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Fetal MR imaging is subject to artifacts including motion, chemical shift, and

radiofrequency artifacts. Currently, such artifacts are detected by the MRI operator,

a process which is subjective, time consuming, and prone to errors. We propose a

novel algorithm, RISE-Net, that can consistently, automatically, and objectively detect

artifacts in 3D fetal MRI. It makes use of a CNN ensemble approach where the first

CNN aims to identify and classify any artifacts in the image, and the second CNN uses

regression to determine the severity of the detected artifacts. The main mechanism

in RISE-Net is the stacked Residual, Inception, Squeeze and Excitation (RISE) blocks.

This classification network achieved an accuracy of 90.34% and a F1 score of 90.39%

and outperformed other state-of-the-art architectures, such as VGG-16, Inception,

ResNet-50, ReNet-Inception, SE-ResNet, and SE-Inception. The severity regression

network had an MSE of 0.083 across all classes. The presented algorithm facilitates

rapid and accurate fetal MRI quality assurance that can be implemented into clinical use.

Keywords: deep learning, fetal MRI, convolutional neural networks, image classification, imaging artifacts

INTRODUCTION

Background
Fetal MRI artifacts can severely degrade image quality and the radiologist’s ability to use the image
for diagnostic decision-making. Detection of such artifacts is currently done visually by the MRI
operator, a process which is subjective, time consuming, and prone to errors. This is ultimately an
intensive quality control task for the interpreting physician. Automating this process immediately
alerts the MRI operator after sequence acquisition whether the images are usable for diagnostics or
whether the sequence will need to be repeated, thus alleviating the cognitive burden, and improving
diagnostic accuracy. Such automatic detection of imaging artifacts can be accomplished using
machine learning methods.

Related Works
Prior approaches to automatic detection of imaging artifacts and evaluation of overall quality
include using gaussian naïve bayes, support vector machines, and random forests machine learning
techniques (Sujit et al., 2018).While sometimes reliable, these classifiers are limited by themanually
selected features fed into them. This process makes these classifiers a sub-optimal solution because
the performance of a classifier is heavily dependent on the feature selection procedure. A more
efficient and modern approach incorporates deep learning and, in particular, convolutional neural

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.861791
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.861791&domain=pdf&date_stamp=2022-06-16
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dafna.sussman@ryerson.ca
https://doi.org/10.3389/frai.2022.861791
https://www.frontiersin.org/articles/10.3389/frai.2022.861791/full


Lim et al. Fetal MRI Artifact Detection

networks (CNN). CNN architectures have been shown to
accurately classify medical images mainly because of their
automatic feature detection element. An example of this
approach was recently implemented using MRIs of the brain
which were classified into “motion-free” vs. “motion-corrupted”
(Fantini et al., 2021). While this method achieved good results
with an overall accuracy of 86.3%, it did not account for the
type of artifact present, which can be important for many
applications. Another study used a similar CNN approach and
aimed to classify abdominal MRIs into 3 different classes:
“poor,” “diagnostic,” and “excellent” (Ma et al., 2020). The
authors reported an accuracy of 65%, but when converted to a
binary problem by combining the “diagnostic” and “excellent”
classes, an accuracy of 84% was achieved. They concluded that
multi-class classification problems are more difficult to train
in comparison to binary problems due to similarities within
the dataset.

Currently, other researchers have found successes in this
domain, but are constrained by the number of artifacts classified,
and/or are not generalizable to full body anatomy. Most existing
automatic artifact detection algorithms are designed to identify
singular artifact types such as motion. For example, Küstener
et al. incorporated a method to spatially recognize and quantify
motion artifacts in MR images pertaining to the head and
abdominal regions (Küstner et al., 2018). While capable of
achieving an average accuracy of 86%, it does not alleviate
the time consuming and cumbersome aspect in the clinical
setting as it still requires manual inspection of other artifacts to
ensure diagnostic usability. Other methods aim to execute similar
solutions but are idealistic in practice due to related reasons.
However, Gagoski et al. proposed a CNN to detect fetal motion
in half-Fourier single-shot fast spin echo (HASTE) sequences
(Gagoski et al., 2022). While the algorithm was limited to one
type of artifact, they also added a motion correction feature
which would be part of the future development of our proposed
project. In our algorithm, we address a wider series of artifacts
not studied in the Gagoski solution. Furthermore, other artifact
detection approaches are anatomy specific, therefore restricting
their usability to explicit scenarios. The majority are mainly
focused on the head region such as in Oksuz (2021) and are not
generalizable to the full body.

Our approach makes use of CNNs which have made
significant improvements across varying problems such as
classification, segmentation, and object detection. Recently, CNN
architectures have been further advanced in terms of accuracy
and training speed. Two examples are ResNet-50 and Inception
which address the vanishing gradient problem and reduce
computational resources, respectively (Khan et al., 2020). In
addition, squeeze and excitation blocks have gained recognition
as they have shown to improve results with minimal computation
cost (Roy et al., 2019). Other authors have implemented hybrid
networks containing the different modules, namely, ResNet-
Inception, SE-ResNet, and SE-Inception. Szegedy et al. stated
that combining skip connections from ResNet with the Inception
network accelerated network training significantly and provided
greater performance in some instances (Szegedy et al., 2016).
Furthermore, Hu et al. performed experiments involving the

addition of SE blocks to benchmark networks such as ResNet
and Inception (Hu et al., 2019). They found that across varying
datasets, the addition of SE significantly improved network
performance in comparison to their standalone counterparts.

Motivations and Contributions
In our study, we propose a novel algorithm to detect and classify
artifacts on full body fetal MR imaging using four different classes
of artifacts: (1) motion, (2) chemical shift, (3) radio-frequency,
and (4) no artifacts. We aim to fill in the gaps in this domain by
developing a deep learning algorithm that can detect and score
a variety of artifacts and can be summarized for full anatomy
scans. Specifically, the algorithm makes use of a CNN ensemble
approach where the first CNN aims to identify and classify any
artifacts in the image, and the second CNN intends to determine
the severity of artifacts detected.With the recent success of multi-
model CNNs, particularly skip connections, inceptions modules,
and SE blocks, we intend to incorporate these components in our
proposed algorithm as they have been proven to be beneficial in
similar computer vision tasks. This algorithm will be a useful
quality control tool for radiologists and improve imaging and
diagnostic protocols in a clinical setting.

Paper Outline
The rest of the paper is organized as: Materials and Methods
(section 2), Results (section 3), Discussion (section 4), and
Conclusion (section 5). In section Materials and Methods, the
dataset used, proposed method, and experiment parameters are
covered. Section Results provides the results of the experiments
including algorithm performance and an extensive ablation
study. Section Discussion contributes an interpretation of the
results and relates it to current literature. Section Conclusion
summarizes the overall conclusion by defining key findings and
future steps.

MATERIALS AND METHODS

Dataset
The dataset consisted of 31 anonymized 3-dimensional (3D)
fetal MRIs without structural abnormalities that were acquired at
the Hospital for Sick Children, Toronto. The dataset and study
have been approved by the Research Ethics Board. They were
collected using both an SSFP sequence on a 1.5T scanner and a
3D SSFP sequence with SENSE on a 3.0T scanner. The former
sequence resulted in a resolution of 384 × 384, while the latter
was 512× 512. All scans were extracted in the coronal plane. This
resulted in a total of 2,250 2-dimensional (2D) slices. Each slice
within a single scan was manually segmented using the Amira-
Avizo software (Berlin, Germany). As shown in Figure 1, the
resulting masks were made transparent and superimposed onto
their corresponding slice so that only the fetus was visible. The
resulting images were then saved as PNG files and their pixel
intensities were normalized. This type of normalization involves
dividing each pixel by themaximum intensity found in the image,
resulting in values between 0 and 1. This preprocessing step was
necessary since the scans were obtained using different sequences
and varying parameters. Following these steps, the dataset was
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FIGURE 1 | Preprocessing steps to obtain the fetal segmentation. (A) represents the original 2D slice. (B) shows the manually segmented mask. (C) displays the

overlay of the mask onto the original slice.

TABLE 1 | Thresholding system for determining artifact grade.

Score <=0.5 0.5< Score <=1 1< Score <=2 Score >=2

Artifact grade None Mild Medium Severe

given to 2 pediatric neuroradiologists who manually labeled each
slice in a consensus reading. They determined which artifacts
were present in each image slice and assigned one of the following
severity scores: none, mild, medium, or severe. The categorical
labels were converted to numerical values in order to train the
networks. Specifically, the artifact types were one-hot-encoded
where 1 meant the artifact was present and 0 represented it was
not. Furthermore, the severity scores were converted to a discrete
range from 0 to 3, where 0, 1, 2, and 3, portrayed none, mild,
medium, and severe, respectively.

The 2,250 2D images were then divided into a training,
validation, and testing set using an 80:10:10 split, resulting in a
training set of 1,800 images, a validation set of 225 images, and a
testing set of 225 images. Each image was also resized to 512 ×

512 because CNNs can only handle a single input size.

Architecture
The proposed artifact classification network uses a CNN
framework and takes in our manually segmented fetal MR
images to ensure any artifacts detected are directly affecting
fetal tissue. The architecture involves components inspired
from the Inception, Resnet-50, and Squeeze and Excitation
networks. These three elements were combined to create the
Resnet-Inception-Squeeze-and-Excitation (RISE) module. The
first part of the network is composed of sequential convolution,
dropout, and max pooling layers. This is followed by the
main part of the network which incorporates 6 consecutive
RISE blocks. The last part is composed of 2 dense layers
containing 512 and 4 neurons, respectively. The last dense

layer contains a sigmoid activation function permitting multi-
label classification where more than 1 artifact can exist in a
single image. This produced an array containing probabilities
pertaining to each artifact class. The artifact severity regression
network uses the same architecture as described, but aims to
output a severity score between 0 (none) and 3 (severe). The last
dense layer was changed to contain 3 neurons and the sigmoid
activation function was removed in order to accommodate
the new problem. This allowed the network to produce an
array where each value represented the severity of each artifact
type. A mean square error was also implemented for the
loss function. A total artifact severity score was computed by
multiplying the outputs from each network. Since the outputs
from each network were indexable arrays, we were able to
extract each numerical value and multiply them accordingly.
This score was representative of the type and severity of
artifacts present. Based on the thresholding system seen in
Table 1, the algorithm was able to convert the score into text
form where the final output was the artifact type (motion,
chemical shift, radiofrequency) and the severity level (none, mild,
medium, severe). The overall algorithm framework is illustrated
in Figure 2.

Inception Module

The Inception module was implemented for 2 main reasons:
(1) it makes the network more computationally manageable
as it creates a wider network as opposed to a deeper one,
and (2) it limits the number of input channels by employing
a 1 × 1 convolution layer before the 3 × 3 and 5 × 5
convolutions and after the max pooling layer, which further
reduces model complexity. Another reason was that applying
different sized filters allowed for the detection of features of
varying sizes. This was beneficial for this application as artifacts
exist in different sizes, where some are more global and cover
most of the image, others are local and only exist in a small
portion of the image. The Inception module is shown in
Figure 3.
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FIGURE 2 | Architecture of proposed algorithm where the classification CNN is the top pathway, and the regression CNN is the bottom pathway.

FIGURE 3 | Inception module block diagram. Top pathway follows a 1 × 1 convolution. Second pathway involves a 1 × 1 convolution, followed by a 3 × 3

convolution. Third pathway incorporates a 1 × 1 convolution, followed by a 5 × 5 convolution. Last pathway starts with a 3 × 3 max pooling layer and is followed by a

1 × 1 convolution. All pathways are concatenated at the end.

ResNet Module

The ResNet architecture introduced a skip connection
mechanism that is an accepted and beneficial practice used in
many CNNs today (Orhan and Pitkow, 2018). This mechanism
was implemented to address the vanishing gradient problem
which is a common problem during the backpropagation step of
training a CNN (Yasrab, 2019). Through backpropagation, the
gradient of the loss function with respect to a weight can become
infinitely small and, therefore, the weights stop updating. A skip
connection combats this by adding the output from a previous
layer to the layer ahead. This is shown in Figure 4A where x is
the input (identity), and F(x) is the learned features. Figure 4B
illustrates the implementation of the skip connection along the
Inception module.

Squeeze and Excitation Module

The SE module consists of 2 different operations: squeeze and
excitation. During the squeeze procedure, a single value is created
for each channel of the input by using a global average pooling
computation. This is followed by an excitation process that takes
the output vector from the squeeze operation and creates a set
of weights per channel. Ultimately, a sigmoid activation function

FIGURE 4 | (A) standard skip connection is shown. (B) implementation of skip

connection with Inception module.

is employed to create weight values between 0 and 1, which
correspond to how much attention each channel should receive.
These weights are multiplied to each corresponding channel in a
layer termed as the scale layer. The weighted channels provide
greater emphasis on important features and less emphasis on
background features. The SEmodule is illustrated in Figure 5 and
the equations are shown in 1.

Equation (1) shows the squeeze operation (Sn) per feature
map, where In is the input feature map, and H and W are
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FIGURE 5 | Block diagram of squeeze and excitation module. The squeeze segment consists of a global pooling operation which creates a value for each channel.

The excitation component uses dense, ReLU, and sigmoid layers that correspond to the importance of each channel.

FIGURE 6 | Framework of the RISE module consisting of a skip connection, Inception block, and SE block.

spatial dimensions.

Sn = FSqueeze(In) =
1

H ×W

H
∑

i=1

W
∑

j=1

In(i, j) (1)

Equation (2) illustrates the excitation operation (En) per feature
map, where δ represents the ReLU activation, and g is the
complexity value which is used for channel parameter reduction
and to aid in model generalization. Through experimentation,
we found g = 8 yielded the best results. σ represents the
sigmoid activation.

En= FExcite (Sn) = (

(

δ,
Sn

g

)

, σ ) (2)

Equation (3) displays the scaling step where the output (On) is
the newly weighted feature map based on the multiplication of
the excitation weights and original input feature map.

On = En × In (3)

RISE Module

The RISE module incorporated components from the described
networks. Figure 6 shows the design and functionality of
the block.

Experiments
The proposed model was trained and validated using the
Compute Canada Cedar cluster which is listed for general use.
The cluster was set up using 1 node, where each node consisted of
4 NVIDIA V100 Volta (32 GB) GPUs, 2 Intel Silver 4216 Cascade
Lake (2.1GHz) CPUs with 32 cores, and a maximum memory of
187 GB.

The networks were compiled using the Keras API with
a TensorFlow (Mountain View, California) backend and the
coding language used was Python version 3.6.13 (Amsterdam,
Netherlands). The built-in Adam optimizer was implemented
with the default parameters except the initial learning rate which
was changed to 1 × 10−5. The Adam optimizer was chosen as
opposed to the usual stochastic gradient descent (SGD) optimizer
due to its adaptive learning rate which has shown to enhance
performance in CNNs (Dogo et al., 2018). The classification
model used a sigmoid activation function after the last dense
layer which produced probabilities that were between 0 and 1 and
were also independent of the other classes. This was implemented
as the task was a multi-label classification problem where an
image could contain more than one artifact, thus belonging
to more than one class. The sigmoid activation function was
paired with a binary cross entropy (BCE) loss which similarly is
computed for every independent output node. Both classification
and regression networks were trained separately for a total of
100 epochs with a batch size of 8. Additionally, a 5-fold cross
validation method was used in order to rigorously assess model
performance. The networks were deployed together in parallel
in order to obtain our final model outputs of artifact type
and severity.

The following metrics were monitored for both training and
validation phases of the classification network: accuracy (exact
match ratio), F1 score, precision, and recall. Accuracy was the
strictest metric as the prediction was only considered correct if it
exactly matched its corresponding label. F1 score is the harmonic
mean between precision and recall, which can give a better
representation of model performance in comparison to accuracy.
Precision was beneficial to measure per class accuracy. Recall can
indicate how well a class is used as a prediction. Calculating the
mentioned metrics provided insight on how well the model was
performing and what aspects needed improvement.
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Below are the equations used, where n is the number of
images, I is the indicator function, Ytrue is the ground truth,
Ypred is the prediction, TP is true positives, FP is false positives,
and FN is false negatives.

Accuracy =
1

n

n
∑

i=1

I(Ytruei = Ypredi) (4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 Score =
2(Precision × Recall)

Precision + Recall
(7)

For further validation, the proposed architecture was also
compared to the most used and well-known CNNs for image
classification: VGG-16, Inception, and ResNet-50 (Szegedy et al.,

2014; He et al., 2015; Simonyan and Zisserman, 2015). We
also compared it with other hybrid models including ResNet-
Inception, SE-ResNet, and SE-Inception. These experiments were
conducted to check whether the proposed network outperformed
pre-existing state-of-the-art models. These networks replaced the
main part of the CNN, but the input and output layers were
modified to fit this specific application. The hyperparameters
remained the same throughout the models, and the same metrics
were monitored for each network.

An extensive ablation study was also conducted where
different components of the main architecture were varied
slightly to determine their contribution to the model
performance. Specifically, tests were done where (1) the
inception module was omitted and replaced with a standard
convolution layer, (2) the skip connections were removed
entirely, and (3) the SE blocks were eliminated. This study was
carried out to test whether the RISE module is superior to its
standalone counterparts.

Since the second CNN, the artifact severity network, followed
the same framework as the classification CNN with minor
adjustments, mean squared error (MSE) was the only monitored
metric. MSE, which is defined below, is a regression metric that is
used to calculate the average of squared differences between the

FIGURE 7 | Confusion matrices for the different classes where the ground truth is on the y-axis, and the prediction is on the x-axis. (A) is the confusion matrix for the

“Motion” class. (B) shows the confusion matrix for the “Chemical Shift” class. (C) displays the confusion matrix for the “Radio-Frequency” Class. (D) illustrates the

confusion matrix for the “Normal” class.
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ground truth and predicted values. In the equation, n represents
the number of data points, Ytrue is the ground truth, and Ypred
is the predicted output from the CNN.

MSE =
1

n

n
∑

i=1

(Ytruei − Ypredi)
2 (8)

RESULTS

The performance of the artifact classification network is shown
in Figure 7. This figure shows binary confusion matrices for each
class where the ground truth is on the y-axis and the predicted
class is on the x-axis. These confusion matrices provide a visual
representation of how well the classifier performed on the test
dataset by quantifying the true negatives (top left box), false
positives (top right box), false negatives (bottom left box), and
true positives (bottom right box). These results were then used
in computing the accuracy, precision, recall, and F1 score which
are summarized in Table 2. For the “Motion” class, the network
achieved an accuracy of 91.56%, precision of 96.20%, recall of
92.12%, and F1 score of 94.12%. The “Chemical Shift” class
achieved an accuracy of 89.78%, precision of 92.86%, recall of
93.41%, and F1 score of 93.13%. The “Radio-frequency” class
attained an accuracy of 91.11%, precision of 95.27%, recall of
91.56%, and F1 score of 93.38%. Lastly, the “Normal” class
achieved an accuracy of 88.89%, precision of 82.81%, recall of
79.1%, and F1 score of 80.91%.

The proposed classification network was also compared to
other state-of-the-art architectures by training/testing with the
same parameters and dataset. The results of the comparison can
be seen in Table 3 where RISE-Net (accuracy of 90.34% and F1
score of 90.39%) outperformed the other networks in terms of
accuracy and F1-score (p < 0.05 for each comparison).

An ablation study was also conducted where different
components of the RISE-Net architecture were omitted or
replaced. Specifically, one test was performed where the skip
connections were completely removed. This resulted in an
accuracy of 89.05% (p = 0.0412) and an F1 score of 88.00%
(p= 1.08× 10−4). Another test included the removal of the SE
block which produced an accuracy of 83.51% (p = 4.38 × 10−5)
and an F1 score of 84.41% (p= 8.20× 10−7). Lastly, the inception
layer was taken out and replaced with a single 3 × 3 convolution
kernel which gave an accuracy of 89.38% (p = 0.0410) and an
F1 score of 89.32% (p =0.0390). The results are also tabulated in
Table 4.

The artifact severity network aimed to output a value between
0 and 3, where 0 represented a non-severe artifact and 3
represented a severe artifact. MSE for each class was calculated
and tabulated in Table 5. MSE for the 3 artifact types motion,
chemical shift, and radio-frequency were 0.097, 0.079, and 0.073,
respectively. These results indicate that the predicted outputs
were relatively similar to their corresponding ground truth and
differed by <10%.

Examples of the final output of the algorithm are shown in
Figure 8. The output from the artifact classification network
was multiplied with the corresponding output from the artifact

TABLE 2 | Accuracy, precision, recall, F1 score (mean ± stdv).

Accuracy (%) Precision (%) Recall (%) F1 score (%)

Motion 91.56 ± 0.82 96.20 ± 1.23 92.12 ± 0.63 94.12 ± 0.39

Chemical shift 89.78 ± 0.66 92.86 ± 0.88 93.41 ± 1.04 93.13 ± 0.47

Radio-frequency 91.11 ± 0.89 95.27 ± 0.37 91.56 ± 0.72 93.38 ± 0.25

Normal 88.89 ± 0.21 82.81 ± 0.44 79.10 ± 1.25 80.91 ± 0.66

TABLE 3 | Comparison against other classification networks (mean ± stdv).

Accuracy (%) F1 score (%)

RISE-Net 90.34 ± 0.65 90.39 ± 0.44

VGG-16 84.81 ± 0.46 (p = 2.60 × 10−6) 85.22 ± 0.43 (p = 4.10 × 10−7)

ResNet-50 89.05 ± 0.76 (p = 0.031) 87.46 ± 0.76 (p = 1.50 × 10−4)

Inception 82.30 ± 0.56 (p = 2.19 × 10−7) 78.37 ± 0.50 (p = 8.92 × 10−10)

ResNet-

Inception

88.92 ± 0.33 (p = 0.016) 87.23 ± 0.43 (p = 6.59 × 10−5)

SE-ResNet 89.21 ± 0.35 (p = 0.043) 87.51 ± 0.59 (p = 4.69 × 10−4)

SE-

Inception

83.02 ± 0.61 (p = 2.04 × 10−6) 78.90 ± 0.52 (p = 7.62 × 10−9)

TABLE 4 | Ablation study for RISE-Net architecture (mean ± stdv).

Accuracy (%) F1 score (%)

Without skip

connections

89.05 ± 0.91 (p = 0.041) 88.00 ± 0.42 (p = 1.08 × 10−4)

Without SE 83.51 ± 1.69 (p = 4.38 × 10−5) 84.41 ± 0.74 (p = 8.20 × 10−7)

With 3 × 3

Conv

89.38 ± 0.30 (p = 0.041) 89.32 ± 0.84 (p =0.0390)

TABLE 5 | MSE loss per class for severity regression CNN (mean ± stdv).

MSE

Motion 0.097 ± 0.008

Chemical shift 0.079 ± 0.001

Radiofrequency 0.073 ± 0.001

severity regression network. Based on a thresholding method, the
artifacts were either labeled as containing none, mild, medium,
or severe artifacts. Image A is heavily degraded by all 3 artifact
types and the network output labels reflect that. Furthermore, the
image has a radio-frequency artifact overlying the brain region.
The network accurately detected it and output a “Severe” label
for the “Radio-frequency” class. Image B is markedly degraded
by artifacts. The network labeled it “Severe” for all artifact class
types. In image C, the anatomy is better visible, with mild
chemical shift and radio-frequency artifacts. There is moderate
blurring in the body and head region, therefore outputting a
“Medium” label for the “Motion” class. Image D has a thin black
outline, indicating a chemical shift artifact which was labeled as
“Medium.” Additionally, there are several small streaks at the
top of the head region, which was labeled as “Medium” for the
“Radio-frequency” class. Image E is degraded by all 3 artifact
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FIGURE 8 | Example algorithm outputs of overall artifact severity for test

images where CS represents chemical shift artifacts, and RF represents

radio-frequency artifacts. In (A) medium motion, and severe CS and RF were

detected. (B) shows severe artifacts for all 3 artifact types. (C) depicts medium

motion, and mild CS and RF artifacts. In (D) mild motion, and medium CS and

RF artifacts were detected. In (E) medium severity was detected for all artifact

types. In (F) no artifacts were detected.

types, but less markedly than Image B leading to a “Medium”
severity label for all 3 artifacts by the network. In Image E, the
network detected no artifacts.

DISCUSSION

We introduced and evaluated a novel CNN algorithm that can
automatically detect and grade the severity of artifacts in whole-
body fetal MRI scans. The algorithm is a combination of 2
identical frameworks where the first is used for classification

(detection of artifacts), and the second is used for regression
(output severity of artifact). For the artifact classification CNN,
each class was treated independently of the others since the
task was multi-labeled. A confusion matrix for each class was
constructed and the following metrics were calculated: accuracy,
precision, recall, and F1 score. All metrics for each class were
relatively close in value except for the “Normal” class. This
class had significantly lower values for precision, recall, and F1
score. The main reason for this was the lack of available scans
containing no artifacts at all. As a result, the “Normal” class
had fewer samples, leading to a slight imbalance even though
a minority class up-sampling technique was implemented.
However, the other classes achieved good results in all metrics as
they were able to attain values between the high-80s to mid-90s.

When averaging across the classes, RISE-Net obtained a total
accuracy of 90.3% and an F1 score of 90.4%. In terms of accuracy,
RISE-Net outperformed other competitive networks, including
VGG-16, Res-Net 50, and Inception by 5.53% (p= 2.60× 10−6),
1.29% (p = 0.031), and 8.04% (p = 2.19 × 10−7), respectively.
For the F1 score, it also surpassed the same networks by 5.17%
(p = 4.10 × 10−7), 2.93% (p = 1.50 × 10−4), and 12.02%
(p = 8.92 × 10−10), respectively. These results demonstrate
that incorporating skip connections, inception layers, and
SE blocks can greatly improve performance in classification
networks. Our results from the accuracy comparison are in
line with those made by Rodrigues et al. who compared
classification CNN architectures for immunofluorescence images
(Rodrigues et al., 2020). However, the authors reported that
the accuracy of ResNet-50 surpassed that of Inception, followed
by VGG-16 when the same architectures were tested on the
ImageNet validation set (He et al., 2015). The different findings
suggest a performance dependence on the dataset used. For
the comparison with other multi-model networks, RISE-Net
surpassed ResNet-Inception, SE-ResNet, and SE-Inception, by
1.42% (p = 0.016), 1.13% (p = 0.043), and 7.32% (p = 2.04 ×

10−6), respectively, in terms of accuracy. For F1 score, RISE-
Net exceeded the same networks by 3.16% (p = 6.59 × 10−5),
2.88% (p = 4.69 × 10−4), and 11.49% (p = 7.62 × 10−9),
respectively. Our findings agree with other works such as in Hu
et al. (2019) where they performed experiments on ImageNet,
and noted from highest ranking performance to lowest followed:
ResNet-Inception, SE-ResNet, and then SE-Inception. In our
case, SE-ResNet outperformed ResNet-Inception, but both of our
results indicated that they had similar performances.

An ablation study was also carried out where main
architecture components were taken out or replaced. In the first
experiment, all skip connections were removed, which led to
a decrease of 1.29% (p = 0.041) and 2.39% (p= 1.08× 10−4)
in accuracy and F1 score, respectively. This was expected as
incorporating skip connections allowed for a deeper network
to be constructed without encountering the vanishing gradient
problem. While running training experiments, this held true
where networks lacking skip connections stopped learning
at ∼50 epochs, where other experiments plateaued closer to
100 epochs. This was an indication that the accumulation of
gradients was small and close to zero, which led to weights not
being updated as training went on. Furthermore, other papers
completed experiments that explored the benefits of using skip
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connections. Namely, Alaraimi et al. found that adding skip
connections to standard models (e.g., AlexNet, VGG-16, and
GoogLeNet) increased accuracy when trying to classify brain
tumors in MRIs (Alaraimi et al., 2021).

The second experiment was performed with the omission
of SE blocks. This change led to a decrease in accuracy of
6.83% (p = 4.38 × 10−5) and a decrease in F1 score of
5.98% (p = 8.20 × 10−7). SE blocks therefore had the greatest
impact on the network. This is logical since SE blocks are used
to perform feature recalibration, where a greater emphasis is
placed on important features. This suggests that the network
learned to isolate feature maps that directly correlated to artifacts
which in turn increased accuracy. Additionally, the omission of
the SE component created an Inception-ResNet hybrid model
which other researchers have also performed experiments on.
Specifically, Hu et al. found that there was a decrease in error of
0.42% when adding SE blocks to the original Inception-ResNet-
v2 and testing on the ImageNet validation set (Hu et al., 2019).

The last experiment consisted of replacing the inception layer
with a single 3 × 3 convolution filter. This was done to follow
a more standard CNN architecture. The accuracy subsequently
dropped by 0.96% (p = 0.041) and the F1 score was reduced by
1.07% (p = 0.039). The results indicated that there was minimal
performance decrease when exchanging the components. When
other researchers performed similar experiments, comparable
results were reported. Taking out the inception layer essentially
created a ResNet based model with SE blocks added. Several
studies have reported that adding SE blocks to the base ResNet
increased performance (Xu and Zhang, 2020; He and Jiang,
2021). When tested on the ImageNet validation set, there was
also a decrease in error by 0.86% which is in agreement with our
results (Rodrigues et al., 2020).

Overall, all components of the proposed RISE-Net seem to be
necessary as removal/replacement of each one of them resulted
in worsening of network performance. The most significant
component of RISE-Net is its SE blocks as the performance
of the network drastically decreased when it was removed.
Furthermore, the inception layer had the least impact as
minimal losses occurred when it was replaced with a 3 × 3
convolution kernel.

Fu et al. created a similar architecture where they adopted
an Inception-ResNet-SE design. Their goal was to classify lung
nodules on CT images (Fu, 2019). They were able to yield a good
accuracy of 89.51% which is comparable to our results. However,
their classification method was binary where they classified an
image as either “benign” or “malignant.” In comparison, our
algorithm utilized a multi-label approach. Our algorithm can
be used to alert the operator whether an MR imaging sequence
is degraded by artifacts while at the same time specifying the
artifact type and severity allowing them to make an informative
and objective decision about the acquired sequence. Similarly,
Gagoski et al. proposed a CNN based method to classify fetal
motion artifacts in HASTE sequences (Gagoski et al., 2022). In
comparison to our motion class accuracy of 91.56%, they were
able to achieve an accuracy of 85.2%. Their approach also solely
focused on one type of artifact in the head region, while ours
can detect multiple artifacts in varying anatomical locations.

However, their pipeline incorporated a motion correction feature
where images that were heavily degraded were automatically
reacquired. Our future goals would include extending the scope
of the algorithm to correct any detected artifact types to further
automate and improve fetal MRI acquisition and interpretation.

CONCLUSION

We present a novel fetal MR image quality assurance algorithm
called RISE-Net which incorporates 2 CNNs; the first being
used for artifact detection, and the second for classification
of artifact type and severity. Combining the outputs from
both CNNs allowed for a total artifact severity score which
effectively quantifies the severity level of each artifact detected
on a fetal MRI. The main mechanism for the networks was
the combination of skip connections, inception layers, and
SE blocks. The algorithm showed promising results as the
classification network achieved an accuracy of 90.34% and
an F1 score of 90.39%. The regression network across all
classes had an MSE of 0.083. The algorithm has the potential
to serve as a quality control tool to allow radiologists to
automatically and objectively determine if a fetal MR imaging
sequence is degraded by artifacts and needs to be repeated. The
next steps for this project would be to incorporate it into a
clinical setting and allow its impact on the clinical workflow to
be studied.
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