stability in training:

in particular, we found that in addition to a higher number

of discriminator iterations per generator iteration, it was also

helpful to set a higher learning rate for the discriminator.
Therefore, we set the learning rate of the discriminator ηD to
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FIGURE 4 | Contemporaneous and lagged correlation matrices for EXO of the selected variables.

0.0004, and the learning rate of the generator ηG to 0.0001.
Following Radford et al. (2015), we lowered the momentum term
β1 to 0.5, but we also lowered β2 to 0.9.

Figure 2 shows the architecture of our GAN.

EMPIRICAL ANALYSIS

We conducted our empirical analysis starting from the time series
data of closing, opening, maximum and minimum prices, as well
as the daily trading volume of the stocks from the FTSE MIB
(Financial Times Stock Exchange Milano Indice di Borsa) Index.
The data are available online (https://it.finance.yahoo.com/). To
train deep learning models successfully a “high enough” number
of observations is required, and so we chose to include the stocks
which values started from January 2005. We selected 26 stocks
with these characteristics (starting from the original 40 in FTSE
MIB). From this initial selection, we selected 10 stocks out of
26 (see Table 1) on which perform our analysis. The selection

criteria for these 10 stocks were the heterogeneity (i.e., to include
companies from different sectors) and the time series behaviors
(i.e., we included stocks that did not display a clear tendency to
increase or decrease, over the considered period of time).

The time series for each stock is composed of 4,149
observations, from January 2005, 3rd to April 2021, 30th.
Regarding data preprocessing, the missing values were very few
for each stock, ranging from a maximum of 18 to a minimum
of 0, with an average of 11.27 (0.27% of total length). We
replaced those missing values with the previous observation in
the time series.

Starting from these data, we constructed other variables that
are often used for the technical analysis of stocks, as well as to
forecast their future prices. Technical analysis has often been
criticized for its reliance on past data and for ignoring the market
fundamentals; however, technical indicators are still widely used
for stock price forecasting and have been proven to be effective in
many works (e.g., Oriani and Coelho, 2016; Aras, 2020; Agrawal

Frontiers in Artificial Intelligence | www.frontiersin.org 8 February 2022 | Volume 5 | Article 837596

https://it.finance.yahoo.com/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Staffini Forecasting With a DCGAN

TABLE 3 | Single-step forecast errors for ARIMAX, RF Regressor, LSTM, the benchmark GAN, and our GAN architecture.

Single-step forecasts

Stock Metrics ARIMAX-SVR RF Regressor LSTM Benchmark GAN Our GAN

(p,d,q) Results Results Lags Results Lags Results Lags Results

ATL RMSE (5,1,0) 0.990 0.814 (0.060) 2 0.763 (0.015) 2 0.890 (0.120) 2 0.631 (0.043)

MAE 0.820 0.543 (0.022) 0.501 (0.011) 0.694 (0.118) 0.416 (0.029)

MAPE 4.871 3.034 (0.177) 2.779 (0.052) 3.821 (0.829) 2.294 (0.134)

AZM RMSE (5,1,0) 0.663 0.633 (0.084) 2 0.582 (0.004) 2 0.895 (0.149) 2 0.541 (0.011)

MAE 0.530 0.460 (0.053) 0.403 (0.004) 0.788 (0.150) 0.347 (0.003)

MAPE 3.544 2.900 (0.329) 2.603 (0.035) 5.306 (1.050) 2.329 (0.028)

BZU RMSE (4,1,0) 0.899 0.639 (0.038) 2 0.578 (0.006) 2 0.700 (0.106) 2 0.506 (0.008)

MAE 0.796 0.479 (0.023) 0.426 (0.006) 0.560 (0.124) 0.366 (0.006)

MAPE 4.128 2.496 (0.117) 2.225 (0.032) 2.951 (0.629) 1.911 (0.030)

ENEL RMSE (2,1,0) 0.427 0.467 (0.022) 2 0.266 (0.023) 2 0.352 (0.097) 2 0.180 (0.013)

MAE 0.313 0.274 (0.021) 0.179 (0.017) 0.179 (0.017) 0.120 (0.011)

MAPE 4.488 3.582 (0.017) 2.605 (0.213) 4.863 (0.635) 1.797 (0.150)

ENI RMSE (1,1,0) 1.390 1.874 (0.016) 2 1.231 (0.064) 2 1.093 (0.260) 2 0.391 (0.073)

MAE 1.124 1.152 (0.014) 0.838 (0.033) 0.951 (0.258) 0.280 (0.059)

MAPE 11.194 13.839 (0.144) 9.568 (0.441) 8.372 (2.065) 2.688 (0.620)

EXO RMSE (1,1,0) 3.533 4.410 (0.014) 2 2.662 (0.186) 2 2.749 (0.636) 2 1.930 (0.113)

MAE 2.635 2.828 (0.011) 1.945 (0.136) 2.250 (0.565) 1.403 (0.132)

MAPE 4.719 4.438 (0.028) 3.315 (0.214) 3.907 (0.975) 2.454 (0.227)

G RMSE (5,1,0) 0.458 0.400 (0.022) 2 0.390 (0.005) 2 0.448 (0.168) 2 0.319 (0.020)

MAE 0.324 0.283 (0.010) 0.276 (0.007) 0.344 (0.157) 0.227 (0.019)

MAPE 2.181 1.910 (0.069) 1.888 (0.042) 2.314 (1.013) 1.548 (0.127)

IP RMSE (1,1,0) 1.449 4.326 (0.012) 2 1.464 (0.010) 2 1.368 (0.193) 2 1.098 (0.205)

MAE 1.096 2.179 (0.043) 1.015 (0.074) 1.078 (0.170) 0.800 (0.124)

MAPE 3.795 5.896 (0.074) 3.286 (0.267) 3.607 (0.663) 2.662 (0.330)

MB RMSE (5,1,0) 0.305 0.289 (0.009) 2 0.282 (0.002) 2 0.352 (0.107) 2 0.225 (0.003)

MAE 0.240 0.212 (0.004) 0.200 (0.003) 0.283 (0.108) 0.164 (0.002)

MAPE 3.183 2.654 (0.081) 2.624 (0.028) 3.760 (1.485) 2.146 (0.028)

REC RMSE (2,1,0) 2.544 2.723 (0.014) 2 1.843 (0.122) 2 1.631 (0.452) 2 1.029 (0.132)

MAE 2.223 1.725 (0.014) 1.384 (0.092) 1.250 (0.369) 0.754 (0.130)

MAPE 6.231 4.066 (0.093) 3.559 (0.226) 3.296 (0.966) 1.999 (0.328)

Text in bold denotes the best results (95% confidence level).

et al., 2021). To keep a simple framework (technical indicators
can be readily used by non-experts) and to compare our results
with those of other works, we decided to use these indicators only,
well-knowing that traders do not rely on technical analysis only
when making investment choices.

The total list of the variables we used is reported in Table 2.
For each stock, we checked the correlation matrix of the

selected variables, and we observed how many variables have a
correlation close to 0 with the closing price. Figure 3 shows the
correlation matrix for EXO.

Furthermore, even if we selected stocks that did not exhibit
clear trends, by performing the Augmented Dickey-Fuller (ADF)
test (Dickey and Fuller, 1979) we could not rule out the existence
of unit roots for the closing price, the opening price, the highest
and the lowest price variables at significance level 0.01. Hence,
when we ran the ARIMAX models (see Section Results), we took
the first differences for these variables (the ADF test performed
on the first differences rejected the presence of unit roots at
significance level 0.01).

Our goal is to forecast the values of the closing price of
the stocks, and among the technical indicators we constructed
we therefore selected a subset of them that are meaningful
and strongly correlated with the dependent variable, across
the 10 selected stocks: ope, high, low, SMA5, SMA10,
SMA20, EMA12, EMA26, MACD, MACDsign, volume, BOLlow,
and BOLup.

Figure 4 shows the correlation matrices of the subset of
regressors we considered for the analysis (at time t, t − 1, t − 2,
and t − 5) with the closing price (at time t), for the case of EXO.
We can observe that the correlation matrices do not vary when
we consider lagged values, indicating that the variables selection
is robust.

RESULTS

To evaluate the performance of our GAN architecture we
compared its results with those of four widely used models
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TABLE 4 | Multi-step (5 days) forecast errors for ARIMAX, RF Regressor, LSTM, the benchmark GAN, and our GAN architecture.

Multi-step forecasts

Stock Metrics ARIMAX-SVR RF Regressor LSTM Benchmark GAN Our GAN

(p,d,q) Results Results Lags Results Lags Results Lags Results

ATL RMSE (5,1,0) 1.784 1.027 (0.015) 5 1.080 (0.021) 2 2.319 (0.543) 2 0.950 (0.027)

MAE 1.377 0.694 (0.009) 0.702 (0.014) 1.782 (0.424) 0.620 (0.021)

MAPE 8.267 3.833 (0.052) 3.920 (0.074) 9.409 (2.393) 3.287 (0.118)

AZM RMSE (5,1,0) 1.776 0.977 (0.027) 5 0.930 (0.018) 2 2.274 (0.635) 2 0.850 (0.024)

MAE 1.380 0.697 (0.013) 0.647 (0.013) 2.050 (0.540) 0.588 (0.020)

MAPE 9.394 4.444 (0.088) 4.172 (0.083) 14.026 (2.809) 3.844 (0.176)

BZU RMSE (4,1,0) 1.799 0.906 (0.016) 5 0.886 (0.026) 2 2.444 (0.651) 2 0.784 (0.030)

MAE 1.549 0.669 (0.007) 0.654 (0.018) 1.984 (0.603) 0.572 (0.022)

MAPE 8.117 3.489 (0.039) 3.443 (0.095) 11.179 (4.202) 2.951 (0.108)

ENEL RMSE (2,1,0) 0.607 0.563 (0.005) 5 0.388 (0.016) 2 1.647 (0.622) 2 0.268 (0.023)

MAE 0.449 0.357 (0.005) 0.267 (0.010) 1.283 (0.472) 0.182 (0.020)

MAPE 6.379 4.829 (0.096) 3.871 (0.113) 20.652 (4.301) 2.771 (0.279)

ENI RMSE (1,1,0) 1.649 2.114 (0.013) 5 1.325 (0.081) 2 2.041 (0.624) 2 0.888 (0.193)

MAE 1.200 1.366 (0.012) 0.909 (0.053) 1.418 (0.437) 0.636 (0.134)

MAPE 12.514 16.028 (0.121) 10.288 (0.639) 12.156 (3.720) 5.884 (1.164)

EXO RMSE (1,1,0) 5.201 4.840 (0.013) 5 4.116 (0.071) 2 5.721 (1.044) 2 2.955 (0.218)

MAE 3.691 3.363 (0.013) 3.047 (0.030) 4.776 (0.870) 2.264 (0.258)

MAPE 6.664 5.461 (0.022) 5.195 (0.034) 9.061 (1.909) 3.977 (0.461)

G RMSE (5,1,0) 0.526 0.622 (0.018) 5 0.564 (0.004) 2 0.860 (0.338) 2 0.489 (0.003)

MAE 0.369 0.441 (0.010) 0.385 (0.006) 0.721 (0.288) 0.339 (0.010)

MAPE 2.445 3.000 (0.007) 2.641 (0.035) 4.763 (1.879) 2.281 (0.076)

IP RMSE (1,1,0) 2.057 4.363 (0.017) 5 2.557 (0.089) 2 2.866 (0.716) 2 1.366 (0.155)

MAE 1.674 2.350 (0.013) 1.670 (0.033) 2.404 (0.603) 1.007 (0.139)

MAPE 5.761 6.629 (0.028) 5.178 (0.080) 7.941 (1.989) 3.577 (0.527)

MB RMSE (5,1,0) 0.680 0.474 (0.020) 5 0.419 (0.002) 2 0.880 (0.566) 2 0.361 (0.012)

MAE 0.508 0.335 (0.013) 0.289 (0.004) 0.665 (0.354) 0.257 (0.011)

MAPE 6.738 4.416 (0.183) 3.836 (0.055) 7.059 (2.086) 3.300 (0.143)

REC RMSE (2,1,0) 3.742 3.231 (0.096) 5 2.356 (0.117) 2 4.736 (1.196) 2 1.776 (0.261)

MAE 3.278 2.191 (0.065) 1.625 (0.286) 3.875 (1.047) 1.403 (0.236)

MAPE 9.320 5.295 (0.155) 4.427 (0.174) 10.886 (2.780) 3.713 (0.626)

Text in bold denotes the best results (95% confidence level).

for stock price forecasting: ARIMAX-SVR, Random Forest
Regressor, LSTM, and a benchmark GAN.

ARIMAX (Autoregressive Integrated Moving Average with
Extra Input) is an extension of ARIMA, including not only
the lagged values of the dependent variables but other variables
as well as predictors. Considering that we want to model yt
by including not only its p lagged observations and the q
lagged observations of the residual error terms, but also the p
lagged observations of n further predictors, the equation of an
ARIMAX(p, d, q, n) is given by:

1dyt = β0 +

p
∑

i=1

βi1dyt−i +

n
∑

s=1

p
∑

k=1

ϕ
(s)
k
x
(s)
t−k
+ εt +

q
∑

j=1

θjεt−j,

where B = (β1,β2, . . . , βp)
T is the vector of coefficients

of the lagged values of the dependent variable, X =

(x(1), x(2), . . . , x(n))
T

is the vector of extra predictors,8(s) =

(ϕ
(s)
1 ,ϕ

(s)
2 , . . . , ϕ

(s)
p )

T
is the vector of coefficients of the extra

predictor s, with n, p > 0. 1d denotes the d-th difference

of yt , and β0 is the intercept of the model (i.e., the mean of
the series);εt ∼ WN(0, σ 2) denotes the error term and 2 =
(θ1, θ2, . . . , θq)

T is the vector of lagged error terms coefficients,
q > 0. In the context of our analysis, the n further predictors

are those strongly correlated with the closing price of the stocks
(see Figure 4), so that n = 13. As explained in Section Empirical

Analysis, we could not rule out that some considered predictors
where I(1) processes; hence, we set d = 1, and a further ADF
test on the differentiated data of these variables confirmed the
absence of unit roots. For finding the most suitable order of p
and q, we analyzed the autocorrelation function (ACF) and the
partial autocorrelation function (PACF). We further compared
the model specification suggested by ACF and PACF with the one
suggested by the Akaike Information Criterion (AIC) (Akaike,
1973). The specifications suggested by ACF/PACF and AIC
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TABLE 5 | Diebold-Mariano test for the single-step and multi-step forecasts.

Stock ARIMAX-SVR RF Regressor LSTM Benchmark GAN

Diebold-Mariano test single-step forecasts (p-value)

ATL 0 0 0 0

AZM 0 0 0.025 0

BZU 0 0 0 0

ENEL 0 0 0 0

ENI 0 0 0 0

EXO 0 0 0 0

G 0 0 0 0

IP 0 0 0 0

MB 0 0 0 0

REC 0 0 0 0

Diebold-Mariano test multi-step forecasts (p-value)

ATL 0 0.2078 0.0064 0

AZM 0 0 0.0085 0

BZU 0 0 0.0004 0

ENEL 0 0 0 0

ENI 0 0 0 0

EXO 0 0 0 0

G 0 0 0.0562 0

IP 0 0 0.0012 0

MB 0 0 0.0081 0

REC 0 0 0 0

The forecasts obtained from each competitor model have been compared with those of

our GAN. Text in bold denotes the non-rejection of the null hypothesis of the test (95%

confidence level).

often matched; when they did not, we preferred the ones that
empirically performed better.

One of the main features of financial time series is volatility
clustering (conditional heteroskedasticity). To this end, following
Pai and Lin (2005), we improved the forecasts obtained with
the ARIMAX model by augmenting it with a Support Vector
Regression (SVR) backend, in order to capture the non-linear
patterns in the data. More specifically, denoting with εt the
residual of the ARIMAX model at time t, we modeled it
as follows:

εt = f (εt−1, εt−2, . . . , εt−n)+ ut ,

with f being a non-linear function defined by the SVR
model, which takes as input past realizations of the ARIMAX
residuals, and ut being a random error. We used the
radial basis function as kernel for the SVR algorithm. The
number of inputs, as well as the kernel coefficient, the
regularization parameter and the epsilon-tube parameter were
optimized for each stock on the training data using a grid
search approach.

The Random Forest (RF) Regressor is a non-linear machine
learning algorithm which uses ensemble learning, constructing
a group of decision trees and aggregating their predictions
to tackle regression problems. Although typically not used
for time series forecasting, it has proved to be successful in
this area as well, and it is recently gaining popularity (Kane

et al., 2014; Dudek, 2015; Masini et al., 2021). The number of
inputs, as well as the number of decision trees in the forest
and the number of features to consider when looking for the
best split were optimized for each stock on the training data
using a grid search approach. Since in RFs there is randomness
coming both from bootstrapping and the sampling of the
features to consider when looking for the best split at each
node, in our experiments we considered the results over 10
different seeds.

LSTMs are a class of deep learning models, thought
especially to deal with sequence data and to deal with the
vanishing problem of RNNs. In particular, each LSTM cell
contains three gates: a forget gate (which establishes what
information should be discarded), an input gate (to establish
which values from the input should be used to update the
memory state), and an output gate (which decides what to
output based on the input and the memory cell). The gates can
be understood as weighted functions, and their parameters are
updated using Backpropagation Through Time (BPTT) (Mozer,
1989). The LSTM cell equations at a given time step t are
as follows:

Ft = σ
(

WFxt + UFht−1 + bF
)

,

It = σ
(

WIxt + UIht−1 + bI
)

,

C̃t = tanh
(

WCxt + UCht−1 + bC
)

,

Ot = σ
(

WOxt + UOht−1 + bO
)

,

Ct = Ft ◦ Ct−1 + It ◦ C̃t ,

ht = Ot ◦ tanh (Ct) ,

where Ft , It , Ot denote the forget gate, the input gate and
the output gate, respectively; C̃t is a cell input activation
vector; Ct is the cell status; ht is the output vector of
the LSTM cell; xt is the input vector to the LSTM cell;
W·, U·, and b· are the weight matrices and bias vector
parameters to be tuned during training, respectively;
σ is the sigmoid activation function; and ◦ denotes the
element-wise product.

To better deal with non-linearity in data, we can stack
LSTM layers upon each other. In the context of our analysis,
we built a three-layer stacked LSTM architecture: the first
layer having 64 cells, the second 32, and the third 16.
We applied a dropout rate of 0.3 after each LSTM layer,
and we used the tanh activation function mainly due to its
fast convergency properties (LeCun et al., 1998). We used
Adam with a learning rate of 0.001 as the optimization
algorithm, and we trained our network for 1200 epochs,
applying early stopping to further avoid overfitting (Goodfellow
et al., 2016). We initialized the weights of each LSTM layer
with the Glorot uniform initializer (Glorot and Bengio, 2010),
which in practice works well for deep networks (Calin,
2020).

We also considered a benchmark GAN, which
architecture is similar to the one proposed by Zhang
et al. (2019): we adopted LSTM as generator, and a 3-
layer MLP as discriminator. As suggested by Zhang
et al. (2019), we used Leaky ReLU as activation
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FIGURE 5 | Single-step forecasts on the ENEL test set for ARIMAX-SVR (left), LSTM (center), and our GAN architecture (right).

FIGURE 6 | Multi-step (5 days) forecasts on the ENEL test set for ARIMAX-SVR (left), LSTM (center), and our GAN architecture (right).

function for the hidden layers, dropout as regularization
method, and Binary Cross Entropy (BCE) loss
function. As in our proposed GAN, we chose Adam as
optimization algorithm.

To compare the results of the considered models, we need
to select a loss function. We selected three metrics: the Root
Mean Squared Error (RMSE), the Mean Absolute Error (MAE),
and the Mean Absolute Percentage Error (MAPE) to assess the
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TABLE 6 | Train-test split results for one stock (EXO).

Train-test split Metrics ARIMAX-SVR RF regressor LSTM Benchmark GAN Our GAN

Single-step forecast results on EXO

60–40 RMSE 6.001 20.838 (0.012) 12.237 (0.050) 21.225 (2.372) 19.987 (1.865)

MAE 4.942 17.667 (0.013) 9.941 (0.061) 18.738 (2.695) 16.912 (1.860)

MAPE 9.468 31.865 (0.025) 17.776 (0.142) 62.149 (8.831) 54.734 (4.003)

70–30 RMSE 8.121 12.290 (0.020) 4.562 (0.775) 4.419 (1.831) 3.936 (0.923)

MAE 7.188 9.606 (0.011) 3.154 (0.584) 3.794 (1.495) 2.783 (0.728)

MAPE 12.904 15.895 (0.029) 5.235 (0.930) 7.286 (2.951) 4.415 (1.000)

80–20 RMSE 3.533 4.410 (0.014) 2.662 (0.186) 2.749 (0.636) 1.929 (0.112)

MAE 2.635 2.828 (0.011) 1.945 (0.136) 2.250 (0.564) 1.402 (0.132)

MAPE 4.719 4.438 (0.028) 3.315 (0.214) 3.906 (0.975) 2.454 (0.226)

Multi-step forecast results on EXO

60–40 RMSE 17.744 21.419 (0.008) 12.931 (0.039) 21.718 (2.617) 20.446 (0.665)

MAE 15.593 18.334 (0.009) 10.415 (0.047) 19.722 (2.807) 17.553 (0.817)

MAPE 28.859 33.269 (0.018) 18.541 (0.105) 64.813 (15.432) 53.491 (3.809)

70–30 RMSE 17.968 12.717 (0.018) 6.098 (0.084) 8.930 (3.041) 4.135 (0.813)

MAE 16.006 10.143 (0.013) 4.368 (0.086) 7.073 (2.595) 3.285 (0.835)

MAPE 27.758 16.953 (0.025) 7.254 (0.146) 12.863 (4.591) 6.131 (1.730)

80–20 RMSE 5.201 4.840 (0.013) 4.116 (0.713) 5.721 (1.043) 2.955 (0.218)

MAE 3.691 3.363 (0.013) 3.047 (0.030) 4.776 (0.869) 2.264 (0.258)

MAPE 6.664 5.461 (0.022) 5.195 (0.034) 9.060 (1.909) 3.977 (0.461)

Text in bold denotes the best performance (99% confidence level).

TABLE 7 | Average execution times of the considered models (10 runs on a single

stock). We ran our experiments on a Microsoft Windows 10 (Version 21H1), with

11th Gen Intel(R) Core (TM) i7-1165G7 processor (2.80 GHz, 16.0 GB of RAM).

Model Time (in seconds) Standard deviation

Single-step forecasts average execution time

ARIMAX-SVR 2.30 0.34

RF Regressor 7.49 1.06

LSTM 71.72 1.37

Benchmark GAN 162.63 5.21

Our GAN 2,394.60 17.16

Multi-step forecasts average execution time

ARIMAX-SVR 2.38 0.05

RF Regressor 19.73 2.10

LSTM 113.71 2.11

Benchmark GAN 1,097.67 30.98

Our GAN 3,011.47 70.64

performance of our models and measure the difference between
real and predicted values. Considering n observations, their
equations are given by:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(ŷi − yi )
2 ,
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1

n

n
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∣

∣ ,
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100

n

n
∑

i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

,

where yi is the true value, and ŷi is the predicted value obtained
with the selected model. In general, RMSE penalizes large errors
more than the other considered metrics, being more sensitive
to outliers; on the other hand, MAE is often considered an easy
and interpretable metric to describe the average error committed
by a model. Finally, MAPE expresses the committed error as a
percentage, favoring the comparison with different data.

We split our data (4,149 observations per each stock, from
January 3rd, 2005, to April 30th, 2021) into a training set and
a test set at a ratio of 80–20 (i.e., the first 80% of the time
series of each stock was used for training the models and the last
20% was used to evaluate their performance on out-of-sample
data). The training set consisted therefore of 3,320 observations
(from January 3rd, 2005, to January 18th, 2018), and the test
set consisted of 829 observations (from January 19th, 2018,
to April 30th, 2021). Multi-step forecasting was implemented
using a rolling forecast approach, where the true realizations of
the closing price were made available to the models after each
forecast iteration.

ARIMAX models have been implemented using the statistical
package gretl3, while their SVR backends, the RF Regressors, the
LSTM models, the benchmark GAN, and our proposed GAN
are built with Python4. We collected the results for single-step
forecasts in Table 3 and those for multi-step forecasts in Table 4.

In Tables 3, 4 we denoted, for each stock and metric, the
best performance (lowest value) in bold. From Table 3, we can
observe how the DCGAN architecture performed significatively
better than the other considered models for all the 10 considered
stocks. The same good performances are obtained when we tried

3Version: 2020b.
4Version: 3.7.3, run on an Anaconda platform.
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to forecast the next week (i.e., the next 5 days) at once: indeed,
as we can observe from Table 4, our GAN architecture again
significatively performed better than its competitors for all the
stocks and for all the metrics, except for the MAE of a single
stock, where there was not a statistically significant difference.
It is also interesting to note how our DCGAN performs with
respect to the benchmark GAN. First, while the benchmark
GAN results can be considered good when performing single-
step forecasting, they get much worse in the multi-step scenario.
On the other hand, our architecture is much more consistent.
Second, both in the single-step and in the multi-step scenarios,
the standard deviation of our GAN is much lower than that of the
benchmark GAN, highlighting how the proposed architecture is
stable and does not suffer much from unstable training, which is
a well-known open problem in GANs training (Chen, 2021).

There is indeed an inherent stochastic component in the
training process of deep learning models, mainly coming from
the weight initialization scheme and the optimization process.
We reported in tables the average mean of 10 independent runs
of each model, and in brackets the standard deviation. For each
stock, to confirm statistically significant differences in the metrics
results, we ran independent t-tests with p < 0.05.

We further compared the accuracy of the obtained forecasts
using the Diebold-Mariano (DM) test (Diebold and Mariano,
1995). Considering two forecasts, the null hypothesis of the
DM test is that they have the same accuracy (i.e., there are
no differences in the forecasts), while the alternative hypothesis
is that the two considered forecasts have different degrees of
accuracy. We reported in Table 5 the results of the DM test for
the considered models. We can observe that, at 95% confidence
level, the null hypothesis of our GAN forecasts having the same
accuracy with other models is rejected for all the scenarios, except
for two cases in themulti-step comparison with RF Regressor and
LSTM (highlighted in bold).

We, respectively, reported in Figures 5, 6 the single-step
and multi-step forecasts of three considered models for a
stock (ENEL).

The train-test split (80–20) has been chosen by comparing
the model performances with those obtained with two others
commonly used split percentages and considering the training set
and test set representativeness. The results for one stock (EXO)
are reported in Table 6, where the best performance for each
metric (lowest value) is highlighted in bold. We can observe
how the 80–20 split results in better performances across all the
considered models and metrics.

For what concerns the execution times of the considered
models, they vary greatly according to the model complexity:
ARIMAX-SVR is the faster, while our proposed GAN is the
slowest. A more detailed description, with the average execution
times and the standard deviations for each model, is reported in
Table 7.

CONCLUSIONS

In this paper, we proposed a DCGAN architecture with a
CNN-BiLSTM generator and a CNN discriminator, with
the goal of making accurate forecasts on the closing price
of stocks. We compared its performance with those of
four benchmark models (ARIMAX-SVR, Random Forest
Regressor, LSTM, and a benchmark GAN) over 10 different
stock time series. Both in the single-step and in the multi-
step scenario, the results of our proposed architecture were
always better (or on par, for a single metric in a single
case) than the results of the benchmark models, suggesting
that financial time series forecasting may benefit from
employing GANs.

Despite having obtained promising results and a stable
architecture, training GANs remains a difficult task due to
the need of tuning many hyperparameters while keeping a
balance between the generator and the discriminator network.
Future research should move in the direction of finding a more
systematic way to perform parameter tuning, as well as exploring
other architecture configurations.

It should also be mentioned that we considered a fixed test
set and evaluated all the models on it. An interesting extension
of our work would be to compare the performances in other
settings: for example, exclude crisis periods (such as the COVID-
19 crisis), consider different forecasting horizons, and different
time granularities.
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