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Human mobility modeling is a complex yet essential subject of study related to modeling

important spatiotemporal events, including traffic, disease spreading, and customized

directions and recommendations. While spatiotemporal data can be collected easily via

smartphones, current state-of-the-art deep learning methods require vast amounts of

such privacy-sensitive data to generate useful models. This work investigates the creation

of spatiotemporal models using a Federated Learning (FL) approach—amachine learning

technique that avoids sharing personal data with centralized servers. More specifically,

we examine three centralized models for next-place prediction: a simple Gated Recurrent

Unit (GRU) model, as well as two state-of-the-art centralized approaches, Flashback

and DeepMove. Flashback is a Recurrent Neural Network (RNN) that utilizes historical

hidden states with similar context as the current spatiotemporal context to improve

performance. DeepMove is an attentional RNN that aims to capture human mobility’s

regularity while coping with data sparsity. We then implemented models based on FL for

the two best-performing centralizedmodels.We compared the performance of all models

using two large public datasets: Foursquare (9,450 million check-ins, February 2009 to

October 2010) andGowalla (3,300million check-ins, April 2012 to January 2014). We first

replicated the performance of both Flashback and DeepMove, as reported in the original

studies, and compared them to the simple GRU model. Flashback and GRU proved to

be the best performing centralized models, so we further explored both in FL scenarios,

including several parameters such as the number of clients, rounds, and epochs. Our

results indicated that the training process of the federated models was less stable, i.e.,

the FL versions of both Flashback and GRU tended to have higher variability in the loss

curves. The higher variability led to a slower convergence and thus a poorer performance

when compared to the corresponding centralized models. Model performance was also

highly influenced by the number of federated clients and the sparsity of the evaluation

dataset. We additionally provide insights into the technical challenges of applying FL to

state-of-the-art deep learning methods for human mobility.
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INTRODUCTION

The study of humanmobility patterns is a complex yet important
subject. Human mobility can reveal many human behavioral
characteristics and predict important spatiotemporal events,
such as traffic congestions, the spreading of diseases, or public
transportation demands. However, human mobility modeling
is far from being an easy task. Feng et al. (2018) classifies the
unique considerations for mobility modeling systems into three
different groups:

• Complex time-dependent sequential transitions. Given the
many unknown factors that influence a mobility pattern
(e.g., available means of transportation, job priorities,
family-imposed restrictions), human trajectories are often
approximated using random-walk or diffusion models
(Gonzalez et al., 2008). Holidays and weekends see even
more irregular mobility traces as the usual transition between
workplace and home disappears.

• Multi-level periodicity of human mobility. Mobility periodicity
is often complex and multi-level, merging daily, weekly and
yearly activities with other personal periodic activities. While
typical mobility models can describe transitional regularities
well, more complex multi-level periodicity is still hard
to capture.

• Heterogeneity and sparsity in trajectory data. Much of today’s
spatiotemporal information only gets recorded when the user
decides to share it through a particular application (e.g., a
social media platform like Foursquare, Twitter, or Facebook).
This low sampling rate makes it harder to train individual
mobilitymodels. At the same time, the heterogeneousmobility
habits of different users make it hard to train general models.

Because of the constantly increasing amount of available data,
the improvements in computational capacity, and the predictive
power that machine learning (ML) models provide, ML-based
approaches have become an essential tool for human mobility
modeling. Traditional ML approaches such as probability
models, pattern-based models, autoregressive models, and more
advanced deep learning models have been successfully applied
to problems like traffic prediction, personalized Next-Point-of-
Interest (POI) prediction, and crowd flow prediction. However,
the centralized nature of these ML approaches quickly raises
privacy concerns, as user data from multiple devices is shared
with a server to train a general (joint) model. Alternatively, one
can build a personal model directly on a user’s device, based only
on this user’s data, without needing centralized servers. Personal
models improve privacy, yet this typically comes at the expense
of predictive performance (Feng et al., 2020).

CONTRIBUTIONS

We base our work on two centralized state-of-the-art end-to-end
deep learning models for next-place prediction:

• Flashback (Yang et al., 2020) is a Recurrent Neural Network
(RNN) model that uses a spatiotemporal weight to look
for similar trajectories for the next POI prediction problem.

Flashback explicitly uses spatiotemporal context to search
past hidden states with high predictive power (Yang et al.,
2020). In this way, the model does “flashbacks” on the
RNN’s hidden states to determine the relevance of the current
input according to similar historical contexts. Flashback
outperformed related RNNs by raising the obtained accuracy
from 15.9 to 27.6% in the next-place prediction task.

• DeepMove (Feng et al., 2018) is an attentional RNN specialized
for sparse data that spans extended periods (e.g., close to a
year in the Flashback dataset). DeepMove uses an attention
mechanism to extract mobility patterns from historical
trajectories, while Gated Recurrent Units (GRUs) handle
current trajectories (Luca et al., 2020). The authors report
that DeepMove outperforms related state-of-the-art models by
more than 10% in the next-place prediction task.

We first replicate the experimental results achieved in
the original Flashback and DeepMove studies. We then
explore the feasibility of privacy-aware next-place prediction by
implementing predictive models using Federated Learning (FL).
This work presents the following six contributions:

1. Implementation of a baseline model for human mobility
modeling: GRU-Spatial. This model represents a baseline
RNN architecture against which we compare the
advanced models.

2. A centralized implementation of two state-of-the-art deep
learning architectures, Flashback and DeepMove

3. A replication of the original Flashback and DeepMove
results and their comparison to GRU-Spatial in a centralized
learning environment

4. Novel FL implementations of the two best performing deep
learning models: GRU-Spatial and Flashback

5. A comparison of GRU-Spatial and Flashback in a centralized
and federated context using two large public datasets,
Foursquare and Gowalla

6. First insights into open challenges for applying FL on deep
learning approaches for human mobility modeling.

Paper Structure
The rest of this paper is structured as follows: the following
section presents related work on human mobility modeling,
including Markov models, feature-based ML models, and end-
to-end deep learning models. We then describe the two
experimental datasets used in this study, followed by a technical
description of the methods used to develop the predictive models
(GRU architecture, DeepMove, Flashback, and FL). Next, we
present the experimental setup and the experimental results. We
close with a discussion section and conclusions that summarize
our key insights.

RELATED WORK

Markov Models for Mobility Modeling
Mobility Markov models compute a state transition matrix that
models POIs as the states and every transition among them.
These transitions are collected from a user during a period
of time and are the input to the model. After forming the
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state transition matrix, the predicted next POI can be identified
as the most likely state according to the calculated transition
probabilities (Kulkarni et al., 2016). Ashbrook and Starner (2002,
2003) used a first-order Markov model to predict user-specific
future movements. Song et al. (2004) showed that a second-order
Markov model might be better than first-order predictors. Imai
et al. (2018) proposed an improvement to the Markov-based
approaches, where the set of possible places to be visited narrows
down as the trip progresses.

Feature-Based Models for Mobility
Modeling
Baumann et al. (2013) analyzed a variety of spatial features (e.g.,
current location and previous location) and temporal features
(e.g., day of the week and weekday/weekend) as possible next-
place predictors using data of 37 users collected over 1.5 years.
Jindal et al. (2017) used a multi-layer perceptron to estimate
the distance and the duration of taxi trips. Bhyri et al. (2015)
proposed a multi-level approach by predicting the semantics of
a place and then the specific place to be visited. The feature sets
used in these studies include current location, last call, the hour
of the day, day of the week, and used smartphone applications.
Similarly, Prabhala and La Porta (2015) used start minute, end
minute, normalized start time, and other related features as
input to a Support Vector Machine classifier. Etter et al. (2012)
compared a variety of methods, including a majority classifier
(35% accuracy), first-order Markov model (44% accuracy),
deep belief network (60.7% accuracy), neural network (60.83%
accuracy), and gradient boosting trees (57.63% accuracy).

End-to-End Deep Learning Models for
Mobility Modeling
Themost recent and advanced next-place predictors are based on
end-to-end deep learning methods. ST-RNN (Spatial-Temporal
Recurrent Neural Networks), DeepMove (Feng et al., 2018),
RNN+SAtl (Zeng et al., 2019), and Flashback (Yang et al.,
2020) are all based on RNNs or their variations (e.g., LSTMs
or GRUs). Our work is based on DeepMove and Flashback—we
will explain these architectures in more detail in the Methods
section below. Nevertheless, all these methods use personal
data to train centralized models, which carries significant
privacy implications.

Federated Learning
FL allows devices to learn a shared model collaboratively
while keeping all the training data on-device (Google, 2017).
An example application that benefits from FL is Gboard—
Google’s onscreen keyboard application on Android phones.
Gboard uses FL to improve its next-word suggestion model
by merging local prediction with a global model shared with
other participating Android phones using a differential privacy
method. Each involved Android device contains a light-weight
version of TensorFlow (Abadi et al., 2016) and uses an intelligent
scheduler to make sure that the phone only trains a model when
idle, plugged in, and is connected to WiFi (to avoid cellular
data charges).

FL has been used in a variety of domains. Tian et al.
(2022) used FL in natural language processing for training

a federated version of a large-scale language model (BERT).
Their approach enables pre-training large-scale models without
having big data at one centralized server. Brisimi et al. (2018)
applied FL on electronic health records to develop predictive
models for heart-related hospitalizations. Ek et al. (2021) and
Sozinov et al. (2018) used data from wearable sensors (e.g.,
smartphones and smartwatches) to develop activity recognition
models. Dayan et al. (2021) used FL for predicting clinical
outcomes in patients with COVID-19. They used data from
20 medical institutions to train an FL model that predicts
the future oxygen requirements of symptomatic patients with
COVID-19. The model used structured data from electronic
health records and chest X-ray data. Similarly, Dou et al.
(2021) applied FL on data from 132 patients from seven
multinational medical centers from Hong Kong, Mainland
China, and Germany to develop models for detecting COVID-
19 lung abnormalities in Computerized Tomography (CT) scans.
Rey et al. (2022) developed FL framework for malware detection
in IoT devices. The framework enables the training and testing
of both supervised and unsupervised models. Similarly, Liu
et al. (2020) developed attention-based DL models trained via
federated learning for anomaly detection in industrial IoT data.
The authors proposed a gradient compression mechanism based
on top-k selection to improve communication efficiency. Jiang
et al. (2020) presented an overview of FL for smart cities,
including insights on open issues such as energy consumption,
adversarial attacks, and data distribution (unbalanced quantity,
features, and labels).

The growing applicability of FL has resulted in several
tools and frameworks becoming available. These include
TensorFlow Federated (Google, 2017), Flower (Beutel et al.,
2020), and Leaf (Caldas et al., 2018). The usage of FL
in many domains shows that it is a promising technique
for privacy-aware ML. Nevertheless, FL has many open
challenges to be addressed, including non-iid data, distributed
and unbalanced data, unreliable connectivity, communication
overhead, heterogeneous hardware, poor device performance,
poisoning attacks, server-side attacks, federated optimization
algorithms, federated model selection, and federated debugging
(Kairouz et al., 2021; Yu et al., 2022).

Federated Learning for Mobility Modeling
Feng et al. (2020) proposed PMF, a “privacy-preserving mobility
prediction framework” that uses FL to train general mobility
models in a privacy-aware manner. In PMF, every participating
device trains locally a representation of the global (centralized)
model by using only the locally available dataset at each device.
The produced weights are then individually encrypted and
uploaded to the server for aggregation. The system then generates
a newmodel representation and downloads it to the participating
devices before the process repeats until convergence. The PMF
methodology aims to avoid collecting private data by sharing only
the resulting gradients of each personal model, which are harder
to decode in case of an attack.

While PMF demonstrates the feasibility of using FL for
human mobility modeling, it is unclear whether specialized
federated architectures are needed or if any deep learning
architecture can be used. For that reason, we investigate whether
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we can easily integrate existing centralized state-of-the-art
deep learning architectures with FL for privacy-aware human
mobility modeling.

As PMF was not publicly available, we could not perform
a direct experimental comparison with this architecture.
Nevertheless, the result reported on the Foursquare dataset
in the PMF study (Top-1 accuracy of 21%) is similar to the
Foursquare results in our work (Top-1 accuracies of 23–26%
achieved by the centralized models). Because of the variations
in the pre-processing steps and train/test dataset splits, these
results are not directly comparable between the two studies (we
followed the experimental setup from Flashback). Nevertheless,
they converge on a similar best performance reported in
the literature.

DATASETS AND METHODS

Datasets
Location-Based Social Networks (LBSNs) have become an
important tool to gather valuable data for understanding social
interactions and trends in social behaviors. In a typical LBSN,
users voluntarily “check-in” at specific places (e.g., restaurants),
thus contributing a spatiotemporal data point to their mobility
record. Many pioneering LBSN platforms, such as Gowalla and
Brightkite, are not active anymore, yet they live on in their
publicly released datasets. Today’s LBSN, such as Instagram or
Facebook, closely guard their mobility data. A notable exception
is Foursquare, which is still active and has released several
datasets in the past. We use data from Gowalla and Foursquare
in this work and will describe both datasets in the following
sections. We obtained both datasets via the published Flashback
data (Yang et al., 2020).

Gowalla
Gowalla was an LBSN that started in 2007 and remained active
until 2012. Gowalla users could voluntarily check-in at places
(called “spots”) through a mobile application or a web page. The
Gowalla dataset consists of more than six million check-ins of
pseudonymized users from February 2009 to October 2010.

Foursquare
Foursquare City Guide, also known just as Foursquare, is
a local search-and-discovery mobile application developed by
Foursquare Labs. This LBSN allows users to search and discover
new places of interest according to their location, check-ins, and
browser history. The Foursquare dataset contains nine and a half
million check-ins from pseudonymized platform users between
April 2012 and January 2014.

Table 1 shows a comparison between the Gowalla and
Foursquare datasets. The Foursquare dataset has more check-
ins—suggesting that Foursquare users were more active, while
Gowalla has more users and more Points Of Interest (POIs).
Given that Gowalla has more users but fewer check-ins (i.e., the
Gowalla dataset is sparser) it should be harder to model.

TABLE 1 | Gowalla and foursquare datasets comparison.

Gowalla Foursquare

#Users 52,979 46,065

#POIs 121,851 69,005

#Check-ins 3,300,986 9,450,342

Collection period Feb/2009–Oct/2010 Apr/2012–Jan/2014

Avg time between check-ins 51.28 h 58.59 h

Based on Yang et al. (2020).

Data Pre-processing
Following the steps used in the Flashback study (Yang et al.,
2020), we pre-processed both datasets in the same way and under
the same criteria so that the experimental results achieved on the
two datasets are comparable.

- Data cleaning. Users with incomplete data fields were
removed. Occurrences of this were limited, since the nature
of the data does not usually allow registration of incomplete
data. That is, since in an LBSN, each data point is created by
a specific user account at a particular place using geolocation
methods, it is rare when the dataset does not contain a location
tag together with both a timestamp and a user tag.

- Data transformation. The data of the original datasets
required just a few simple transformations, for example,
replacing both the user’s and POI’s IDs with integers. This
is because POIs and users initially receive large numbers as
IDs, so renaming them with identifications that started with
0 helps with both debugging and the classification output of
the models. An important transformation to the original data
was regarding the given timestamps. Temporal representation
can be presented to the model using a simple linear mapping
of values from 0 to 1 (normalization), but this will omit
the cyclical nature of time. This simple mapping represents
the same hour 0 and 24 as two different values, 0 and 1,
respectively. This is a problem since the difference between
the hours 23:59 and the hour 00:00 seems to be 23 h instead of
only 1min. To solve the problem and enrich the model with
a notion of cyclical time, the mapping of the temporal data
was slightly changed. The mapping of the time features was
mapped using the following equation (Equation 1):

y1 = 0.5 ∗sin(
2πh

24
) + 0.5 (1)

With the above equation, where h is the hour of the day, and y1
is the resulting mapping value of h, the cyclical nature of time is
preserved. All models presented in this work depending directly
on a temporal embedding, use this scheme to represent time.
This is, of course, a simplification of the cyclical representation
since the same value represents the hours 0:00, 12:00, and 24:00.
This simplification is valid since, in the sparse datasets used for
this work, a check-in is hardly present exactly at those hours.
Hence, the model is expected to distinguish between check-ins
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performed in the morning (with values above 0.5) and check-
ins done at noon (presenting values below 0.5). However, an
additional modification has to be done to consider the hours 0:00
and 24:00 as the same but still different from 12:00 (noon). For
this, an additional cosine function can be used to encode the time
of the day. Using the following equation (Equation 2):

y2 = cos(
2πh

24
) (2)

Using sine and cosine encoding (y1, y2), the model can
distinguish between noon and night easily.

- Data reduction: Users with <100 check-ins were removed
from the datasets since a small number of check-ins can result
in overfitting of one user’s preferences, which can bias the final
general model.

- Data segmentation: The pre-processed data was then
segmented into sequences of 20 consecutive POIs. All models
receive one sequence at a time and predict the next POIs
visited by the user. The predictions were performed one at a
time with no padding.

Methods
This subsection presents the baseline model (GRU-Spatial) and
two existing state-of-the-art models: Flashback by Yang et al.
(2020) and DeepMove by Feng et al. (2018). In the last part, we
present technical details for FL and the corresponding platform
Flower (2021), which was used to develop the FL models.

The simplest architecture is the GRU-spatial architecture,
which combines vanilla GRU architecture with two embedding
layers. One embedding layer learns a dense representation of
the user IDs, and the other one learns a dense representation
of the POI IDs. The output of the two embedding layers is
then fed to the GRU layers. The DeepMove architecture contains
all the layers that the GRU-Spatial has, with an addition of
an attention module. The attention module should enable the
model to select relevant historical trajectories from the training
data based on a presented input. The Flashback architecture
is also based on RNNs and uses user embeddings. Unlike
the other two architectures, Flashback uses specially designed
weights that enable the model to measure the predictive power
of all hidden states within the RNN network. The weights also
allow the model to consider the temporal and spatial distances
between the historical trajectories and the presented input.
All three architectures feed the output of the recurrent layers
(RNN or GRU) to a fully connected layer which then outputs
probability estimations for next-place candidates that a specific
user may visit.

Baseline Architecture (GRU-Spatial)
A Recurrent Neural Network (RNN) is an artificial neural
network specialized for sequential or time-series data. One of the
most recognizable features of RNNs is their hidden state, which
can be described as an output of state i to be converted into a
part of the input for state i + 1. Because of this characteristic,
the normal RNN considers past events alongside current ongoing
inputs. This consideration of past events is then associated with

“the memory” of the structure since the historical inputs act as a
memory that can remember past events. RNNs suffer from two
main problems: “exploding gradients” and “vanishing gradients”.
Vanishing gradients occurs when the values of the gradients are
too small that they, eventually, become insignificant to themodel,
preventing the model from further learning. On the other side,
the exploding gradient problem causes the model’s weights to
become big values, making the learning process unstable and
inaccurate. Chung et al. (2014) proposed using Gated Recurrent
Units (GRUs) to address these gradient problems. This can be
accomplished due to the gating mechanism within every GRU
cell. These gates allow themodel to learn which data in a sequence
is important to keep and which data should be disposed of
or ignored.

Our GRU-Spatial model uses GRUs with the input being
only the spatial part of the data (i.e., only the location).
Hence the temporal side of the data remains implicit to the
model in the order of the input sequences. We also tested
various spatiotemporal GRU architectures that used cyclical time
embedding as input, including early and late fusion architectures.
Still, all of them performed similarly to the GRU-Spatial model.
We decided to keep only the GRU-Spatial approach in the
experiments because it was smaller and faster to train than the
other GRU variations, yet it achieved similar performance scores.

Figure 1 depicts the GRU-Spatial architecture. It is a 2-
layered GRU architecture with a many-to-many input-to-output
mapping. The architecture includes:

1. Input data:Only the spatial data of each user is considered, as
shown in Figure 1A.

2. Embeddings: The user and the location features are
represented in a low-dimensional representation of
themselves, as shown in Figure 1B. The embedding
dimension for this model is of size 100.

3. GRU sequence feeding: The two-layered GRU uses
embedded location sequences as input. The output of
the last GRU layer is then passed to the fully connected layer,
as shown in Figure 1C.

4. Fully connected layer: This layer receives the user
embeddings and the output of the GRU to produce a
vector of estimated probabilities with the size of the number
of POIs for each given input sequence. The highest estimated
probability is then considered as the predicted next location
(Figure 1D).

DeepMove Architecture
Most of the collected spatiotemporal data obtained from LBSNs
tends to be sparse and incomplete. This is mainly because users
must voluntarily check-in with their smartphones or devices,
which most users, naturally, don’t often do.

As shown in Figure 2, DeepMove contains three layers: (1)
feature extracting and embedding; (2) recurrent model and
historical attention; and (3) a prediction layer. In the first layer,
a multi-modal RNN is used to capture the relationship between
the transitions in the data. By doing this, Feng et al. (2018) expect
to convert the sparse features (e.g., user, location, and time) into
dense representations, which are more suitable for computation
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FIGURE 1 | (A) The input of the model, only spatial data is considered, (B) embedding phase, (C) multi-layer GRU, and (D) fully connected layer and output.

and have the property of expressing better meaning of the data.
These representations are then fed into the RNN. By doing this,
DeepMove aims to distinguish every user and learn their personal
preferences while training a single model for all users

In the feature extracting and neural network phase, all
trajectories are first embedded by the multi-modal embedding
module. Then, these trajectories are partitioned into two parts:
the current trajectory and the historical trajectory, which are
processed separately in the second layer.

The recurrent layer processes the current trajectory to model
the sequential information, while the historical trajectory is
passed to the historical attention module to extract regular
mobility patterns. The recurrent layer takes the spatiotemporal
sequence embedded by the multi-modal embedding layer as
input and produces an output for each hidden state. These hidden
states are then called “the current status of the mobility”.

The historical attention module aims to capture the multi-
level periodical nature of human mobility. This task is achieved
by selecting the most related historical trajectories under the
current mobility status. This historical attention module firstly
extracts spatiotemporal features from the historical trajectories,
and then these features are selected by the current mobility status
to generate the most relevant context.

The historical attentionmodule is formed by two components:

1. An attention candidate generator that generates candidate
regularities captured from the past mobility data. For this,
Feng et al. (2018) propose two approaches:

An embedding encode module, which directly embeds
the historical records into independent latent vectors as
candidate vectors.

A sequential encode module, which consists of a recurrent
neural network. This approach takes the historical records as
input and keeps the intermediate outputs of every state as the
candidate vectors.

2. An attention selector to match the candidate vectors with
the query vector by computing the similarity between the
query vector (i.e., the current mobility status) and the candidate
vector to generate a context vector.

Finally, the prediction module (layer 3) consists of a
concatenation layer, several fully connected layers, and an output
layer with a softmax activation.

Feng et al. (2018) suggested that the sequential encode

attention module works better than the embedding encode

attention module in most cases, especially in mobile data, while
the latter is more computationally efficient. One reason for the
better performance of the sequential encode attention module
is its ability to capture sequential information along lengthy
trajectories, while the embedding encoder cannot do this.

Flashback Architecture
Flashback is another state-of-the-art RNN-based architecture
designed to model sparse user mobility traces by doing
“flashbacks” on the RNN’s hidden states. In this context,
Flashback can be interpreted as using spatiotemporal
contexts to search historical hidden states with similar
context as the current one to increase the model’s
predictive power.

To leverage the current spatiotemporal context for
searching past hidden states, instead of feeding the RNN
model with only the recurrent state (e.g., hi) to predict
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FIGURE 2 | DeepMove’s main architecture (Feng et al., 2018).

the next location (pi+1), Flashback computes the weighted
average of the hidden states hj, where j < i, with a
weight W(1Ti,j,1Di,j) as an aggregated hidden state.
The weight W(1Ti,j,1Di,j) is designed to measure the
predictive power of the hidden state hj according to its
spatiotemporal contexts. The weight can be understood
from two different perspectives: a spatial perspective and a
temporal perspective.

� Temporal perspective: The goal of the temporal
perspective is to incorporate into the aggregated
weight the periodicity of user behavior which describes
how users tend to return to the locations they
have visited before. For doing this, the havercosine
function with bounded outputs [0,1] is used
(Equation 3):

wperiod(1Ti,j) = hvc(2π1Ti,j) (3)

To affect the aggregated weight with the temporal perspective, a
decay weight e−α1Ti,j is defined, where the returned probability
exponentially decreases when 1Ti,j is increased, and hence, the
older the check-in is, the less impact this will have on the final

prediction. As a result, the temporal perspective can be modeled
by (Equation 4):

wT(1Ti,j) = wperiod1Ti,je
−α1Ti,j = hvc(2π1Ti,je

−α1Ti,j ) (4)

Where α is called the temporal decay rate and controls how
fast the weights decrease over time 1Ti,j. A value of α ≈

0.1 is recommended. The havercosine function is defined as
(Equation 5):

hvc(x) =
1+ cos(x)

2
(5)

� Spatial perspective: Similar to the temporal perspective, but in
this case, the closer a past check-in is to the current location,
the more helpful it is for next-location prediction. For this,
an exponentially decaying weight e−β1Di,j is defined, where a
value of β ≈ 100 is recommended, producing (Equation 6):

wS(1Di,j) = e−β1Di,j (6)

The combination of both spatial and temporal perspective
produce the desired aggregated weight (Equation 7):
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W(1Ti,j,1Di,j) = wT(1Ti,j)
∗wS(1Di,j)

= hvc(2π1Ti,j)
∗e−α1Ti,j ∗e−β1Di,j

(7)

As noted by Yang et al. (2020), the spatial distance is a
determinant factor defining context similarity for the next-
location prediction problem. Hence, with a large value of β the
context similarity decreases when the spatial distances increase.
On the other hand, the prediction performance slightly increases
when decreasing the temporal decay alpha. A slow temporal
decay over time allows the hidden states to contribute more to
the local prediction.

Federated Learning
FL is an approach that addresses the concerns on user privacy
when training machine learning models. Centralized models
need to get the spatiotemporal data from all users so that a general
model can be trained. FL enables individual computing nodes
(smartphones or data silos) to collaboratively learn a shared
model while keeping all the training data on the local computing
node. It is important to mention that in the FL process, while
some devices are training a model locally, others are testing
the general model. In that way, each newer version of the
improved model is available right away to the users. Differential
privacy methods can be applied with FL to further increase the
privacy guarantees.

FL requires a protocol so that distributed communication can
be as efficient as possible. Referring to Figure 3 by Bonawitz et al.
(2019), the protocol can be divided into the following steps:

1. Each device announces to the server that they are ready to run
a FL task for a given FL population. A FL task is a specific
computation problem given to a FL population. The task can
be training or evaluating a model locally and training with
specific hyperparameters, among others. A FL population is
identified by a unique ID.

2. The server selects a subset of the available devices. The
selected devices stay connected to the server for the duration
of the round.

3. The server specifies the task to run and provides them with
a FL plan containing instructions on how to execute the
task. The server then sends each participant the current
global model.

4. Each participating device performs local computations based
on the global model and its local dataset.

5. Each participating device sends its updated model back to
the server.

6. The server incorporates the received updates into the global
state, and the process repeats.

We implemented all models in this work in pyTorch, in
combination with the pyTorch-friendly FL platform Flower
(2021). Flower allows the creation of a centralized server that
dictates the number of rounds the protocol should run and
the aggregation methods to use among the other parameters.
Flower also allows the creation and management of users that
are communicating with the server, supporting both “simulated”

user processes on the server and clients deployed on real
(physical) devices. For this work, the devices were simulated as
individual processes on the same PC, instead of having physical
devices and real users.

On one side, the clients must receive the general model,
which they will update with their data. Flower’s client side is
used to set up the general model’s personalization and declare
the critical methods for communicating with the server (loading
data, training, and evaluating models). The essential methods of
client are:

� get_parameters: Returns the local model weights as a list.
� set_parameters: Updates the local model weights with global

weights received from the server.
� fit: Trains the global model using the local data, which

produces new model weights.
� evaluate: Evaluates the local model, returning to the server the

evaluation results.

On the other side, the server has the task of coordinating
the actions of every client, aggregating the client model weights
to a general model, and sending an updated general model
to each device. The aggregation strategy used in this study is
Federated averaging (FedAvg), which computes an average of the
received model weights to produce a general model, which is
then sent to the user devices to continue training for the next
communication rounds.

RESULTS

This section presents the experimental setup, including hardware
characteristics, hyperparameters used for training the centralized
and FL models, the specific train/test split of the experimental
datasets, and the evaluation metrics used to score the models. We
then present the experimental results, first those achieved by the
centralized models and then those achieved by the FL models.

Experimental Setup
Before analyzing the results, it is important to consider the
conditions and environment in which they were executed. This is
for providing a basis for the minimal requirements for replicating
the reported results:

� Hardware:

◦ Architecture: x86_64
◦ CPU: 6-core Intel i9-10900k @ 3.7 GHz
◦ GPU0: GeForce RTX 3080 (10,018 MiB)
◦ GPU1: RTX A5000 (24,256 MiB)

� Hyperparameters:

◦ Epochs: 100—centralized/10—federated
◦ Server Rounds: 0—centralized/10—federated (additional

experiments with 100 and 200 rounds)
◦ Learning rate: 0.001
◦ Minimum no. check-ins per user: 100
◦ Batch size: 128
◦ Sequence length: 20
◦ Embedding size: 10
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FIGURE 3 | Federated Learning protocol (Bonawitz et al., 2019).

� Train/test dataset split:

◦ Centralized training data: first 80% of each user’s data
◦ Centralized test data: last 20% of each user’s data
◦ Federated training data: The centralized train data was

randomly split among n simulated devices. The data from one
user can belong to only one device. We experimented with
n = 2 and n = 4 federated clients, simulating a cross-silo
FL scenario. We could not perform experiments with more
than 4 (simulated) clients due to memory limitations: despite
having 35 GB of shared GPU RAM, the training process was
causing GPU memory overflow. This was mainly due to the
FL platform used for the experiments.

◦ Federated test data: The centralized test data was split among
the n simulated devices, following the user split from the
federated training data.

� Evaluation metrics:

◦ Acc@K (Equation 8)—computed as an average of how many
times the correct location was within the top-k predicted
places (sorted by the model’s output weights). For example,
for an Acc@5 metric, the target (or actual output) is compared
against a vector of top-5 most probable locations output by
the model. If the target is an element of the top-5 vector, the
prediction is correct (or true positive). Finally, we divide the
number of true positives with the total number of predictions:

Acc@K=
True_Positives@K

Total number of predictions
(8)

◦ Mean Average Precision (MAP)—defined as (Equation 9):

MAP = mean(
True_Positives

True_Positives + False_Positives
) (9)

◦ Loss – As a loss function for training and evaluating the
models, we used cross-entropy loss (Equation 10):

L =
{

l1, . . . , lN
}T

, ln = − log
exp

(

xn,yn
)

∑C
1 exp

(

xn,c
)

(10)

where C is the number of classes (unique places in our
experiments), x is the input, y is the target, and N is equal to the
minibatch dimension (128 in our experiments).

Experimental Results
Centralized Model Results

Table 2 shows the results of the centralized models. It can be seen
that the models Flashback and GRU-Spatial performed similarly
on the Foursquare dataset. On the Gowalla dataset, Flashback
performed better than the other models. The DeepMove model
achieved inferior results than the other two models, both on
the Foursquare and Gowalla datasets. One reason for this may
be the experimental setup, i.e., our experimental setup (data
pre-processing and train/test split) was based on the Flashback
study. This may cause an experimental bias toward the Flashback
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model. To verify that our DeepMove implementation was
correct, we evaluated the DeepMove architecture using the same
pre-processing and data split from the DeepMove study. The
experimental results in these additional experiments were similar
to those reported in the DeepMove study, thus confirming that
our DeepMove implementation was correct. Since DeepMove
performed poorly in the centralized experiments, we continued
the FL experiments only with the federated implementations of
Flashback and GRU-spatial.

Federated Model Results

The initial FL experiments were performed with 10 rounds of
federated training. In each round, each device was training the
model for 10 epochs. These parameters enable a similar number
of updates for the centralized models (100 training epochs) and
the federated models (100–10 rounds × 10 epochs). The batch
size was the same for all models (128).

Federated Flashback in Table 3 presents the evaluation
results obtained by the federated Flashback model. It can
be seen that the 1-client implementation achieved similar
results are the centralized Flashback (see Flashback results in
Table 2), confirming that the federated Flashback is correctly
implemented. Furthermore, it can be seen that the greater
number of clients, the lower the evaluation scores of the model.

Federated GRU-Spatial in Table 3 presents the evaluation
results obtained by the federated GRU-spatial model. It can be
seen that the 1-client implementation achieved similar results
are the centralized GRU-Spatial (see GRU-Spatial results in
Table 2), confirming that the federated GRU-Spatial is correctly
implemented. Additionally, the same decrease in the evaluation
results can be noticed as with the federated Flashback, i.e., the
evaluation scores decrease as the number of clients increases.
These results indicate that given the same number of model
updates, i.e., 100 epochs for the centralizedmodels and 10 rounds
with 10 epochs for the FL models, the centralized models achieve
better results. To analyze the training process in more detail,
we also present the training learning curves of the models,
i.e., the loss scores at each training epoch calculated on the
training data.

Centralized GRU-Spatial
Figure 4 presents the loss curves for both datasets (Foursquare
and Gowalla). As a general observation, the GRU-Spatial model
converged faster when training with the Foursquare data. When
training on the Gowalla dataset, themodel requires more training
epochs to converge. One reason for this may be the sparsity of
the Gowalla dataset, i.e., Gowalla is more sparse than Foursquare
(see the average number of check-ins per user in Table 1). This
sparsity also explains why all the models performed worse on the
Gowalla dataset (results in Tables 2, 3).

Centralized Flashback
Figure 5 presents the training loss curves for both datasets.
Compared to the learning curves of GRU-Spatial (in Figure 4),
it can be seen that the centralized Flashback converged faster for
the two datasets, and the overall learning process is more stable.

This is probably because the Flashback models are more complex
with more training parameters that can fit the training data faster
than a less complex model (e.g., the GRU-Spatial model).

Federated Learning GRU-Spatial
Figure 6 presents the training loss curve for this model’s
implementation with 1, 2, and 4 clients. It can be seen that the
destabilization of the learning process increases each time a new
client is added. This is by the accuracy reported in Table 3 for this
model, which confirms that the model faces more difficulties the
more clients are added to the federated training process.

Federated Learning Flashback
Figure 7 corresponds to the training loss of this federated model.
Overall, the same behavior as the behavior of the GRU-Spatial
model is observed, i.e., the learning curve converges slower in the
scenarios with more federated clients.

Another observation from the learning curves of the federated
models (Figures 6, 7), is that these models did not converge, at
least not to the convergence level that the centralized models
did. This opened the question of whether the federated models
require more training rounds to finalize their training. We
performed additional experiments on the Foursquare dataset
with 4 federated clients to answer this question. The models
were given 200 communication rounds, instead of the 10 rounds
used in the previous experiment. The number of local epochs
was kept to 10 in these additional experiments. The training loss
curves are presented in Figure 8. From the figures, it can be seen
that on average, the training loss continuously decreases. Thus,
both federatedmodels benefit from longer training periods (more
communication rounds in this case). Unfortunately, in all the
cases, the training process is still quite unstable, which can be seen
from the variability in the loss curves. Amodel with a more stable
training process would also have a smoother training loss curve,
similar to the learning curves of the centralized models presented
in Figures 4, 5.

Additionally, Table 4 presents the test accuracies of the
federated models trained for 100 and 200 rounds. It can be
seen that the performance obtained after 100 and 200 rounds
are very similar between them, yet, both models improved
compared to the same federated models that were trained for
only 10 rounds. In any case, the performance of the FL models
is still lower compared to the performance of the corresponding
centralized models.

DISCUSSION

Complexity Analysis
Table 5 presents the model sizes (through the number of
trainable parameters for each model), the time required to
perform one epoch over the training data, and the inference
time, i.e., the time needed for each model to provide an
output for a given input instance. Note that the FL models
are not mentioned since their size is presumed to be the
same as their centralized counterparts. The table shows that
the DeepMove model is the largest, and the GRU-spatial is
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TABLE 2 | Centralized results.

Centralized models Foursquare Gowalla

acc@1 acc@5 acc@10 MAP acc@1 acc@5 acc@10 MAP

GRU-spatial 23.5% 57.9% 69.4% 0.388 5.6% 15.0% 20.3% 0.105

Flashback 26.3% 55.4% 63.0% 0.394 11.6% 27.8% 35.0% 0.194

DeepMove 1.3% 2.9% 3.7% 0.002 1.8% 4.0% 5.2% 0.004

TABLE 3 | Federated results (10 rounds−10 epochs).

Federated models Foursquare Gowalla

acc@1 acc@5 acc@10 MAP acc@1 acc@5 acc@10 MAP

1 client Flashback 22.3% 50.2% 58.4% 0.350 11.7% 28.1% 35.1% 0.195

2 clients Flashback 5.6% 14.4% 19.5% 0.103 5.0% 13.1% 17.9% 0.094

4 clients Flashback 3.4% 9.0% 12.8% 0.066 1.6% 4.4% 6.0% 0.034

1 client GRU-Spatial 25.0% 58.3% 68.9% 0.399 7.1% 17.9% 23.8% 0.127

2 clients GRU-Spatial 13.1% 30.1% 37.7% 0.213 2.3% 6.1% 8.5% 0.045

4 clients GRU-Spatial 9.1% 20.6% 26.2% 0.148 1.5% 3.8% 5.2% 0.028

FIGURE 4 | Training loss of the centralized GRU-spatial model.

FIGURE 5 | Training loss of the centralized flashback model.

the smallest. This is reflected by the number of trainable
parameters of each model and the training time per epoch.
The size of a model is an essential factor, especially for

models running on smartphones. The positive effect of having
a high count of trainable parameters is that the model will
learn more complex regularities. Still, on the other hand,
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FIGURE 6 | Training loss for federated GRU-spatial model with 1, 2, and 4 clients.

FIGURE 7 | Training loss for federated flashback model with 1, 2, and 4 clients.

FIGURE 8 | Training loss for FL-flashback and FL-GRU with 4 clients and 200 training rounds.

such a model is more prone to overfitting than a less
complex model.

Additionally, in practice, more trainable parameters also
require more computational resources, which does have an
essential impact in federated applications where the trainable
models must be as small as possible since it is expected that
each device runs the model without affecting the end-users
regular phone experience. In federated scenarios where models

are retrained daily—which is different from centralized scenarios
where models are trained only once in most cases—the training
time is a parameter that must be considered seriously. Once
trained, all models have a similar inference time.

Given that the GRU-Spatial model is 5-times smaller than the
Flashbackmodel, but performed similarly to the Flashbackmodel
on the Foursquare dataset, both in centralized and in federated
scenarios, and had a slight performance decrease on the Gowalla
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TABLE 4 | Accuracy for FL-GRU and FL-flashback with foursquare (10 epochs−100 and 200 rounds).

Model FL- GRU-Spatial FL-Flashback

acc@1 acc@5 acc@10 MAP acc@1 acc@5 acc@10 MAP

4 clients (200 rounds) 11.33% 26.12% 33.01% 0.185 3.95% 10.52% 14.68% 0.075

4 clients (100 rounds) 10.99% 25.47% 32.33% 0.180 3.71% 9.94 % 13.97% 0.072

TABLE 5 | Model size, training time, and inference time for the three centralized

models.

Models Trainable Time Inference

parameters per epoch time

DeepMove 109,198,710 47,371 s 0.039 s

Flashback 3,395,154 313 s 0.067 s

GRU-spatial 789,630 93 s 0.051 s

dataset compared to the Flashback model, an important decision
for real-life implementation of these models could be whether
to sacrifice a bit of performance to gain computation resources,
i.e., to decrease the computational complexity and free-up some
device memory.

Data Sparsity
An overall observation for both FL and centralized approaches is
that the models perform better with the Foursquare dataset. This
can be easily explained, given that Foursquare has almost three
times as many check-ins as Gowalla (see Table 1). Although the
Gowalla dataset has significantly more users and POIs, the pre-
processing of the dataset (more specifically, the data reduction
process) removed all users with fewer than 100 check-ins. In
this way, Foursquare ultimately represents a richer dataset than
Gowalla, which naturally leads to better model performance.

Hardware and Software for Federated
Learning
The FL platform used in this study, Flower, in combination with
pyTorch, provides many useful tools for the advancement of deep
learning and FL. Nevertheless, we faced several hardware and
software challenges during the development of the FL pipelines.
Despite having access to a powerful PC and two decent GPUs,
we could not run experiments with more than 4 federated
clients. The limitations came from the size of the dataset and
the models’ size. A possible solution to these problems may be
dynamic loading of the training-batch data in the memory and
multiprocessing solutions that enable clients to run in parallel
and allocate GPU memory when needed. In this way, each
simulated client (or process) can be idle or active according to
the machine’s capacity and the number of clients participating in
the federated protocol. Flower does not directly offer the tools
for multiprocessing. It treats clients as independent processes,
which is suitable for prototyping FL pipelines but not optimal for
emulating several clients on one machine.

Federated Learning and IID vs. Non-IID
Data
While Google’s usage of FL on their Gboard application
is reported to reach acceptable accuracy levels, the results
presented in this work suggest a different performance for
human mobility prediction tasks. The training process of the
federated models was less stable, i.e., had higher variability
in the loss curves, which led to a slower convergence and
thus a poorer performance compared to the corresponding
centralized models. The performance of the models was also
highly influenced by the number of federated clients. While
using validation datasets and early-stopping mechanisms may
partially mitigate the problem (Goodfellow et al., 2016), other
FL studies have also reported that federated approaches tend
to underperform. One assumed reason for the underperforming
FL models is the non-Independent and Identically Distributed
(non-IID) data (Zhao et al., 2018). Having IID data on every
client would mean that each client data is statistically identical
to a uniformly drawn sample from the entire dataset (the
union of all users). Thus, if each client’s dataset was IID,
the federated model could be trained as a centralized model.
Unfortunately, this represents a problem for mobility datasets
since assuming that the local data (i.e., individual user data) is
IID is unrealistic because different people visit different POIs at
different times.

To experimentally check the impact of IID vs. non-IID
data, we performed additional experiments in IID and non-

IID scenarios. In the IID scenario, we took the first 80% of

data of the top-10 Foursquare users (ranked by the number

of check-ins), and we tested the models on the last 20% of

data from the same users. In the non-IID scenario, we took

the overall training data (first 80% of data of all Foursquare
users), and we tested on the last 20% of data of the top-10

Foursquare users. Thus, the models were evaluated using the

same test data, but they were trained using different training

sets. The mismatch of the users in the non-IID scenario

causes the distribution of the training data and the test data

to be different. Thus, the data is not identically distributed

in this scenario. We trained centralized and federated GRU-
spatial models. The results of these experiments are shown in
Table 6.

The evaluation scores (Acc@5) clearly show that both

the centralized and federated models outperformed the

corresponding non-IIDmodels in the IID scenario. Furthermore,
both the centralized and the federated model performed similarly
in the IID scenario, whereas in the non-IID scenario, the
federated model performed worse than the centralized model.
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TABLE 6 | IID vs. non-IID experimental results.

Type Train data Test data Model Acc@5

IID First 80% of data of the top-10 Foursquare users Last 20% of data of the top 10-Foursquare users Cent. GRU-Spatial FL GRU-Spatial 33% 36%

Non-IID First 80% of all Foursquare users (including the top 10) Last 20% of data of the top 10-Foursquare users Cent. GRU-Spatial FL GRU-Spatial 10% 1%

CONCLUSION

This study reproduced the experimental results of existing state-
of-the-art end-to-end DL models for next-place prediction and
compared them with novel federated implementations using two
large public datasets. The main conclusions of the study can be
grouped into several parts.

Architectures
In general, the DL architectures based on RNN networks
are suitable for modeling human mobility. However, it
is not always the case that more complex architectures
lead to better results. In our experiments, the simplest
architecture, GRU-spatial, performed similarly to the more
complex architecture, Flashback. Furthermore, the most complex
architecture DeepMove, performed poorly compared to the other
two architectures, even though it has 35x more parameters than
Flashback and 100x more parameters than GRU-Spatial.

Data Sparsity
Data sparsity is a serious problem hindering the performance
of the mobility models. The experimental results clearly
showed that, in general, all architectures (e.g., GRU-Spatial
and Flashback), in all scenarios (federated and centralized),
performed better on the experimental dataset that is less sparse
(Foursquare). It is also worth considering whether this will be a
serious problem in the near future with more and more people
using continuous sensing daily (e.g., Google Maps).

Centralized vs. Federated Learning
The experimental results indicate that going from centralized
to federated implementations is not as simple as just changing
the processing pipeline. Compared to the centralized models, the
federated models had higher variability in the loss curves, which
led to a slower convergence and thus a poorer performance.
The performance of the models was also highly influenced
by the number of federated clients and the sparsity of the
evaluation dataset. These findings were consistent across the two
experimental datasets.

IID vs. Non-IID Data
Our additional experiments on IID vs. non-IID scenarios showed
that both the centralized and federated models outperformed the
corresponding non-IIDmodels in the IID scenario. Furthermore,

both the centralized and the federated models performed
similarly in the IID scenario. In contrast, in the non-IID
scenario, the federated non-IID model performed worse than
the centralized non-IID model. This finding demonstrates that
non-IID data is challenging both for the centralized and for the
federated model. the impact of this challenge is more noticeable
for the federated models than for the centralized models.

Future Work
Future research directions include dealing with non-IID data,
federated optimization algorithms, federated DL architectures,
federated model selection, federated hyperparameter
optimization, federated debugging, and software development
platforms suitable for FL with large datasets and large models.
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