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This work investigates how different forms of input elicitation obtained from

crowdsourcing can be utilized to improve the quality of inferred labels for image

classification tasks, where an image must be labeled as either positive or negative

depending on the presence/absence of a specified object. Five types of input elicitation

methods are tested: binary classification (positive or negative); the (x, y)-coordinate of

the position participants believe a target object is located; level of confidence in binary

response (on a scale from 0 to 100%); what participants believe the majority of the other

participants’ binary classification is; and participant’s perceived difficulty level of the task

(on a discrete scale). We design two crowdsourcing studies to test the performance of

a variety of input elicitation methods and utilize data from over 300 participants. Various

existing voting and machine learning (ML) methods are applied to make the best use of

these inputs. In an effort to assess their performance on classification tasks of varying

difficulty, a systematic synthetic image generation process is developed. Each generated

image combines items from the MPEG-7 Core Experiment CE-Shape-1 Test Set into

a single image using multiple parameters (e.g., density, transparency, etc.) and may

or may not contain a target object. The difficulty of these images is validated by the

performance of an automated image classification method. Experiment results suggest

that more accurate results can be achieved with smaller training datasets when both the

crowdsourced binary classification labels and the average of the self-reported confidence

values in these labels are used as features for the ML classifiers. Moreover, when a

relatively larger properly annotated dataset is available, in some cases augmenting these

ML algorithms with the results (i.e., probability of outcome) from an automated classifier

can achieve even higher performance than what can be obtained by using any one of the

individual classifiers. Lastly, supplementary analysis of the collected data demonstrates

that other performance metrics of interest, namely reduced false-negative rates, can be

prioritized through special modifications of the proposed aggregation methods.
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1. INTRODUCTION

In recent years, computer vision approaches based on machine
learning (ML) and, in particular, those based on deep
convolutional neural networks have demonstrated significant
performance improvements over conventional approaches for
image classification and annotation (Krizhevsky et al., 2012;
Tan and Le, 2019; Zhai et al., 2021). However, these algorithms
generally require a large and diverse set of annotated data to
generate accurate classifications. Large amounts of annotated
data are not always available, especially for tasks where producing
high-quality meta-data is costly, such as image-based medical
diagnosis (Cheplygina et al., 2019), pattern recognition in
geospatial remote sensing data (Rasp et al., 2020; Stevens et al.,
2020), etc. In addition, ML algorithms are often sensitive to
perturbations in the data for complex visual tasks, that to some
extent are even difficult for humans, such as object detection
in cluttered backgrounds and detection of adversarial examples
(McDaniel et al., 2016; Papernot et al., 2016), due to the high
dimensionality and variability of the feature space of the images.

Crowdsourcing has received significant attention in various
domain-specific applications as a complementary approach for
image classification. Its growth has been accompanied and
propelled by the emergence of online crowdsourcing platforms
(e.g., Amazon Mechanical Turk, Prolific), which are widely
employed to recruit and compensate human participants for
annotating and classifying data that are difficult for machine-
only approaches. In general, crowdsourcing works by leveraging
the concept of the “wisdom of the crowd” (Surowiecki, 2005),
with which the judgments or predictions of multiple participants
are aggregated to sift out noise and to better approximate a
ground truth (Yi et al., 2012). Numerous studies over the last
decade have established that, under the right circumstances and
with the proper aggregation methods, the collective judgment
of multiple non-experts is uncontroversially more accurate
than those from almost any individual, including well-informed
experts. This concept of using groups tomake collective decisions
has been successfully applied to a number of visual tasks ranging
from simple classification and annotation (Russakovsky et al.,
2015) to complex real-world applications, including assessment
of damages caused by natural disasters (Barrington et al.,
2012) and segmentation of biomedical images for diagnostic
purposes (Gurari et al., 2015).

Although ML methods have been shown to perform
exceedingly well in various classification tasks, these outcomes
typically depend on relatively large datasets (Hsing et al., 2018).
However, high amounts of richly annotated data are inaccessible
in various situations and/or obtaining them is prohibitively
costly. Yet in such situations where less data is available,
ML methods provide a natural mechanism for incorporating
multiple forms of crowdsourced inputs, since they are tailor-
made for classification based on input features. Previous works
have tended to use a single form of input (i.e., mostly binary
classification labels provided by participants) as a feature for
ML algorithms on visual classification tasks. However, the vast
majority have overlooked other inputs that can be elicitated from
the crowd. Formal studies on the merits and potential impacts
of different types of elicited inputs are also lacking. This work

investigates how the performance of crowdsourcing-based voting
and ML methods for image classification tasks can be improved
using a variety of inputs. In summary, the contributions of this
work stem from the following objectives:

• Analyze the reliability and accuracy of different ML classifiers
on visual screening tasks when different forms of elicited
inputs are used as features.

• Evaluate the performance of the classifiers with these
additional features on both balanced and imbalanced
datasets—i.e., sets of images with equal and unequal
proportions, respectively, of positive to negative images—of
varying difficulty.

• Introduce supplementary crowdsourcing-based methods to
prioritize other performance metrics of interest, namely
reduced false-negative and false-positive rates.

• Analyze the performance of the crowdsourcing-based ML
classifiers when outputs of an automated classifier trained on
large annotated datasets are used as an additional feature.

To pursue these objectives, we design a number of experiments
that elicit a diversity of inputs on each classification task: binary
classification (1 = positive or 0 = negative); the (x, y)-coordinate
of the target object’s location; level of confidence in the binary
response (on a scale from 0 to 100%); guess of what the majority
of participants’ binary classification is on the same task; and
level of the perceived difficulty of the binary classification task
(on a discrete scale). To harness the benefits of both collective
human intelligence and machine intelligence, we use the elicited
inputs as features for ML algorithms. The results indicate
that integrating diverse forms of input elicitation, including
self-reported confidence values, can improve the accuracy
and efficiency of crowdsourced computation. As an additional
contribution, we develop an automated image classification
method based on the ResNet-50 neural network architecture
(He et al., 2015) by training it on multiple datasets of sizes
ranging from 10 k to 90 k image samples. The outputs of this
automated classifier are used as additional features within the
crowdsourcing-based ML algorithms. These additional results
demonstrate that this hybrid image classification approach can
provide more accurate predictions, especially for relatively larger
datasets, than what is possible by either of the two stand-
alone approaches.

Before proceeding, it is pertinent to mention that an
earlier, shorter version of this work and a subset of its
results appeared in Yasmin et al. (2021) and were presented
at the 9th AAAI Conference on Human Computation and
Crowdsourcing. That earlier conference paper considered only
a subset of the crowdsourcing-based ML algorithms featured
herein and that smaller selection was implemented only on
balanced datasets. This present work also introduces a hybrid
image classification approach, and it incorporates additional
descriptions, crowdsourcing experiments, and analyses.

2. LITERATURE REVIEW

In recent years, crowdsourcing has been widely applied to
complete a variety of image labeling/classification tasks, from
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those requiring simple visual identification abilities to those
that rely on domain expertise. Many studies have leveraged
crowdsourcing to annotate large-scale datasets, often requiring
subjective analysis such as conceptualized images (Nowak and
Rüger, 2010), scene-centric images (Zhou et al., 2014), and
general-purpose images from publicly available sources (Deng
et al., 2009; Everingham et al., 2010). Crowdsourcing techniques
have also been successfully tailored to many other complex visual
labeling/classification contexts that require profound domain
knowledge, including identifying fish and plants (He et al., 2013;
Oosterman et al., 2014), endangered species through camera
trap images (Swanson et al., 2015), locations of targets (Salek
et al., 2013), land covers (Foody et al., 2018), and sidewalk
accessibility (Hara et al., 2012). Due to its low cost and rapid
processing capabilities, another prominent use of crowdsourcing
is classification of CT images in medical applications. Such
tasks have included identifying malaria-infected red blood
cells (Mavandadi et al., 2012), detecting clinical features of
glaucomatous optic neuropathy (Mitry et al., 2016), categorizing
dermatological features (Cheplygina and Pluim, 2018), labeling
protein expression (Irshad et al., 2017), and various other tasks
(Nguyen et al., 2012; Mitry et al., 2013).

Despite its effectiveness at processing high work volumes,
numerous technical challenges need to be addressed to
maximize the benefits of the crowdsourcing paradigm. One
such technical challenge involves deploying effective mechanisms
for judgment/estimation aggregation, that is, the combining or
fusing of multiple sources of potentially conflicting information
into a single representative judgment. Since the quality of
the predictions is highly dependent on the method employed
to consolidate the crowdsourced inputs (Mao et al., 2013), a
vast number of works have focused on developing effective
algorithms to tackle this task. Computational social choice is a
field dedicated to the rigorous analysis and design of such data
aggregation mechanisms (Brandt et al., 2016). Researchers in this
field have studied the properties of various voting rules, which
have been applied extensively to develop better classification
algorithms. The most commonly used method across various
types of tasks is Majority Voting (MV) (Hastie and Kameda,
2005). MV attains high accuracy on simple idealized tasks, but
its performance tends to degrade on those that require more
expertise. One related shortcoming is that MV usually elicits and
utilizes only one input from each participant—typically a binary
response in crowdsourcing. Relying on a single form of input
elicitation may decrease the quality of the collective judgment
due to cognitive biases such as anchoring, bandwagon effect,
decoy effect, etc. (Eickhoff, 2018). Studies have also found that
the choice of input modality, for example, using rankings or
ratings to specify a subjective response, can play a significant
role in the accuracy of group decisions (Escobedo et al., 2022)
and predictions (Rankin and Grube, 1980). These difficulties
in data collection and aggregation mechanisms become even
more prominent when the task at hand is complex (e.g., see
Yoo et al., 2020). Researchers have suggested many potential
ways of mitigating these limitations. One promising direction is
the collection of richer data, i.e., using multiple forms of input
elicitation. As a parallel line of inquiry, previous works suggest

that specialized aggregation methods for integrating this data
should be considered for making good use of these different
pieces of information (Kemmer et al., 2020).

A logical enhancement of MV for the harder tasks is
to elicit the participant’s level of confidence (as a proxy of
expertise) and to integrate these inputs within the aggregation
mechanism. In the context of group decision-making, Grofman
et al. (1983) suggested weighing each individual’s inputs based
on self-reported confidence of their respective responses, in
accordance with the belief that individuals can estimate reliably
the accuracy of their own judgments (Griffin and Tversky, 1992).
More recently, Hamada et al. (2020) designed a wisdom of the
crowds study that asked a set of participants to rank and rate 15
items they would need for survival and used weighted confidence
values to aggregate their inputs. The results were sensitive to the
size of the group (i.e., number of participants); when the group
was small (fewer than 10 participants), the confidence values
reportedly had little impact on the results. In a more realistic
application, Saha Roy et al. (2021) used binary classification
and stated confidence in these inputs to locate target objects in
natural scene images. Their study showed that using the weighted
average of confidence values improved collective judgment. It
is important to remark that these and the vast majority of
related studies incorporate the self-reported confidence inputs
at face value. The Slating algorithm developed by Koriat (2012)
represents a different approach that determines the response
according to the most confident participant. For additional uses
of confidence values to make decisions, we refer the reader to
Mannes et al. (2014) and Litvinova et al. (2020).

Although subjective confidence values can be a valid predictor
of accuracy in some cases (Matoulkova, 2017; Görzen et al., 2019),
inmany others theymay degrade performance owing to cognitive
biases that prevent a realistic assessment of one’s abilities (Saab
et al., 2019). Another natural approach is to weigh responses
based on some form of worker reliability. Khattak and Salleb-
Aouissi (2011) used trapping questions with expert-annotated
labels to estimate the expertise level of workers. For domain-
specific tasks where the majority can be systematically biased,
Prelec et al. (2017) introduced the Surprisingly Popular Voting
method, which elicits two responses from participants: their own
answer and what they think the majority of other participants’
answer is. It then selects the answer that is “more popular than
people predict.” Other aggregation approaches include reference-
based scoring models (Xu and Bailey, 2012) and probabilistic
inference-based iterative models (Ipeirotis et al., 2010; Karger
et al., 2011).

In addition to crowdsourcing-based methods, automated
image classification has become popular due to the breakthrough
performances achieved by deep neural networks. Krizhevsky
et al. (2012) used a convolutional neural network called AlexNet
on a large dataset for the first time and achieved significant
performance in image classification tasks compared to other
contemporary methods. Since then, hundreds of studies have
further improved classification capabilities, and a few have shown
human-level performance when trained on large, noise-free
datasets (Assiri, 2020; Dai et al., 2021). However, as the size
and/or quality of training datasets decreases, the performance
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of these networks quickly degrades (Dodge and Karam, 2017;
Geirhos et al., 2017).

A two-way relationship between AI and crowdsourcing can
help compensate for some of the disadvantages associated with
the two separate decision-making approaches. Human-elicited
inputs interact with machine learning for a variety of reasons, but
most are in service of the latter. A wider variety of ML models
use human judgment to improve the accuracy and diversity
in training data sets. For example, Chang et al. (2017) uses
crowdsourcing to label images of cats and dogs since, unlike
machines, humans can recognize these animals in many different
contexts such as cartoons and advertisements. Human-elicited
inputs are given more importance in specialized fields like law
and medicine. For example, a study conducted by Gennatas
et al. (2020) uses clinicians’ inputs to improve ML training
datasets and as a feedback mechanism using what is aptly termed
“Expert-augmented machine learning.” In a similarly promising
direction, Hekler et al. (2019) uses a combination of responses
from a user study and a convolutional neural network to classify
images with skin cancer; the overall accuracy of their hybrid
system was higher than both components in isolation.

Unlike human-AI interaction, human-AI collaboration is
an emerging focus that can lead to the formulation of more
efficient and inclusive solutions. Mora et al. (2020) designed
an augmented reality shopping assistant that guides human
clothing choices based on social media presence, historical
purchase history, etc. As part of this focus, human-in-the-loop
applications seek a more balanced integration of the abilities of
humans andmachines by sequentially alternating a feedback loop
between them. For example, Koh et al. (2017) conducted a study
where a field operator wearing smart glasses uses an artificial
intelligence agent for remote assistance for hardware assembly
tasks. Yet, few studies seek to combine human judgments andML
outputs to form a collective decision. Developing such equitable
human-AI collaboration methods could be particularly beneficial
in situations where the transparency, interpretability, and overall
reliability of AI-aided decisions are of paramount concern.

3. CROWDSOURCING-BASED ML
CLASSIFICATION

This section introduces different forms of input elicitations and
describes how they can be utilized within a crowdsourcing-based
ML classifier. Consider the image label aggregation problem
where a set of images I are to be labeled by a set of participants
P; without loss of generality, assume each image and participant
has a unique identifier, that is, I = {i1, i2, ..., in} and P =

{p1, p2, ..., pm}, where n and m represent the total number of
images and participants, respectively. For each image ik ∈ I,
the objective is to infer the binary ground truth label yk ∈

{0, 1}, where yk = 1 if the specified target object is present
in the image (i.e., positive image) and yk = 0 otherwise (i.e.,
negative image). Since in these experiments each worker may
label only a subset of the images, let P(ik) ⊆ P be the set of
participants who complete the labeling task of image ik ∈ I. In
contrast to most crowdsourced labeling tasks where only a single
label estimate is elicited per classification task, in the featured

experiments each participant is asked to provide multiple inputs
from the following five options. The first input is their binary

response l
j

k
∈ {0, 1} (i.e., classification label) indicating the

presence/absence of the target object in image ik. The second

input is a coordinate-pair (u
j

k
, v

j

k
) indicating the location of the

target object (elicited only when l
j

k
= 1). The third input is a

numeric value c
j

k
∈ [0, 100] indicating the degree of confidence in

the binary response l
j

k
. The fourth input is another binary choice

g
j

k
∈ {0, 1} indicating what pj estimates the binary response

assigned by the majority of participants to ik is; this input is
referred to in this study as the Guess of Majority Elicitation
(GME). The fifth input is a discrete rating dkj ∈ {1, 2, 3, 4},

whose values are mapped from four linguistic responses—1:
“not at all difficult,” 2: “somewhat difficult,” 3: “very difficult,”
and 4: “extremely difficult”—indicating, in increasing order, the
perceived difficulty of task ik.

Before proceeding, it is worthmotivating the use of participant
confidence values in the proposed methods. Previous research
has found that participants can accurately assess their individual
confidence in their independently formed decisions (e.g., see
Meyen et al., 2021). However, a pertinent concern regarding
these confidence values is that, even if some participants are
accurate in judging their performance at certain times, humans
are generally prone to metacognitive biases, i.e., overconfidence
or underconfidence in their actual abilities (Oyama et al., 2013).
Hence, self-reported confidence should not be taken at face value,
and specific confidence values should not be assumed to convey
the same meaning across different individuals. In an attempt to

mitigate such biases, the confidence values, {c
j

k
}n
k=1

provided by
participant pj ∈ P are rescaled linearly between 0 and 100, with
the lowest confidence value expressed by pj being mapped to 0
and the greatest to 100. Letting Ij ⊆ I be the set of images
for which pj provides a label, the confidence of participant pj at
classifying image ik is rescaled as

c
j∗

k
=

c
j

k
−min

iq∈Ij
c
j
q

max
iq∈Ij

c
j
q −min

iq∈Ij
c
j
q

× 100.

The remainder of this section describes how the collected
input elicitations are used as features in ML classifiers to
generate predictions.

3.1. Features for Crowdsourcing-Based ML
Methods
A total of seven features were extracted from the five inputs
elicitations discussed in the beginning of this section for use
with the ML classifiers; these features are described in the
ensuing paragraphs.

• Binary Choice Elicitation: For each image ik ∈ I, the
binary choice elicitation values are divided into two sets: one

containing the participants with response l
j

k
= 1 and the

other containing participants with response l
j

k
= 0. The

number of participants in each set can be used as an input
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feature within a ML classifier. However, since the number of
participants can vary from image to image in practical settings,
it is more prudent to use the relative size of the sets. Note
that these relative sizes are complements of each other, that is,

the fraction of participants who chose l
j

k
= 1 as their binary

choice label can be determined by subtracting from 1.0 the

fraction of participants who chose l
j

k
= 0. Therefore, to remove

redundancy and co-linearity within the features, only one of
these values is used as an input and is given as

x1k =

∑

pj∈P(ik)

1(l
j

k
= 1)

|P(ik)|
,

where x1
k
is the fraction of participants who specify that the

target object is present in image ik.
• Spatial Elicitation: A clustering-based approach is

implemented to identify participants whose location

coordinates (u
j

k
, v

j

k
)—elicited only when they specify that

the target object is present—are close to each other. For each

image ik ∈ I, participants with binary choice label l
j

k
= 1 are

divided into multiple clusters using the Density Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm
(Ester et al., 1996). The reasons for choosing this algorithm
are twofold. First, DBSCAN is able to identify groups of points
that are close to each other but form arbitrary shapes; since the
target images have varying shapes and sizes, this is what one
would expect to see in a single image if all collected data points
were overlaid onto it. Second, this clustering algorithm can
easily mark as outliers/noise the points that are in low density
areas, i.e., coordinate points that have significant distance
from each other. After clustering, the fraction of participants
belonging to the largest cluster is used as an input feature
within the ML classifiers. For image ik, this input feature can
be expressed as

xSEk =

max
r∈Rk

nr

∑

pj∈P(ik)

1(l
j

k
= 1)

,

where nr is the number of participants in cluster r and Rk is the
set of clusters identified by DBSCAN for image ik.

• Confidence Elicitation: Although previous works have
explored using confidence scores to improve annotation
quality of crowdsourced data (Ipeirotis et al., 2010), very few
have incorporated this input within a machine learning model.

The confidence values are divided into two sets based on l
j

k
,

and the respective averages are used as additional features for
the ML classifier. For image ik ∈ I, these two input features
can be expressed as

x
conf, 1

k
=

∑

pj∈P(ik)

c
j∗

k
1(l

j

k
= 1)

∑

pj∈P(ik)

1(l
j

k
= 1)

; and

x
conf, 0

k
=

∑

pj∈P(ik)

c
j∗

k
1(l

j

k
= 0)

∑

pj∈P(ik)

1(l
j

k
= 0)

.

Here, the confidence values are rescaled linearly between 0 and
100 before incorporating them as the features.

• Guess of Majority Elicitation: Similar to BCE, GME is
converted into a single feature based on the number of

participants whose g
j

k
response value is 1 and is written as

xGME, 1
k

=

∑

pj∈P(ik)

1(g
j

k
= 1)

|P(ik)|
.

• PerceivedDifficulty Elicitation : Previous research has shown
that a task’s perceived difficulty level can be used to some
extent to improve the quality of annotation. In most cases,
the difficulty level is set based on inputs from experts, that
is, participants with specialized knowledge with respect to
the task at hand (Khattak and Salleb-Aouissi, 2011), or it
is estimated from the classification labels collected from
participants (Karger et al., 2011). Unlike these works, the
featured experiments gather the perceived difficulty of each
task directly from each participant to evaluate the reliability of
this information and its potential use withinML classifiers. For

each image ik ∈ I, the difficulty elicitation values d
j

k
are divided

into two sets: one for the participants with response l
j

k
= 1, and

FIGURE 1 | Object/shape templates from the MPEG-7 core experiment

CE-shape-1 test set.
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the other for the remaining participants with response l
j

k
= 0.

The average values from each set are then used as additional
features for the ML classifier; these two input features can be
expressed as

xPDE, 1
k

=

∑

pj∈P(ik)

d
j

k
1(l

j

k
= 1)

∑

pj∈P(ik)

1(l
j

k
= 1)

; and

xPDE, 0
k

=

∑

pj∈P(ik)

d
j

k
1(l

j

k
= 0)

∑

pj∈P(ik)

1(l
j

k
= 0)

.

4. EXPERIMENT DESIGN

Prior to introducing the components of the experiment design,
we describe the MPEG-7 Core Experiment CE-Shape-1 Test Set
(Jeannin and Bober, 1999; Ralph, 1999), which is the source
data from which the featured crowdsourcing activities are
constructed. The dataset is composed of black and white images

of a diverse set of shapes and objects including animals, geometric
shapes, common household objects, etc. In total, the dataset
consists of 1, 200 objects/shapes (referred to here as templates)
divided into 60 object/shape classes, with each class containing 20
members. Figure 1 provides representative templates from some
of these classes.

The images used in the crowdsourcing experiment are
constructed by instantiating and placing multiple MPEG-7 Core
Experiment CE-Shape-1 Test Set templates onto a single image
frame. The instantiation of the image template is specified with
six adjustable parameters: density, scale, color, transparency,
rotation, and target object. See Supplementary Material for a
detailed description of these parameters.

4.1. Description of Activities
For the crowdsourcing activities, we designed two studies, each
of which elicits multiple forms of input from participants to
complete a number of image classification tasks. A user interface
was designed and implemented to perform the two studies, which
differ based on the subsets of input elicitations tested and the class
balance ratios of the image datasets (more details are provided
later in this subsection). The interfaces were developed in HTML
and Javascript and then deployed using Amazon Mechanical

FIGURE 2 | Image classification task UI for balanced dataset—image contains bat (lower right).
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FIGURE 3 | Image classification task UI for imbalanced dataset—image contains bat (center left).

TABLE 1 | Summary of experiment image parameters.

Exp. Images Density Scale Color Transparency Target

Set

A

#1

16
{100, 120,

140, 160}
{T (0.2± 0.12), .., T (0.65± 0.12)} Discrete: {4} U(100, 200)

Bat

#2 Butterfly

#3 Apple

#4 Stingray

Set

B

#5

24

{80} {T (0.2± 0.05),T (0.3± 0.05)} Discrete: {1,...,6}

U(140, 170)

Bat

#6 {80,100,120} {T (0.2± 0.05), .., T (0.4± 0.05)} U(10, 255) for R,G,& B Turtle

#7 {100, 150} {T (0.2± 0.05),T (0.3± 0.05)} Various-7

Set

C

#8

40
{90, 100, 115,

150}
{T (0.25, 0.35, 0.40)} Discrete: {4} U(150, 200) Bat

#9

#10

Set

D

#11

#12

#13

Turk (MTurk). Participants were first briefed about the nature
of the study and shown a short walk-through video explaining
the interface. Afterwards, participants proceeded to the image
classification tasks, which were shown in a randomized order.
After completing an experiment, participants were disallowed to
participate in further experiments. Figures 2, 3 provide examples
of the user interfaces, both of which instituted a 60 s time
limit to view each image before it was hidden. If the participant
completed the input elicitations before the time limit, they were
allowed to proceed to the next image; on the other hand, if the
time limit was reached, the image was hidden from view but
participants could take as much time as they needed to finish

providing their inputs. The time limit was imposed to ensure the
scalable implementation of a high number of tasks. In particular,
the goal is to develop activities that can capture enough quality
inputs from participants while mitigating potential cognitive
fatigue. In preliminary experiments, we found that participants
rarely exceeded 45 s. In the featured studies (to be described
in the next two paragraphs), the full 60 s were utilized in only
7% of the tasks, with an average time of around 27 s. The
number of tasks given to the participants varied by experiment
and ranged from 16 to 40 images (see Table 1 for details). We
deemed this number of tasks to be reasonable and not cognitively
burdensome to participants based on findings of prior studies
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with shared characteristics. For instance, Zhou et al. (2018)
performed a visual identification crowdsourcing study where
participants were assigned up to 80 tasks, each of which took
a median time of 29.4 s to complete. The authors found that
accuracy decreased negligibly for this workload (i.e., twice as
large as in the featured studies).

In the first study, seven experiments were completed and
grouped into two sets: Experiment Set A (four experiments)
and Experiment Set B (three experiments). Each experiment
used a balanced set of images, with half containing the target
template (i.e., positive images); target objects were chosen so as
to avoid confusion with other template classes. See Table 1 for
image generation parameters, and see Supplementary Material

for additional related details. The parameter ranges selected for
Experiment Set A were designed to keep the difficulty of the
classification tasks relatively moderate. On the other hand, a
more complex set of parameters was selected for Experiment Set
B to expand the range of difficulty. These differences are reflected
in the individual performance achieved in these two experiment
sets, measured by the respective average number of correct
classifications obtained by participants. For Experiment Set A,
individual performance averages ranged between 59 and 77% for
each of the four experiments, whereas for Experiment Set B, they
were between 54 and 82% for each of the three experiments.

In the second study, six experiments were conducted. These
experiments were also grouped into two sets: Experiment Set C
(three experiments) and Experiment Set D (three experiments).
Each consisted of image sets with an imbalanced ratio of positive-
to-negative images. Experiment Set C had a 20-80 balance,
meaning that 20% of the images were positive, and 80% were
negative; Experiment Set D had a 10–90 balance. The results
of Experiment Sets A and B revealed that scale and density are
the only factors that had a statistically significant impact on
individual performance. Based on this insight, we constructed a
simple linear regression model with these two parameters as the
predictors and proportion of correct participants as the responses;
the model is very significant (p < 0.001), and its adjusted R-
squared value is 0.65. The model was used to generate image sets
with an approximated difficulty level by modifying the scale and
density parameters accordingly. It should be noted that the true
difficulty of each image varies based on the random generation
process. The model was implemented to design experiments
consisting of classification tasks of reasonable difficulty—that is,
neither trivial nor impossible to complete. Images of four levels
of difficulty were generated for Experiment Sets C and D. At each
difficulty level, the density was varied while keeping the other
parameters consistent across images. This resulted in images
that appear similar, but with different amounts of “clutter”. The
four difficulties generated were categorized as “very difficult,”
“difficult,” “average,” and “easy.” See Supplementary Material for
details and sample images of each difficulty. Experiment Sets C
and D use an even split of each difficulty (i.e., 25% of generated
images from each level). For the three respective experiments,
individual average accuracy values ranged between 65 and 73%
for Set C and between 58 and 72% for Set D.

Figures 2, 3 show the user interface presented to participants
in the first and second study, respectively. For each classification

task (i.e., image) in the first study, participants were asked to
provide a binary response indicating whether or not a target
object is present. If they responded affirmatively, they were then
prompted to locate the target object by clicking on it. Then,
participants were asked to rate their confidence in their binary
response on a scale from 0 to 100%. Finally, participants were
asked to guess the binary response of the majority of participants.
The second study asked participants similar questions as the
first study. For each classification task, participants were also
asked to provide a binary responses indicating whether or not
a target object is present and their level of confidence in this
response. If they responded affirmatively, however, they were
then prompted to locate the target object by drawing a bounding
box around it; the centroid of the bounding box was used as the
(x, y)-coordinate gathered from this elicitation. In replacement
to the last question of the first study, participants were asked to
rate the difficulty of the specific image being classified based on
a discrete scale. The rating choices provided were “not difficult
at all,” “somewhat difficult,” “very difficult,” and “extremely
difficult.” These labels were mapped to 1, 2, 3, and 4, respectively,
for use in the aggregation algorithms.

4.2. Participant Demographics and
Filtering of Insincere Participants
A total of 356 participants were recruited and compensated
for their participation using Amazon MTurk. Participants in
Experiment Set A were paid $1.25, those in Experiment Set B
were paid $2.00, and those in Experiment Sets C and D were
paid $3.75. The differences in compensation can be attributed to
the number of questions and the difficulty of image classification
tasks of the respective experiment sets. Participants were made
aware of the compensation amount before beginning the study.
Payment was based only on completion and not on performance.
Before proceeding, it is necessary to delve further into the quality
of the participants recruited via the MTurk platform, and the
quality of data they provide. Because of the endemic presence
in most crowdsourcing platforms of annotators who do not
demonstrate an earnest effort (Christoforou et al., 2021), some
criteria should be defined to detect such insincere participants
and filter out low-quality inputs. This work defined two criteria
for characterizing (and filtering out) an annotator as insincere:

• Criterion 1: The participant answered over 75% of the
questions in no more than 10 s per question.

• Criterion 2: The participant’s binary responses were
exclusively 0 or exclusively 1 over the entire question set.

Criteria 1 was imposed based on the following reasoning.
In general, classification of negative images takes longer than
classification of positive images. Even if it is assumed that
participants can spot the positive images immediately (i.e., within
10 s), it should take more than 10 s to reply to the negative
images that are of moderate to high difficulty. Because each
Experiment Set in this study contained at least 50% negative
images (Experiment Sets C and D contain a higher percentage)
and only a small minority were of low difficulty, a conservative
estimate that participants should take longer than 10 s to answer

Frontiers in Artificial Intelligence | www.frontiersin.org 8 June 2022 | Volume 5 | Article 848056

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Yasmin et al. Improving Crowdsourcing-Based Image Classification

FIGURE 4 | Distribution of Binary Classification results from crowdsoured data. (A) Balanced dataset. (B) Imbalanced dataset.

at least 25% of the images was set (i.e., to be more lenient
toward the participants). Further analysis of the behavior of the
participants in relation to the task completion times supporting
this observation has been added to Supplementary Material.

From the initial 356 participants, 50 participants were
removed from the four experiment sets using the above criteria.
Among them, 15 fell under criterion 1 and the rest under
criterion 2. As expected, filtering out these data provided less
noisy inputs to the crowdsourcing-based aggregation methods.
From the remaining 306 participants, 276 completed the
demographics survey. Their reported ages ranged from 21 to 71
years old, with a mean and median of 36 and 33, respectively.
156 participants reported their gender as male, 120 as female, and
0 as other. In terms of reported education level, 23 participants
finished a high school/GED, 17 some college, 16 a 2-year degree,
148 a 4-year degree, 70 a master’s degree, 1 a professional degree,
and 2 a doctoral degree.

4.3. Distribution of Crowdsourced Data
Before proceeding to the computational results, it is pertinent to
analyze the data collected from the crowdsourcing experiments.
First, let us analyze the relationship between the perceived
difficulty levels reported by the participants (i.e., input feature
PDE) and the difficulty levels utilized in the proposed image
generation algorithm (see Section 4.1 for details). The average
difficulty values reported by participants for images categorized
by the algorithm as “very difficult,” “difficult,” “average,” and
“easy” were 2.89, 2.73, 2.62, and 2.03, respectively. This evinces
a clear correlation, with the “very difficult” images having
the highest average perceived difficulty values and the rest
reflecting a decreasing order of difficulty, which supports the
ability of the image generation method used in this study to
control the classification task difficulty, according to the four
above-mentioned categories.

Next, let us analyze the correctness of the binary response
values collected from the participants. Figure 4 shows the
percentage of participants who answered each question
accurately; question numbers have been reordered for each of
the four datasets by increasing participant accuracy. The positive
and negative images for the balanced and imbalanced datasets
are presented in separate graphs. The plots show that, for the
balanced datasets (Experiments Sets A and B), the accuracy on
the positive images is significantly lower than on the negative
images. Moreover, in Experiment Set B, nearly half of the
positive images have accuracy values below 0.4, whereas in
Experiment Set A most images have values above 0.4. This is a
good indication of the higher difficulty level of Experiment Set
B. For the imbalanced datasets, in both Experiments Sets C and
D, nearly all negative images have accuracy values above 0.4. In
Experiment Set C, there is an almost even distribution of the
positive images above and below 0.6, whereas in Experiment
Set D nearly 60% of the positive images have accuracy values
below 0.5, indicating that Experiment Set D was comparatively
more difficult.

5. COMPUTATIONAL RESULTS

This section compares the performance of the voting and
crowdsourcing-based ML methods presented in Section 3
on both balanced and imbalanced datasets. As a baseline
of comparison for the proposed crowdsourcing-based ML
methods, three traditional voting methods are used: Majority
Voting (MV), Confidence Weighted Majority Voting (CWMV),
and Surprisingly Popular Voting (SPV). The details of these
methods can be found in Supplementary Material. For the ML
methods, four binary classification approaches were selected: K-
Nearest Neighbor (KNN), Logistic Regression (LR), Random
Forest Classifier (RF), and Linear Support Vector Machines
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(SVM-Linear). These were selected as reasonable representatives
of commonly available methods. The ML classifiers were trained
and evaluated using built-in functions of the Python scikit-
learn library (Pedregosa et al., 2011). The hyper-parameters were
optimized on a linear grid search with a nested 5-fold cross-
validation strategy. However, due to the small size of the datasets,
a Leave-One-Out (LOO) cross-validation strategy was used to
train and evaluate the classifiers.

In the DBSCAN clustering approach used for extracting the
Spatial Elicitation (SE), the maximum distance between two data
points in the cluster (ǫ) and the minimum data points required
to form a cluster (MinPts) was set to 50 and 3, respectively. The
former was set based on the size of the target objects used relative
to the size of the image frame (1, 080 × 1, 080); the latter was set
to ensure a sufficiently low probability of forming a cluster with
random inputs. To obtain a rough estimate of this probability,
consider the case where three participants with binary response

l
j

k
= 1 randomly select their location coordinates on an image

with area A. The probability of two points having a maximum
distance of r (i.e., falling within a circle with radius r) is πr2/A
and, therefore, the probability of the three points being identified
as a cluster by DBSCAN is 2(πr2/A)2. Setting r = ǫ = 50 and
A = 1, 080 × 1, 080 for our experiment, this probability value

TABLE 2 | Performance analysis of voting methods for balanced dataset.

MV CWMV SPV

Acc. FNR Acc. FNR Acc. FNR

Experiment Set A 0.73 0.53 0.81 0.34 0.45 0.94

Experiment Set B 0.71 0.53 0.74 0.47 0.53 0.92

becomes 0.01, which is sufficiently small and justifies the use of
the selected parameters.

5.1. Performance of Aggregation Methods
on Balanced Datasets
This section compares the performance of the voting and ML
methods on balanced datasets (Experiment Sets A and B). The
initial study elicits four out of the five inputs listed in Section 3.1:
BCE, GME, CE, and SE. The results are summarized in Tables 2

and 3.
The performance of the ML methods is quantified via

three performance metrics: accuracy (Acc.), false-negative rate
(FNR), and area under the ROC curve (AUC). For the
voting methods, only the first two of these metrics are
reported. For each of the ML classifiers, the best accuracy,
FNR, and AUC values among the different input elicitation
combinations are marked in bold. Before proceeding, it is
worthwhile to mention two additional points regarding the
values presented in the table. First, each row in Table 3

represents a different combination of inputs used as features
for the ML classifiers. For example, BCE-CE indicates that both

binary and confidence elicitation inputs (i.e., x1
k
, x

conf, 1

k
and

x
conf, 0

k
) were used as features for the ML classifiers, whereas

BCE-CE-SE-GME indicates that all four input elicitations (i.e.,

x1
k
, x

conf, 1

k
, x

conf, 0

k
, xSE

k
, and xGME, 1

k
) of Experiment Set A and

B were used as the respective input features. Second, when
calculating the accuracy and FNR values of the voting methods,
images with undecided outcomes (i.e., ties) are considered as a
third separate label.

Let us first discuss the performance of the aggregation
models in terms of accuracy. For Experiment Sets A and

TABLE 3 | Performance analysis of crowdsourcing based ML methods for balanced dataset.

Input KNN LR RF SVM-Linear

Elicitations Acc. FNR AUC Acc. FNR AUC Acc. FNR AUC Acc. FNR AUC

Experiment Set A

BCE 0.83 0.16 0.87 0.89 0.16 0.95 0.83 0.19 0.86 0.89 0.16 0.90

BCE-CE 0.86 0.22 0.89 0.86 0.19 0.89 0.84 0.22 0.93 0.86 0.19 0.91

BCE-SE 0.84 0.22 0.85 0.88 0.16 0.91 0.83 0.22 0.87 0.86 0.19 0.92

BCE-GME 0.86 0.19 0.87 0.86 0.16 0.91 0.83 0.19 0.83 0.88 0.16 0.91

BCE-CE-SE 0.81 0.31 0.86 0.88 0.19 0.88 0.84 0.22 0.91 0.89 0.16 0.91

BCE-CE-GME 0.8 0.25 0.82 0.84 0.19 0.90 0.83 0.22 0.89 0.84 0.19 0.90

BCE-CE-SE-GME 0.86 0.25 0.82 0.83 0.19 0.90 0.83 0.22 0.89 0.86 0.19 0.89

Experiment Set B

BCE 0.75 0.28 0.79 0.81 0.28 0.74 0.75 0.31 0.76 0.74 0.42 0.85

BCE-CE 0.78 0.28 0.85 0.81 0.25 0.88 0.75 0.22 0.82 0.79 0.25 0.85

BCE-SE 0.79 0.19 0.81 0.68 0.42 0.55 0.74 0.31 0.78 0.74 0.44 0.80

BCE-GME 0.75 0.31 0.78 0.76 0.31 0.89 0.68 0.33 0.74 0.72 0.42 0.88

BCE-CE-SE 0.76 0.22 0.79 0.82 0.22 0.89 0.74 0.25 0.80 0.72 0.47 0.85

BCE-CE-GME 0.76 0.31 0.81 0.78 0.28 0.80 0.76 0.22 0.79 0.78 0.31 0.86

BCE-CE-SE-GME 0.72 0.36 0.82 0.78 0.31 0.87 0.72 0.31 0.79 0.74 0.47 0.83

Bold values denote best performance among the different input elicitation combinations for each Crowdsourcing-based ML method.
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B, the average accuracy value of MV was stable at around
72%. The CWMV method performed significantly better than
MV, achieving an average accuracy value of around 77%.
SPV was the worst performer across the board, with an
average accuracy value of <50% (i.e., worse than a purely
random classifier). This low performance can be largely
attributed to the excessive number of tied labels generated
compared to the other methods. In SPV, 18 out of the 136
instances were classified as tied (i.e., participants were undecided
regarding the guess of the majority’s estimate). By comparison,
there were only three tied instances with MV and none
with CWMV.

The results of the ML classifiers in Experiment Set A were
relatively consistent in terms of both accuracy and AUC values
for all seven combinations of the input elicitations. The classifiers
performed particularly well, attaining accuracy values above 83%
for all combinations; this can be partly explained by the fact that
the images in this experiment set were generated using parameter
ranges that were more consistent and less variable in difficulty. In
Experiment Set B, the ML classifiers reached higher accuracy and
AUC values under certain combinations of the input elicitations.
For RF, LR, and KNN, a noticeable increase in AUC values
(from 76 to 85%) results when using the BCE-CE combination
compared to the standalone BCE input; the accuracy values
in these cases either increased or stayed the same. Altogether,
these results suggest that integrating CE into an ML classifier
can help attain more accurate predictions when the sample size
is small and the difficulty level of the images is more varied.
Furthermore, they show that the ML classifiers outperformed
the voting methods, with the LR classifier achieving the highest
values in terms of both accuracy and AUC scores.

Another performancemetric of interest is FNR, which denotes
the fraction of images the methods label as 0 (i.e., negative)
when their true label is 1 (i.e., positive). A high FNR may be
concerning inmany critical engineering andmedical applications
where a false-negative may be more detrimental than a false-
positive since the latter can be easily verified in subsequent steps.
For example, FNR has significant importance in detecting lung
cancer from chest X-rays. If the model falsely classifies an X-ray
as negative, the patient may not receive needed medical care in
a timely fashion. Returning to Table 2, the FNRs of the three
voting methods are high across the board, with SPV again having
the worst performance. The high FNRs of MV and CWMV can
be attributed to the fact that people tend to label the image as
negative whenever they fail to find the target object and that these
methods are unable to extract additional useful information from
the responses.

In Experiment Set A, the accuracy values are the highest
for the BCE-CE combination, whereas the FNR values are
the lowest for the single BCE input. On the other hand, in
Experiment Set B, although the accuracy values are the same for
both input combinations, FNR values decrease for the BCE-CE
combination. Moreover, for SVM, the reduction in FNR values
is significant for Experiment Set B (from 42 to 25%) for the
BCE-CE combination. This outcome reiterates the advantages of
integrating CE into ML classifiers for more complex datasets.

5.2. Performance of Aggregation Methods
on Imbalanced Datasets
This section compares the performance of the voting and
crowdsourcing-based ML methods on imbalanced datasets
(Experiment Sets C and D). Similar to the balanced datasets,
a total of four input elicitations are utilized. However, for this
study, the GME input is replaced by the PDE input (i.e., a rating
value to assess the difficulty of the classification task), which
is explained as follows. Recall from the discussion of Section
5.1 that none of the ML classifiers obtained a performance
improvement when using the GME input relative to the other
elicitation combinations. Moreover, the only method that utilizes
the GME elicitation, SPV, was the worst-performing among
the three voting methods. The inability of the GME input to
provide any additional information during the classification
process prompted its removal from subsequent studies. Due to
this modification, only two voting methods (MV and CWMV)
are explored for the imbalanced datasets.

When the dataset is balanced, accuracy by itself is a good
indicator of the model’s performance. However, when the dataset
is imbalanced, accuracy can often be misleading as it provides
an overly optimistic estimation of the classifier’s performance
on the majority class (“0” in this experiment). In such cases,
a more accurate evaluation metric is the F1-score (Sokolova
et al., 2006), defined as the harmonic mean of the precision and
recall values and can be expressed as, F1-score = 2(Precision ×

Recall)/(Precision + Recall) = TP/[TP + 1
2 (FP + FN)], where,

TP, FP, and FN refers to the number of true-positives (images
the methods label as 1 when their true label is 1), false-positives
(images the methods label as 1 when their true label is 0), and
false-negatives (images the methods label as 0 when their true
label is 1), respectively. Since both Experiment Sets C and D
are highly imbalanced (with an average of 15% of their images
belonging to the positive class) the F1-score is reported instead of
accuracy to better estimate the performance of the classifiers.

The overall results for the voting and machine learning
methods are summarized in Tables 4, 5, respectively. The
performance of the ML methods is quantified via three
performance metrics: F1-score, FNR, and AUC; for the voting
methods, only the first two of these metrics are reported. Let
us first discuss the performance of the aggregation methods in
terms of F1-score. For Experiment Sets C andD,MV and CWMV
have comparable scores, with both having the same value in the
first set and MV outperforming CWMV by a slight margin in
the second set. Moving on to the ML methods, for Experiment
Set C, the ML classifiers displayed comparable F1-scores for

TABLE 4 | Performance analysis of voting methods for imbalanced dataset.

MV CWMV

F1 FNR F1 FNR

Experiment Set C 0.77 0.38 0.77 0.25

Experiment Set D 0.53 0.58 0.52 0.50
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TABLE 5 | Performance analysis of crowdsourcing based ML methods for imbalanced datasets.

Input

Elicitations

KNN LR RF SVM-Linear

F1 FNR AUC F1 FNR AUC F1 FNR AUC F1 FNR AUC

Experiment Set C

BCE 0.73 0.38 0.82 0.78 0.33 0.79 0.73 0.33 0.81 0.73 0.38 0.92

BCE-CE 0.75 0.38 0.89 0.81 0.29 0.90 0.78 0.33 0.86 0.80 0.33 0.90

BCE-SE 0.81 0.29 0.83 0.84 0.25 0.95 0.76 0.29 0.87 0.84 0.25 0.86

BCE-PDE 0.81 0.29 0.83 0.76 0.33 0.94 0.68 0.38 0.81 0.77 0.38 0.9

BCE-CE-SE 0.76 0.33 0.92 0.81 0.29 0.92 0.77 0.29 0.90 0.81 0.29 0.88

BCE-CE-PDE 0.81 0.29 0.90 0.81 0.29 0.86 0.79 0.29 0.86 0.80 0.33 0.90

BCE-CE-SE-PDE 0.81 0.29 0.92 0.81 0.29 0.86 0.81 0.29 0.90 0.81 0.29 0.86

Experiment Set D

BCE 0.53 0.58 0.59 0.55 0.33 0.87 0.36 0.58 0.64 0.61 0.42 0.85

BCE-CE 0.59 0.58 0.76 0.54 0.42 0.83 0.63 0.50 0.79 0.67 0.50 0.87

BCE-SE 0.59 0.58 0.62 0.46 0.50 0.84 0.36 0.58 0.65 0.63 0.50 0.8

BCE-PDE 0.50 0.67 0.67 0.57 0.33 0.85 0.47 0.67 0.78 0.56 0.42 0.86

BCE-CE-SE 0.59 0.58 0.72 0.52 0.42 0.87 0.53 0.58 0.77 0.67 0.50 0.84

BCE-CE-PDE 0.44 0.67 0.68 0.56 0.42 0.73 0.53 0.58 0.79 0.63 0.50 0.87

BCE-CE-SE-PDE 0.56 0.58 0.74 0.52 0.42 0.84 0.44 0.67 0.78 0.67 0.50 0.85

Bold values denote best performance among the different input elicitation combinations for each Crowdsourcing-based ML method.

combinations BCE-CE, BCE-SE, BCE-CE-SE, and BCE-CE-SE-
PDE. In addition, all four of these input combinations performed
better than the standalone BCE input. The RF and KNN
classifiers achieved the highest values with the combination BCE-
CE-SE-PDE. In contrast, the LR and SVM classifiers achieved
the highest values with the BCE-SE combination. Overall, the LR
classifier achieved the best performance for this set with inputs
BCE-SE. In Experiment Set D, the results followed a different
pattern. In this case, the classifiers achieved the same or higher
values when the BCE-CE combination was used compared to
the BCE-SE or BCE-CE-SE combinations, indicating that the
SE input does not provide any additional information for this
experiment set. Because this dataset is highly skewed toward the
negative class (10–90 balance), we conjecture that participants
may have become demotivated to closely inspect difficult images
from the positive class. Whatever the cause, smaller clusters
were obtained from these images, reducing the effectiveness of
the SE input in many cases. In Experiment Set D, the highest
performance was achieved by the SVM classifier for the BCE-CE
input. These results once again indicate that, even though the self-
reported confidence values are not particularly helpful when used
within the traditional voting methods context (Li and Varshney,
2017; Saab et al., 2019)—as can also be seen by the performance
of the CWMV algorithm in this study—incorporating them into
an ML classifier can help attain better performance, specifically
higher F1-scores for highly imbalanced datasets.

In terms of FNR, the performance of the CWMV method

was markedly better than the MV method for both Experiment

Sets. The assigned labels for the positive images in Experiment
Set D for the two voting methods are almost identical, with the
exception of a single image which the latter labeled as a tie (i.e.,
undecided), contributing to the decrease in performance. Note
that none of the images in Experiment Set C was labeled as a

tie by either of the voting methods. Among the ML methods,
LR significantly outperformed all of the other classifiers for
Experiment Set D. Although in Experiment Set C the FNR for
the BCE-SE combination (25%) was lower than for the BCE
combination (33%), in Experiment Set D a significant increase
(33–50%) can be seen between these two combinations. Overall,
ML classifiers outperformed MV; however, CWMV showed
comparable performance for both experiment sets. Note that a
distinctive advantage of CWMV over the ML methods is that it
does not require training data.

5.3. Changing the Threshold of Positive
Classification
This section examines how voting methods can be modified
to emphasize other important metrics of image classification.
In particular, it seeks to prioritize reduced false-negative rates,
which are relevant in various critical applications. The FNRs
can be reduced by lowering the threshold at which a positive
classification is returned by a classificationmethod (i.e., changing
the tipping point for returning a positive collective response).
However, care must be exercised when lowering the threshold
since this implicitly increases false-positive rates (FPRs), which
can also be problematic.

By default, the threshold at which voting methods return a
positive response is fixed; for example, MV requires more than
50% of positive responses to return the positive class. Figure 5
illustrates the impacts of adjusting the thresholds for the voting
methods as well as for theMLmethods; the figure separates FNRs
from FPRs for eachmethod. UsingMV as an example, decreasing
the threshold from 0.5 to 0.3 results in relatively small increases
to the FPR and larger decreases to the FNR; further decreases
cause a disproportionate increase to FPRs. Hence, these inflection
points can help guide how the thresholds can be set for each
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FIGURE 5 | Change in FNR/FPR of different aggregation methods under varying thresholds. (A) Experiment Set A, (B) Experiment Set B, (C) Experiment Set C, (D)

Experiment Set D.

voting method to prioritize FNR. A similar observation can be
made about the FNRs of the ML methods (except for LR) for
the imbalanced datasets. However, this does not hold for the ML
methods for the balanced datasets—for example, reducing the
threshold to 0.3 causes a significant increase in FPRs compared
to the decrease in FNRs. This suggests that caution must be
exercised when changing the threshold of positive classification
of ML classifiers.

6. ENHANCEMENT OF
CROWDSOURCING-BASED ML METHODS
WITH AN AUTOMATED CLASSIFIER

In order to assess the difficulty of the image classification
problem presented to participants and to evaluate the potential
of hybrid human-ML approaches, we developed a deep
learning image classification approach that leverages large

training datasets. Our classifier is based on ResNet-50, a
popular variant of ResNet architecture (He et al., 2015),
which has shown very good performance on multiple image
classification tasks. It has been extensively used by the
computer vision research community and adopted as a baseline
architecture in many studies done over the last few years
(Bello et al., 2021).

For training the classifier, we generated a balanced
dataset of 100 k samples, with 10 k samples set aside
as the validation set and the rest used as the training
set. The images are representative of an even mixture of
the difficulty classes used to generate Experiment Sets
C and D. We trained and evaluated the performance of
the network using training set sizes ranging from 10 k
samples to 90 k samples, increasing the training set size
by 10 k every iteration, totaling nine different training
sessions. Each training session was started from the previous
session’s best-performing checkpoint of the network and the
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corresponding optimization state and continued for 35 epochs.
See Supplementary Material for a complete description of
the ResNet classifier used as well as a detailed analysis of
its performance.

We emphasize that this work does not aim to advance
the state-of-the-art results for automated image classification.
Instead, the focus of the automated classification method is
to explore the benefits and limitations of a hybrid method
introduced herein that integrates the outputs of a well-known
deep neural network into the crowdsourcing-based classification
methods. In particular, the proposed method uses the output of
the automated classifier as an additional feature of the featured
ML methods. Table 6 summarizes the results for the small
imbalanced test sets used in Experiment Sets C and D as the
training set grows larger. Due to the imbalanced nature of
these test sets, this table and the rest of the analysis focus on
F1-score, false-negative rate (FNR), and area under the ROC
curve (AUC). Before proceeding, it is worthwhile to mention
two additional points regarding the values presented in the
table. First, the input elicitation RC represents the probability
value of positive classification obtained from the automated
classifier when used as a feature. For example, BCE-RC indicates
that both the binary elicitation inputs and the probability
scores from the ResNet-50 were used as features for the ML
classifiers. Second, the Combined Set C&D is created by merging
the data from Experiment Sets C and D, thereby effectively
doubling the size of the training set relative to the individual
experiment sets.

Table 6marks in bold those cases in which the performance of
the hybrid method according to a given metric is better than both
the completely automated approach (ResNet-50) and the results
achieved by the crowdsourcing-based ML methods (according to
the best input combination). As expected, when the ResNet-50
performance is poor, using its output as a feature hurts the overall
results. Conversely, when the ResNet-50 performance is near
perfect, it is difficult to improve upon its performance by adding
information obtained from the crowd. However, apart from those
extremes, exploiting the output of the ResNet-50 is beneficial in
most cases, particularly regarding F1-score and AUC.

The proposed hybrid methods, which use the results from
the automated classifier as an additional input feature for
the crowdsourcing-based ML methods, exhibited a robust
performance. They attained maximum F1-scores of 0.98, 0.96
0.97 and minimum FNRs of 0.04, 0.08, 0.06 for Experiment
Set C, D, and Combined Set C&D, respectively, all of which
represent significant improvements over what crowdsourcing-
based methods achieved on a standalone basis. While these top
results were associated with the automated classifier training set
of 90k samples, impressive results were obtained using smaller
datasets for Combined Set C&D, compared to Experiment Set
C and D separately. As an example, incorporating the output
of the automated classifier trained on 50k samples with the
crowdsourcing-based methods for Combined Set C&D improved
the F1-score significantly (see Tables 5, 6). However, the hybrid
approach did not show better results for Experiment Sets C andD
separately over the same training set size in some cases. This can
be explained by the fact that Experiment Sets C and D have fewer

data points than Combined Set C&D. This attests that, while
crowdsourcing-based methods supplemented with the outputs
of the automated classifier perform very well on small datasets,
too few data points can negatively affect the performance of the
hybrid approach.

7. DISCUSSION

This section highlights key observations related to the research
questions, along with the limitations of the study. The experiment
results demonstrate that supplementing binary choice elicitation
with other forms of inputs can generate better classifiers. When
the training sets is small, incorporating binary labels along with
confidence values regarding these responses within any of the
fourML classifiers tested in this work generatedmore dependable
results for datasets of varying levels of difficulty. These diverse
inputs also helped improve other performance metrics such
as AUC values, which measure an ML model’s capability to
distinguishing between labels.While votingmethods had a rather
poor performance with respect to FNRs, a simple parametric
modification (i.e., changing the threshold value) was shown
to significantly reduce these values with comparatively small
increases to FPRs. When the training sets is larger, integrating
the inputs from the automated classifier with the crowdsourcing-
based MLmethods decreased FNRs even further. Those methods
achieved near-perfect FNRs thanks to a large dataset that was
used to train the automated classifier. The F1-score was also
improved significantly through this hybrid approach. Although
smaller training sets of 50k samples slightly reduced the
performance of the automated classifier, the numbers were still
better than those obtained by standalone crowdsourcing-based
methods. Altogether, the results demonstrate that including
diverse inputs as features within an ML classifier, it is possible
to obtain better classifications at a relatively low cost.

The methodology for aggregating crowd information to
improve image classification outcomes presented in this
paper could have wide-ranging applications. Through suitable
adaptations and enhancements, it could be applied for various
types of real-world screening tasks, such as inspecting luggage
at travel checkpoints (e.g., airports, metro), X-ray imaging for
medical diagnosis, online image labeling, AImodel training using
CAPTCHAs, etc. Moreover, the image classification problem
featured herein is a special case of the overall participant
information aggregation problem; therefore, the findings in
this paper could be extended to various other classification
applications that utilize the wisdom of the crowd concept.

The presented studies admittedly have some limitations. For
starters, the approach used to filter “insincere participants" was
relatively simple. To obtain a better quality dataset, future studies
will seek to deploy more sophisticated quality control techniques
for filtering out unreliable or poor quality participants, e.g.,
using Honeypot questions (Mortensen et al., 2017). A second
limitation is that the synthetic images generated for this work
have certain characteristics that may overly benefit automated
classification methods but may not generalize to various real-
world situations. It is possible, for example, that the images might
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TABLE 6 | Performance analysis of Crowdsourcing-based ML methods with expanded inputs from ResNet-50.

Input

Elicitations

Size of

dataset

ResNet50 KNN LR RF SVM-Linear

F1 FNR AUC F1 FNR AUC F1 FNR AUC F1 FNR AUC F1 FNR AUC

Experiment Set C

BCE-CE-SE-PDE∗ – – – – 0.81 0.29 0.92 0.81 0.29 0.86 0.81 0.29 0.90 0.81 0.29 0.86

RC

10k

0.36 0.21 0.67 – – – – – – – – – – – –

BCE-RC – – – 0.73 0.38 0.85 0.82 0.25 0.93 0.70 0.38 0.89 0.75 0.38 0.92

BCE-CE-RC – – – 0.70 0.42 0.89 0.77 0.25 0.88 0.74 0.33 0.86 0.80 0.33 0.91

RC

30k

0.71 0.29 0.92 – – – – – – – – – – – –

BCE-RC – – – 0.77 0.38 0.83 0.75 0.25 0.92 0.78 0.33 0.89 0.76 0.33 0.92

BCE-CE-RC – – – 0.75 0.38 0.81 0.73 0.25 0.91 0.78 0.33 0.88 0.80 0.33 0.93

RC

50k

0.87 0.04 0.99 – – – – – – – – – – – –

BCE-RC – – – 0.80 0.25 0.95 0.90 0.04 0.97 0.84 0.21 0.97 0.88 0.13 0.98

BCE-CE-RC – – – 0.82 0.25 0.92 0.90 0.04 0.98 0.84 0.21 0.97 0.88 0.13 0.97

RC

70k

0.90 0.08 0.99 – – – – – – – – – – – –

BCE-RC – – – 0.91 0.13 0.98 0.92 0.04 0.99 0.93 0.13 0.98 0.94 0.04 0.99

BCE-CE-RC – – – 0.91 0.13 0.98 0.88 0.04 1.00 0.93 0.13 0.98 0.94 0.04 0.99

RC

90k

0.96 0.00 1.00 – – – – – – – – – – – –

BCE-RC – – – 0.98 0.04 0.98 0.94 0.04 0.96 0.98 0.04 0.97 0.98 0.04 0.99

BCE-CE-RC – – – 0.98 0.04 0.98 0.9 0.04 0.97 0.98 0.04 0.97 0.98 0.04 0.99

Experiment Set D

BCE-CE∗ – – – – 0.59 0.58 0.76 0.54 0.42 0.83 0.63 0.50 0.79 0.67 0.50 0.87

RC

10k

0.17 0.33 0.62 – – – – – – – – – – – –

BCE-RC – – – 0.59 0.58 0.67 0.44 0.25 0.87 0.44 0.67 0.73 0.11 0.42 0.78

BCE-CE-RC – – – 0.56 0.58 0.69 0.43 0.33 0.84 0.63 0.50 0.78 0.63 0.50 0.86

RC

30k

0.50 0.42 0.87 – – – – – – – – – – – –

BCE-RC – – – 0.50 0.67 0.67 0.43 0.33 0.87 0.59 0.58 0.74 0.63 0.50 0.85

BCE-CE-RC – – – 0.50 0.67 0.64 0.47 0.42 0.88 0.56 0.58 0.8 0.67 0.50 0.87

RC

50k

0.79 0.08 0.96 – – – – – – – – – – – –

BCE-RC – – – 0.74 0.42 0.90 0.71 0.17 0.91 0.70 0.42 0.88 0.80 0.17 0.96

BCE-CE-RC – – – 0.70 0.42 0.91 0.69 0.17 0.90 0.74 0.42 0.86 0.80 0.17 0.91

RC

70k

0.83 0.17 0.98 – – – – – – – – – – – –

BCE-RC – – – 0.91 0.17 0.96 0.88 0.08 0.92 0.91 0.17 0.94 0.96 0.08 0.92

BCE-CE-RC – – – 0.91 0.17 0.96 0.88 0.08 0.92 0.91 0.17 0.93 0.96 0.08 0.92

RC

90k

0.96 0.08 0.98 – – – – – – – – – – – –

BCE-RC – – – 0.96 0.08 0.96 0.92 0.08 0.94 0.91 0.17 0.94 0.96 0.08 0.95

BCE-CE-RC – – – 0.96 0.08 0.96 0.92 0.08 0.95 0.91 0.17 0.94 0.96 0.08 0.92

Combined Set C&D

BCE-CE∗ – – – – 0.68 0.47 0.83 0.73 0.33 0.9 0.72 0.42 0.85 0.76 0.39 0.9

RC

10k

0.27 0.25 0.65 – – – – – – – – – – – –

BCE-RC – – – 0.67 0.5 0.83 0.64 0.25 0.88 0.67 0.39 0.86 0.71 0.39 0.91

BCE-CE-RC – – – 0.69 0.44 0.86 0.68 0.25 0.9 0.69 0.44 0.84 0.76 0.39 0.91

RC

30k

0.63 0.33 0.90 – – – – – – – – – – – –

BCE-RC – – – 0.71 0.42 0.87 0.66 0.25 0.92 0.79 0.31 0.94 0.72 0.42 0.91

BCE-CE-RC – – – 0.72 0.42 0.84 0.64 0.28 0.92 0.75 0.39 0.91 0.72 0.42 0.93

RC

50k

0.84 0.06 0.98 – – – – – – – – – – – –

BCE-RC – – – 0.87 0.19 0.96 0.86 0.08 0.97 0.91 0.11 0.96 0.85 0.14 0.97

BCE-CE-RC – – – 0.86 0.22 0.94 0.86 0.08 0.96 0.86 0.22 0.96 0.85 0.14 0.98

RC

70k

0.88 0.11 0.99 – – – – – – – – – – – –

BCE-RC – – – 0.96 0.08 0.97 0.92 0.06 0.94 0.96 0.08 0.96 0.93 0.06 0.97

BCE-CE-RC – – – 0.93 0.08 0.97 0.89 0.06 0.97 0.96 0.08 0.96 0.92 0.06 0.97

RC

90k

0.96 0.03 0.99 – – – – – – – – – – – –

BCE-RC – – – 0.97 0.06 0.97 0.93 0.06 0.98 0.97 0.06 0.96 0.97 0.06 0.98

BCE-CE-RC – – – 0.97 0.06 0.97 0.92 0.06 0.94 0.97 0.06 0.97 0.97 0.06 0.98

*Denotes the input combinations that achieved the best performance among the Crowdsourcing-based ML methods. Bold values denote cases where hybrid method outperforms both

the Resnet-50 classifier and the Crowdsourcing-based ML methods.
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have tiny consistent details that are not visible to human eyes
due to the nature of the image generation process. In that case,
the automated classification method had an unfair advantage
of exploiting those details to improve performance effectively.
Future studies will assess the featured methods on more realistic
datasets drawn from other practical contexts.

8. CONCLUSION

Although crowdsourcing methods have been productive in
image classification, they do not tap into the full potential
of the wisdom of the crowd in one important respect. These
methods have largely overlooked the fact that difficult tasks
can be amplified to elicit and integrate multiple inputs from
each participant; an easy-to-implement option, for example,
is eliciting the level of confidence in one’s binary response.
This paper investigates how different types of information can
be utilized with machine learning to enhance the capabilities
of crowdsourcing-based classification. It makes four main
contributions. First, it introduces a systematic synthetic image
generation process that can be used to create image classification
tasks of varying difficulty. Second, it demonstrates that while
reported confidence in one’s response does not significantly raise
the performance of voting methods, this intuitive form of input
can enhance the performance of machine learning methods,
particularly when smaller training datasets are available. Third, it
explains how aggregation methods can be adapted to prioritize
other metrics of interest of image classification (e.g., reduced
false-negative rates). Fourth, it demonstrates that under the right
circumstances, automated classifiers can significantly improve
classification performance when integrated with crowdsourcing-
based methods.

The code used to generate the synthetic images can be found at
https://github.com/O-ARE/2D-Image-Generation-HCOMP. In
addition, the code used to train and evaluate the automated
classifier can be found at https://github.com/O-ARE/2d-image-
classification.
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