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Vossian Antonomasia (VA) is a well-known stylistic device based on attributing a certain

property to a person by relating them to another person who is famous for this property.

Although the morphological and semantic characteristics of this phenomenon have

long been the subject of linguistic research, little is known about its distribution. In this

paper, we describe end-to-end approaches for detecting and extracting VA expressions

from large news corpora in order to study VA more broadly. We present two types of

approaches: binary sentence classifiers that detect whether or not a sentence contains

a VA expression, and sequence tagging of all parts of a VA on the word level, enabling

their extraction. All models are based on neural networks and outperform previous

approaches, best results are obtained with a fine-tuned BERT model. Furthermore, we

study the impact of training data size and class imbalance by adding negative (and

possibly noisy) instances to the training data. We also evaluate the models’ performance

on out-of-corpus and real-world data and analyze the ability of the sequence tagging

model to generalize in terms of new entity types and syntactic patterns.

Keywords: metaphor, Vossian Antonomasia, neural network, BERT, sequence tagging, binary classification,

metonymy, information extraction

1. INTRODUCTION

Stylistic devices are used to add meaning, ideas or emotion to what is literal or written to make
it stand out. They are figurative and open a space for interpretation; their understanding often
requires significant contextual knowledge. The more figurative they are, the more difficult they are
for a machine to extract. In this paper, we describe different approaches using neural networks for
automatic extraction of an otherwise well-studied phenomenon: Vossian Antonomasia.

In general, antonomasia is closely related to the family of metonymy. It replaces a name of a
person by a phrase describing this person, for example, “the boy who lived” for Harry Potter since
he survived a murder attempt on his life. Vossian Antonomasia (VA), also called “metaphorical
antonomasia” (Holmqvist and Płuciennik, 2010), is a sub-phenomenon of general antonomasia.
In contrast to a general antonomasia, a typical VA expression consists of three parts, namely
target, source, and modifier. The source is a named entity, typically famous or well-known to the
reader, that embodies a set of properties or characteristics used to describe another entity, the
target. A context (modifier) is provided to help embedding the source’s characteristics in the target’s
environment. For example, when Miles Davis is described as “the Picasso of jazz”, one or multiple
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characteristics of Pablo Picasso are invoked to describe Miles
Davis. According to the article from which we took the quote,
the latter is as “cool, endlessly inspired and prolific” (Kahn, 1999)
as the former. The modifier “jazz” transfers these attributes into
the target’s context. Most of the time, however, the transferred
characteristic is not mentioned explicitly and interpretation is left
to the reader1. Unlike source and modifier, the target is not an
essential part of the phenomenon. It can be left out, unknown or
hypothetical, as can be seen in the following Example (1) (with
target, SOURCE, andmodifier emphasized):

(1) Another question is, Who will be the WALT DISNEY of
this era? (NYT 2003/02/10/1463847)

Threemore examples of VA show its diversity in syntax and usage
and will be referred to in the sequel:

(2) If Jones was the MICHAEL JORDAN of her time, scoring
at will, Cain, 33, is the MAGIC JOHNSON of hers. (NYT
1994/07/05/0697585)

(3) “I’m like DAVID fighting the GOLIATH of the beauty
industry,” she said in a recent interview. (NYT
1988/01/05/758388)

(4) As far as selling sneakers is concerned, Cleveland guard
LeBRON JAMES is the new MICHAEL JORDAN. (NYT
2006/11/19/1806049)

The task to automatically identify and understand VA is
challenging because their syntactic pattern can be ambiguous.
When we read about “the Michelangelo of the Sistine Chapel”,
it is apparent that in this case the Sistine Chapel cannot be
a modifier, but that the expression as a whole refers to a
specific period in Michelangelo’s life as an artist, while “the
Michelangelo of Manhattan” (NYT 1998/09/25/1049076)2 is
meant metaphorically, a VA expression that in this case refers
to a plastic surgeon (Michael Lerner) from New York. The
author did not explain his intentions using this VA explicitly,
but knowing Michelangelo as one of the most virtuoso artists,
it is most likely that this characteristic is meant to describe
Michael Lerner. Another example that demonstrates the difficulty
of identifying VA, is “the George W. Bush of 2016”. Without

Abbreviations: VA, Vossian Antonomasia; CLF, classification; SEQ, sequence

tagging; TRG, target; SRC, source; MOD, modifier; aVA dataset, annotated VA

dataset; eVA dataset, enriched VA dataset; SIG dataset, Signal Media sample

dataset; NYT, New York Times; {eVA, aVA}-TR, {eVA, aVA} training dataset

(e.g., eVA-TR-50); {eVA, aVA}-TE, {eVA, aVA} test dataset (e.g., eVA-TE-50);

LSTM, long short-term memory; CRF, conditional random field; BLSTM-ATT,

bidirectional LSTM model with an attention mechanism on top (classification

model); BLSTM-CRF, bidirectional LSTM model with a CRF on top (sequence

tagging model); BERT-CLF, fine-tuned BERT classification model; BERT-SEQ,

fine-tuned BERT sequence tagging model; BERT-SEQ-b, binarized fine-tuned

BERT sequence tagging model.
1The title is another example. Like Rodney Dangerfield (source), a former

comedian, VA (target) is often used in funny and provocative ways. Dangerfield’s

famous quote “I don’t get no respect” fits very well to VA as in our opinion the

phenomenon gets too little attention and respect in the field of stylistic devices

(modifier).
2To avoid a long reference list, all examples taken from theNewYork Times corpus

(Sandhaus, 2008) are cited using the pattern “NYT year/month/day/article-id”.

knowing more context, it could refer to the person George W.
Bush in the year 2016. Another possibility could be that this is a
VA expression attributing another politician, for example, Hillary
Clinton3, where the author compares Bush’s dominating primary
campaign of 2000 to Clinton’s campaign in 2016. Furthermore,
names of (even) famous persons are often used equivocal and
thus, in some cases, the person is not even meant. Consider, for
example, the phrase “the Madonna of Birth” in which “Madonna”
does not stand for the singer, but the phrase is the title of a
painting of Mary, mother of Jesus. Similarly, “a Napoleon of
crisp pastry” is not an allusion to the French emperor, but the
description of a dessert. These examples give a good impression
of how rule-based approaches can easily fail.

The syntax of VA also varies, see Examples (2) to (4), which
is one of the reasons why it is hard to detect automatically.
Combined with the need for background knowledge to
differentiate between VA and non-VA phrases, it is a non-trivial
task. Its detection can help to improve other NLP tasks, such as
fact extraction, machine translation, or entity disambiguation/co-
reference resolution (Schwab et al., 2019). It can also provide
new interesting question answering tasks or support creative
natural language generation, especially in news and blog articles
to generate fruitful content. Identification and extraction of VA
can also be a step toward the association of properties and
characteristics to entities in text.

The main contributions of this work are novel machine
learning models for automatic detection and extraction of VA
from texts. Two models are binary classifiers that outperform
state-of-the-art approaches. The other two are sequence tagging
models which detect all three parts of the phenomenon on the
word level. This task is completely new and has not been studied
before. In addition, we analyze the impact of training data and
conduct two robustness studies. One shows the performance
on out-of-corpus data and the other one shows the ability to
generalize to new types of VA. A second contribution is a fully
annotated dataset on the word level which emerged from the
dataset in Schwab et al. (2019). The dataset is explained in detail
in Section 3.2.

2. RELATED WORK

Automatic detection of VA has rarely been studied. Especially
the use of neural networks has not been explored in depth even
though they have shown remarkable results in similar tasks, for
example, metaphor detection as shown below.

A first approach to identify VA semi-automatically was
presented by Jäschke et al. (2017) for German and English
newspaper corpora. They applied POS tagging and NER at
sentence level and identified candidates using a set of complex
pre-defined patterns. Working on the New York Times corpus
(Sandhaus, 2008), their method could identify 10,744 candidates
of which less than 500 were actual true candidates as confirmed
by human annotators. This results in a precision of less than 5%.

3See https://fivethirtyeight.com/features/hillary-clinton-is-the-george-w-bush-

of-2016/.
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One reason for the low precision was the matching of common
phrases like “Rudolph Giuliani, the mayor of New York”.

A second semi-automatic approach was proposed by Fischer
and Jäschke (2019), who focused on the pattern “the ENTITY
of”. As a first step, they used regular expressions to extract
only the candidate sentences with the mentioned pattern. After
using Wikidata for distant supervision linking all candidates
to Wikidata “human” entities, they manually created a list
to exclude common false positive candidates like “the House
of” or “the Prince of”, as those names matched Wikidata
entities. Schwab et al. (2019) presented the first fully automated
approach by extending the idea of Fischer and Jäschke (2019).
They introduced three different methods. In the first approach,
they extended and automated the approach from Fischer
and Jäschke (2019) by introducing a popularity measure to
replace the manually curated blacklist. In the second approach,
they used a named entity recognition tool instead of distant
supervision to identify candidates. In the third approach, they
developed a binary classifier for candidate sentences using a bi-
directional LSTM and non-contextual word-embeddings. The
BLSTM performed best, beating the other approaches by 0.08
and 0.1 points in F1 score on the test dataset, while they did not
evaluate the network’s performance on out-of-corpus data. They
also created a partly annotated corpus including 3,023 positive
and 3,049 negative instances.

Other stylistic devices, similar to VA, have been covered
extensively, for example, metaphors. Particularly, considering
metaphor extraction as a sequence tagging task using neural
network approaches has been studied recently. While Gao et al.
(2018), Dankers et al. (2019); and Torres Rivera et al. (2020) use
contextualized word-embeddings and bi-directional LSTMs in
their model architecture, Dankers et al. (2019), Chen et al. (2020),
Gong et al. (2020), and Liu et al. (2020) make use of pre-trained
contextual language models, for instance, BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), or XLNet (Yang et al., 2019).
Metonymy resolution has also found recent attention in the NLP
community with the advent of pre-trained transformer models.
Employing BERT, Li et al. (2020) and Su et al. (2020) classified
specific words in sentences, whereas Mathews and Strube (2021)
transformed the problem into a sequence tagging task to tag each
word in a sentence.

3. DATASETS AND ANNOTATION

In the following, we present the datasets we used, our annotation
scheme and how we handle special cases like incomplete VA or
multiple VA within one sentence.

3.1. Annotation Process
The annotation process is based on the IOB tagging scheme
(Ramshaw and Marcus, 1995), which is widely used for sequence
tagging in NLP. The tags B-{TRG, SRC, MOD} stand for the
beginning of a chunk, the tags I-{TRG, SRC, MOD} for the inside
of a chunk. All other words (that do not belong to one of the VA
chunks) are tagged O. The following example shows an annotated
VA with the tags above the words:

(5)
B-TRG O O B-SRC I-SRC O B-MOD I-MOD

He was the MARTHA STEWART of his day

Next, we describe the annotation of the target (TRG) and the
modifier (MOD), as the source (SRC) has already been identified
and annotated by Schwab et al. (2019). If multiple VA appear
inside one sentence, we annotate all chunks independently.
Modifier: The modifier is essential for VA and it always appears
together with the source. As the dataset consists of specific
syntactic VA patterns, the modifier’s position is fixed. That is,
it always appears directly after the source phrase (“the/a/an
SOURCE of/for/amongmodifier”).
Target: Annotating the target’s full name inside the article is
unfeasible and not helpful for our task, since we use sentences
as input sequences for the models. Instead, we annotated the
chunk inside the sentence to which the source refers to directly
as target. This can be the full target name itself but also references
like personal pronouns (e.g., “she”, “his”), name parts (e.g., “Mr.
Obama”), or descriptions (e.g., “the young student”). Consider
Example (3) where the full target name of the VA is “Audrey
Butvay”, but the name does not appear inside the sentence.
Instead, a reference of the target name exists, namely a personal
pronoun, “I”, which we annotated as target. In contrast to the
source and modifier, the target appearance is optional, it does
not have to appear within the same sentence or it can be
missing altogether as we have explained before. After tagging,
co-reference resolution could be used to identify the full target
name. We did not focus on that, since co-reference resolution
has already been studied deeply, see, for instance, Ng and Cardie
(2002), Lee et al. (2017), or Joshi et al. (2019).

3.2. Annotated VA (aVA) Dataset
This is an extension of the dataset from Schwab et al. (2019)
which was the result of a semi-automated VA extraction method
on The New York Times Annotated Corpus (Sandhaus, 2008)
which contains around 1.8 million articles that were published
between 1987 and 2007. The dataset creation is based on a syntax-
based approach focusing on nine syntactic patterns around the
source (“the/a/an SOURCE of/for/among”, cf. Table 1 in Schwab
et al., 2019). That means, every combination of the words {the, a,
an} and {of, for, among} can appear around the source entity.

We refer to the combination of the boundary words around
the source as “source phrase” in the following. In a second step,
the approach used Wikidata for entity linking. Here, the authors
focused on entities with the property “instance of” “human”.
At the end, a blacklist was manually generated to remove false
positive candidates. Thus, all instances contain one of nine
syntactical patterns around the source and all VA sources are
linked to human entities in Wikidata. 96.3% of the instances in
the dataset contain the boundary word “of” after the source.
In 68.0% of those instances, there exists a VA expression. The
boundary word “for” was found in 3.2% of all instances of which
6.0% contained a VA expression and “among” was found only
in 0.5% of the instances where 41.0% contained a VA expression.
This shows that the pattern distribution is highly unequal and the
boundary word “of” dominates.
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TABLE 1 | The most frequent appearances for each VA chunk together with their frequency.

Target Source Modifier

463 (15.1%) He 73 (2.4%) Michael Jordan 56 (1.8%) His day

179 (5.8%) - 61 (2.0%) Rodney Dangerfield 35 (1.1%) His time

179 (5.8%) Him 40 (1.3%) Johnny Appleseed 32 (1.0%) Japan

116 (3.8%) She 38 (1.2%) Babe Ruth 21 (0.7%) The 90’s

107 (3.5%) I 33 (1.1%) Elvis 20 (0.7%) Our time

48 (1.6%) Her 27 (0.9%) Mona Lisa 17 (0.6%) China

41 (1.3%) It 25 (0.8%) Michelangelo 16 (0.5%) Baseball

28 (0.9%) You 24 (0.8%) Cinderella 16 (0.5%) His generation

13 (0.4%) Me 24 (0.8%) Madonna 16 (0.5%) Tennis

12 (0.4%) The man 23 (0.8%) Bill Gates 14 (0.5%) Her time

The “-” in the target column indicates that there exists no target chunk in the sentence.

We double-checked all labels and, as described in Section 3.1,
we annotated target and modifier for the positively labeled
instances as the source was already annotated. Two trained4

annotators annotated the dataset with an inter-annotator
agreement of 0.88 by Cohen’s kappa. Disagreements were
discussed and re-annotated by annotators and expert. During
the annotation process we found and updated incorrectly labeled
instances in the dataset. That included positive labeled instances
that did not contain any VA expression, only syntactical patterns
that looked like VA expressions. It also included falsely tagged
VA expressions that appeared not to be a VA expression. Those
instances were re-labeled and re-annotated. We also removed
duplicates that showed up because instances appeared inmultiple
articles of the New York Times and therefore were intentionally
not removed before. Hence, the numbers slightly differ from
Schwab et al. (2019): Our updated and fully annotated dataset
consists of 5,995 sentences, 3,066 of them include a VA, 2,929
do not.

Analyzing the frequency and distribution of the VA chunks
in the dataset, we can observe a large diversity by dividing
the number of distinct chunks by the number of all sentences
containing VA: Among the 3,066 sentences that contain VA,

• 58% of the target chunks, 44% of the source chunks, 71% of the
modifier chunks,

• 83% of the target-source pairs, 96% of the target-modifier
pairs, 95% of the source-modifier pairs, and

• 98% of the chunk triples,

are distinct. The modifier chunk is the most diverse chunk since
it is not limited to entities or pronouns but can include temporal
(“the 90’s”, “his era”) or local (“Europe”, “New York”, “the East”)
phrases or refer to different genres (“sports”, “music”, “politics”).
The source chunk has the least diversity. As one would expect,
some entities are mentioned more often than others, since they
stand like no other for a certain property or characteristic, for
example, Michael Jordan for success. Targets are not as diverse
as modifiers, since they often consist of pronouns. If we could
identify the names of the referred entities, the target chunk would

4Instructed by a domain expert with 10 years of experience in the research of VAs.

be even more diverse. Table 1 shows the top 10 phrases for
each chunk.

3.3. Enriched VA (eVA) Datasets
When we analyzed the origin of the aVA dataset from Schwab
et al. (2019), we discovered two biases. One bias is the limited
variation of sentence structures. This is a result of the rule-
based approach that was used to create the dataset. In particular,
the candidates were chosen by nine syntactic patterns as
explained in the previous section. Thus, all instances of the
dataset, positive and negative, match one of these patterns.
Second, the aVA dataset has an almost balanced ratio between
positive and negative instances. This ratio does not represent
the true distribution of VA in real texts. To our knowledge,
the distribution of VA has not been studied on large corpora,
but Schwab et al. (2019) found around 5 VA expressions per
100,000 sentences. As they focused on human entities and used
the mentioned source phrases, this is a lower bound. These
types of biases are common and one of the reasons why models
are overfitting and therefore perform worse on data outside
the corpus.

To generate a dataset that better reflects the real-world
distribution of VA, we have two options. Either we annotate a
very large number of random sentences, which is unfeasible, or
we use one of the phenomenon’s properties: The share of articles
that contain VA expressions is reasonably high but the share of
VA expressions per sentence is low.

In particular, we add randomly chosen sentences from the
New York Times Annotated Corpus (Sandhaus, 2008) to the
aVA training (75%) and test (25%) dataset, respectively, as
negative instances, ensuring that none of them are already part
of the aVA dataset. This method enriches the datasets in two
ways: It diversifies the sentence structures of negative instances
and creates an imbalance between the number of positive and
negative instances. As a bonus, we get a larger training dataset
and a better estimation of the model performance on new data by
evaluating not only on the aVA test dataset, but on the generated
test datasets. The sentences we add to the aVA training and test
dataset vary from 50,000 (eVA-{TR, TE}-50) to 500,000 in steps of
50,000 sentences, reducing the fraction of positive instances from
51.1% (eVA-{TR, TE}-0) to 0.9% and 0.3%, respectively. We are
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aware that these datasets can be noisy, especially when we choose
larger amounts of sentences but as all instances from the aVA
dataset are excluded and because of the sparseness, we concluded
that this is a reasonable construction of negative instances.

3.4. Signal (SIG) Dataset
The Signal 1 Million News Articles Dataset (Corney et al., 2016)
contains around one million blog and news articles, mainly
written in English and published between September 1st and
30th, 2015. As these articles are from another time period, from
different countries, and from different sources, the dataset differs
substantially from the NYT dataset. Thus, it is a suitable dataset
for a robustness study. As the whole dataset would be too large,
we extracted a random sample from the dataset. In particular, we
decompressed the gzip-compressed JSONL file and read the json
records line by line. From each record, we extracted the fields
“content” and “title” using the NLTK sentence tokenizer (Bird
et al., 2009) and took a random sample of one million sentences
out of all tokenized sentences.

4. METHODS

We first formally define the tasks we are studying and then
explain our models for both tasks. All models are based on neural
networks. For each task, we develop two models, one is trained
from scratch and the other is a fine-tuned model that is based on
a pre-trained transformer model.

4.1. Tasks
We aim at a fully automated extraction of VA from texts. More
specifically, given a sentence S of words w1w2 . . .wn, we aim
to solve:
Task 1: Binary Classification: Predict a binary label l indicating
whether S contains at least one appearance of a VA or not.
Task 2: Sequence Tagging: Predict for each word wi of S a tag
ti which indicates whether wi belongs to a target, a source, or a
modifier chunk or whether it is not a VA part at all.

Both tasks will be addressed and evaluated independently.
Still, we can transform the results of the sequence tagging task
to the binary classification task. In particular, we solve Task 1
implicitly while solving Task 2 by exploiting the definition of
VA: VA consist of a source, a modifier, and an optional target
chunk as explained in Section 1. Hence, if our sequence tagging
models predict at least one source tag and at least onemodifier tag
inside a sentence, the sentence can be labeled positive, negative
otherwise.

4.2. Binary Classification
4.2.1. Baseline
Suitable baselines for this task that do not result in low precision
and thus F1 score are rare. As seen in Schwab et al. (2019), rule-
based approaches focusing on the source phrase, for example,

• a/an/the [entity in Wikidata]
• a/an/the [entity in Wikidata] among/for/of
• a/an/the [entity by NER] among/for/of

do not work as their performance is too low. This is because
the syntactic patterns where VA sources appear in are used in
different contexts as well, see Section 1. Even choosing famous
entities only would not work. Take, for instance, the singer
Prince, who is one of the most popular singers of the twentieth
century and also popular in Wikidata according to different
metrics. Extracting all patterns “the Prince of” would result in
low precision since 537 out of 855 candidates would be sentences
including the phrase “the Prince of Wales” which is a title
given to the heir apparent of the British throne. Particularly,
we did not find any VA expression within these candidates.
Generating a baseline by labeling all instances based on the
most frequent labels of the corresponding source or source-
modifier pair does not work either, since the training dataset is
too diverse (cf. Section 3)—most sources or source-modifier pairs
only appear once in the dataset. Thus, we use the best performing
approach from Schwab et al. (2019) as a baseline which was a
neural network approach, where a bi-directional long short-term
memory network was trained for binary sentence classification.
This approach outperformed the rule-based approach in Schwab
et al. (2019) by 0.08 points in F1 score.

4.2.2. BLSTM-ATT
Long short-term memory networks (LSTM, Hochreiter and
Schmidhuber, 1997) have been used widely for sequence
classification tasks due to their ability to capture long-term
dependencies. Their limitation of only representing a word by
either its left or right context can be met by adding a second
LSTM layer that reads the sequence in reverse. Subsequently,
we can represent the word using both, its right and left context,
by concatenating them. We extend the recurrent network
architecture from Schwab et al. (2019) in two ways, similar to
Gao et al. (2018). First, we expand the word representations. As
in Schwab et al. (2019) we use GloVe embeddings (Pennington
et al., 2014) which are non-contextualized. Peters et al. (2018)
showed that contextualized word representations can improve
the performance in many NLP tasks, including metaphor
detection (Gao et al., 2018). Thus, we also use ELMo embeddings
from Peters et al. (2018) which are deep contextualized word
representations. Both embeddings are concatenated and passed
to the BLSTM layers. On top, we add an attention layer
that consists of a linear layer and softmax normalization (cf.
Figure 1A). To compute the label of the sentence, we feed the
resulting vector from the attention layer to a feedforward layer.

4.2.3. BERT-CLF
This approach uses state of the art pre-trained language
representations to classify sentences. Google’s BERT
[Bidirectional Encoder Representations from Transformers,
Devlin et al. (2019)] has outperformed previous methods on a
large number of NLP tasks, including sequence classification.
As an unsupervised general-purpose method of pre-trained
language representations, it is trained on large text corpora and
can be fine-tuned for specific down-stream tasks. BERT emerged
from similar contextualized language representations like ELMo
(Peters et al., 2018) or ULMFit (Howard and Ruder, 2018) but is
significantly stronger since it is deeply bi-directional, that is, it
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FIGURE 1 | (A) Shows the BLSTM-ATT architecture for the classification task and panel. (B) Shows the BLSTM-CRF architecture for the sequence tagging task.

combines contextual information from both sides, left and right.
We do not train the whole model but fine-tune the pre-trained
BERT model to our task by adding a single new layer which is
then trained with our labeled data.

4.3. Sequence Tagging
4.3.1. Baseline
This task has not been studied at all, so we do not have a
baseline to compare our models with. Conditional random fields
(CRF, Lafferty et al., 2001) have been shown to perform well on
sequence tagging tasks, such as part of speech tagging, shallow
parsing or named entity recognition, see (Lafferty et al., 2001;
McCallum and Li, 2003; Sha and Pereira, 2003). Hence, we train
a CRF with our annotated data and use it as baseline.

4.3.2. BLSTM-CRF
BLSTMs have shown remarkable results in sequence classification
but also in sequence tagging tasks, since they can represent long-
term dependencies as explained in Section 4.2. CRFs on the other
hand are able to model the labels jointly, not independently.
With this advantage, CRFs include dependencies across labels,
which a standalone LSTM is not able to do. Our labels have those
dependencies, for example, I-SRC can not follow B-MOD.

As shown by Huang et al. (2015) and Lample et al.
(2016), a combination of BLSTMs and CRFs have improved
many different sequence tagging tasks using the right and left
contextual information from the BLSTM and the sentence-level
tag information from the CRF. In our approach, the neural
network architecture employs a BLSTM and a CRF, following
Huang et al. (2015) and Lample et al. (2016). As in Section 4.2.2,
we use a concatenation of GloVe (Pennington et al., 2014) and
ELMo (Peters et al., 2018) embeddings to represent each word in
the sentence and pass those representations to the LSTM layers,
which compute two vectors as explained before. Subsequently,
both vectors are concatenated and then fed to the CRF as features
(cf. Figure 1B). The CRF jointly computes the tags for each word
in the sequence.

4.3.3. BERT-SEQ
As in Section 4.2, we use the pre-trained BERT language model
(BERT-base-cased) and fine-tune it on our dataset. The top layer

differs from the one in the classification task and tags every word
of an input sequence instead of labeling the sentence.

4.4. Experimental Setup
We describe the setup of the algorithms for our experiments.
Baseline: We train a linear-chain CRF using the L-BFGS
algorithm (Nocedal, 1980). We use fixed parameters, namely
c1 = 0.1 and c2 = 0.1 for l1 and l2 regularization.
BLSTM-ATT: Each word is represented by a concatenation of
300d GloVe vectors and 1024d ELMo vectors. The hidden state
of the bi-directional LSTM is set to 300 and dropout is applied
on the inputs before the LSTM layer and after the attention layer.
SGD is used to optimize the model.
BLSTM-CRF:We use the open source FLAIR framework (Akbik
et al., 2019) and a concatenation of 300dGloVe vectors and 1024d
ELMo vectors for word representations. The bi-directional LSTM
hidden state is 300.
BERT-CLF/SEQ: We use the open source HuggingFace
transformers framework (Wolf et al., 2020) and employ the
pre-trained cased BERT-Base model from Devlin et al. (2019). It
contains L = 12 transformer blocks, A = 12 attention heads, its
hidden size is dh = 768 and it has around 110M parameters. The
model uses the Adam optimizer.

The hyperparameters for all three neural models were
optimized on epoch, batch size, and learning rate on a validation
set which is suggested for BERT by Devlin et al. (2019).

5. EVALUATION AND RESULTS

Determining the recall on the whole NYT dataset is unrealistic,
since it contains more than 1.8 million articles that cannot be
annotated on a sentence level or even word level. Schwab et al.
(2019) showed that labeling a subset does not help either due
to sparseness: They labeled 105 randomly selected articles, 4,429
sentences in total, and only found one VA expression. Another
attempt to reduce the number of candidate sentences to find a
suitable subset for evaluating recall could be by making use of
the VA definition: VA consists of at least a source and a modifier.
For that reason, we excluded all sentences that did not contain a
named entity or did not contain at least two words. The result
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FIGURE 2 | An overview of the models and datasets in the different evaluation setups. On the left side, the datasets are summarized. The aVA dataset is part of the

eVA datasets which themselves emerged from the NYT dataset. The SIG dataset on the other hand is independent. On the right side, the evaluation and the models

that are evaluated on the corresponding datasets are shown. For example, all models are evaluated on the aVA dataset (top row) whereas only the BERT-SEQ model

was used for the robustness study on the NYT dataset (bottom row). The description summarizes how the evaluation has been conducted. All evaluations are

conducted independently.

was a reduction by only 25%, which did not help. Finally, we
concluded that it is unfeasible for us to determine recall on a
larger dataset without introducing bias.

Instead, we conduct three different evaluations. First, we
train and test our models on the aVA dataset using five-fold
cross validation (Section 5.1). Then, we use the eVA datasets
for training and testing to analyze the models’ performance on
datasets whose class distributions are closer to real-world data
(Section 5.2). In particular, we study the effect of imbalanced
and noisy training data. This is tested on different imbalanced
test datasets. This evaluation is an indication on how the model
performs on real-world data. Finally, we conduct two different
robustness studies. In the first study, we analyze the model’s
performance on real-world data (Section 5.3.1). The second study
analyzes the sequence tagging model and its ability to generalize
to new VA expressions in terms of syntax and type of entities
(Section 5.3.2). For both studies, we use samples of the outcome
of the model to analyze the tasks. For those tasks, we use the best
performing models from the previous evaluation. An overview
of the models and datasets in the different evaluation setups are
shown in Figure 2.

5.1. Performance on the aVA Dataset
5.1.1. Classification
Table 2 shows the results of the classification task on the
aVA dataset using five-fold cross validation. Both approaches,
BLSTM-ATT and BERT-CLF, beat the baseline in precision,
recall, and F1 score. The numbers of the baseline differ
from Schwab et al. (2019) because of the updated labels in
the aVA dataset as described in Section 3. BERT-CLF shows
an improvement in all three measures of around 0.1 points

TABLE 2 | Performance on both tasks using five-fold cross validation on aVA.

Approach Precision Recall F1

Classification

Baseline 0.876 0.880 0.878

BLSTM-ATT 0.921 0.974 0.947

BERT-CLF 0.971 0.977 0.974

BLSTM-CRF-b 0.970 0.961 0.965

BERT-SEQ-b 0.962 0.978 0.970

Sequence tagging

Baseline 0.765 (0.386) 0.616 (0.193) 0.682 (0.257)

BLSTM-CRF 0.908 (0.910) 0.907 (0.730) 0.907 (0.810)

BERT-SEQ 0.908 (0.933) 0.944 (0.831) 0.926 (0.879)

The “b” indicates the binarized results of the sequence tagging models. The strict scores

are in parentheses.

compared to the baseline. Comparing BLSTM-ATT and BERT-
CLF, we can observe that recall is similar in both approaches,
but precision of BERT-CLF is higher. The reason BERT-CLF
performs best could be the advantage of being trained before on a
large unlabeled dataset and only fine-tuned on our task. In other
words, the model benefits from the pre-training and is not only
dependent on the relatively small training dataset.

As explained in Section 4.1, the sequence tagging models
implicitly solve the classification task by transforming their
tagging results into binary labels. These models are marked
with “-b” for “binarized”. As shown in Table 2, both binarized
models outperform BLSTM-ATT and perform almost as good as
BERT-CLF.
Error Analysis. The prediction errors of the best approach,
BERT-CLF, consist of 60% false positive errors and 40% false
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TABLE 3 | Performance of BERT-SEQ on each VA chunk using five-fold cross

validation on aVA.

Chunk Precision Recall F1 Count

Target 0.851 0.906 0.878 2,620

Source 0.945 0.977 0.960 2,798

Modifier 0.917 0.957 0.936 2,786

negative errors. Common false positive errors include sentences
where entities are mentioned together with a specification of
the entity, for example, “But should I be the Pierre Cardin of
today. . . ?” (NYT 2002/08/18/1416592). Without more context,
it is even for humans impossible to understand the meaning
of the sentence. In general, it could be a VA expression but in
the context of the article, it is Pierre Cardin who is speaking
of today’s version of himself, so “today” is no modifier but a
specification. Similar, there are cases like “an Augusto Pinochet
of Chile” where the country is mentioned to identify the correct
person, “the Greta Garbo of ‘Grand Hotel’ ” discussing the role
of Greta Garbo in the movie Grand Hotel, or “the Bill Clinton
of the 1992 campaign”, specifying a period of Bill Clinton when
he ran for US president. False negatives include instances whose
syntax is similar to that of the mentioned false positives, for
instance, “the Lana Turner of the 1990’s”, “the Harold Stassen of
Utah”, or “aMarx for the twentieth century”. Although the words
appearing after the entities in these examples are semantically
very similar to those of the false positive examples (e.g., “Utah” vs.
“Chile”, or “1990’s” vs. “today”), they are indeed no specification
but modifiers.

5.1.2. Sequence Tagging
BERT-SEQ outperforms the other models in all three measures,
having an F1 score of 0.926. This is an excellent result considering
the complexity of the task and the small dataset. BLSTM-
CRF shows a similar precision but is lower in recall, whereas
the baseline cannot compete with the proposed models. The
performances of the models are summarized in Table 2. The
scores in parentheses indicate a strict metric that only considers
a sentence to be predicted correctly if all tags of all words of
the sentence are tagged correctly. BERT-SEQ only loses a few
points in recall and F1 score, whereas BLSTM-CRF shows a
bigger gap between the two metrics, especially in the recall score.
The precision, on the other hand, even increases in both models
which is due the fact that in the strict metric a prediction for a
sentence can only be either correct or false. In the other metric,
all chunks count individually, so there can be multiple false
predictions in one sentence. As a result, BERT-SEQ is also better
in identifying a whole VA expression inside one sentence, that is,
all chunks that belong together.

As a further step, we analyze the results of the best model,
BERT-SEQ, on the chunk level in Table 3. Source prediction
works best with an F1 score of 0.96, followed by modifier and
target prediction. The results show that the model does not
only learn syntactic rules by tagging all named entities inside
a syntactic pattern as source, for example, “the ENTITY of”, as

the negative instances contain the same syntactic pattern around
named entities as the positive ones (cf. Section 3). For example,
the phrase “the Beethoven of” appears as part of VA expressions
where “Beethoven” is the source, but also in sentences without
any VA expression. This indicates that the model learns a
deeper semantic understanding of the phenomenon. The high
precision of the model leads to the same conclusion. The
performance drop between source, modifier, and target may have
different causes. One reason for the high source scores could be
the limited number of syntactic patterns they appear in which
makes it easier to tag all words that belong to the source chunk
correctly. The property of the source of being a named entity
(and in the aVA dataset even a human entity) could be another
possible explanation. The modifier, on the other hand, is mostly
a noun phrase that appears after the source, but consists of up to
25 words in the aVA dataset which could make it harder for the
model. Still, as the modifier’s position is fixed, it is easier to tag
the modifier than the target. The target is not essential, hence it
does not exist in each VA expression, especially not in the same
sentence. For the aVA dataset, around 6% of all VA sentences
do not contain a target. Also, the position of the target inside
a sentence does not depend on the source and the modifier. It
can stand anywhere depending on the sentence structure. The
last reason for the low target score is the fact that there may be
multiple target references inside the sentence and the model tags
the wrong reference. The number of source and modifier chunks
differ, since some VA expressions contain multiple sources [cf.
Example (3)].

For each word, the model does not only return the predicted
tag but a score vector where each entry corresponds to one
of the tags. The tag corresponding to the highest score in the
vector is then predicted. We also measure the model’s prediction
margin δw of a predicted tag for word w using the minimum
margin-based sampling method from Schein and Ungar (2007):

δw = |P̂(t′ | w)− P̂(t′′ | w)| , (1)

where P̂(t | w) is the prediction score of tag t for word w,
and t′ and t′′ are the two most likely tags. In other words, δw
is the distance between the highest and second highest score
and we interpret it as the model’s confidence. Figure 3 shows
the mean and standard deviation of δ for each tag. The bar
length represents the mean, the whiskers stand for the standard
deviation. The numbers above the bars show the number
of appearances.

In general, the model is most confident in predicting O-
tags, as their mean margin score is by far the highest. Also,
the figure underlines the results from Table 3, namely, the
model is most confident in predicting SRC-tags, followed by
MOD-tags, and TRG-tags. For all tags, it holds that the mean of
the false prediction scores is lower and the standard deviation
is higher compared to their true prediction counterparts. This
implies that the model is less confident about false predictions.
The true predicted B-tags and the corresponding I-tags have
similar scores—which indicates that the model is as confident
in identifying the first word of a chunk as in identifying the
following words.
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FIGURE 3 | Prediction margin of predicted tags using five-fold cross validation

on aVA.

TABLE 4 | Distribution of error types of BERT-SEQ in all five-folds.

Error type Target Source Modifier

False positive

{

Position 41.4% 15.0% 33.6%
Partly 13.9% 1.0% 0.4%
Complete 27.6% 60.4% 47.4%

False negative 17.1% 23.7% 18.7%

Total errors 445 207 268

Error Analysis. For BERT-SEQ we can analyze the errors
on the word level and also distinguish between errors on the
different VA chunks.Table 4 summarizes the different error types
for each chunk. The false positive errors are split into three types.
The first type, position, indicates errors where a chunk appears
inside a sentence but the model tagged the wrong words, for
example, “He called him the Michael Jordan of China” where
“him” is the target chunk but the model tagged “He” as target.
The type partly indicates that parts of the prediction and the
corresponding chunk are overlapping, but not every part of
the chunk is tagged correctly, for instance, the model tagged
only “Jordan” as source but the whole source chunk consists
of “Michael Jordan”. Finally, the type complete stands for the
prediction of a chunk in a sentence where the chunk does not
appear at all. This happens, for example, in sentences that do not
contain a VA expression but the model predicted VA chunks.

Most source and modifier errors are of type complete and
these errors appeared mostly together in the same prediction.
That means, when there was a false source prediction of type
complete, in more than 80% of the cases, there was also a false
modifier prediction of type complete in the same sentence. In
particular, for those cases, themodel tagged words between one of
the syntactic source phrases the training data sources appeared in
as source and the words that came after the pattern as modifier.
The falsely identified source words are named entities most of
the time and the identified modifier is the noun phrase following
the pattern, for example, “the Donaldsrc Trumpsrc of privatemod
jetsmod” (= a specification of Donald Trump) or “a Napoleonsrc
of eggplantmod” (= a kind of sandwich), or “a Jamessrc Bondsrc
for themod 21stmod centurymod” (= the movie Casino Royal). Again,

reading those phrases without any context could lead to the
impression that they could be VA records, but in the context of
the article, it is clear that they are not.Most target errors, however,
are of the position type. Often, the wrong pronoun or a false
named entity was tagged.

5.2. The Effect of (Im)balanced Training
Data
In this section, we use the imbalanced eVA datasets from
Section 3 to analyze the models further. By adding randomly
sampled sentences as negative instances to the aVA training
and test datasets, we change the datasets in two aspects: their
sizes and their class distributions. In particular, for each eVA
size (0, 50, . . . , 500) we create five training dataset versions by
adding different randomly selected sentences for each version
to the aVA training dataset. We use the five dataset versions
to make sure that the choice of the added negative instances
are not biasing the models during the training process. The
datasets are named according to the size of the added instances
(e.g., for eVA-TR-50 we add five times 50,000 different sentences
to the aVA training dataset to create five different versions of
eVA-TR-50). Then, we train the best performing models from
Section 5.1, namely BERT-CLF and BERT-SEQ, on these datasets
and evaluate each on all eVA-TE datasets (eVA-0-TE to eVA-500-
TE). For each eVA size, we then compute the mean and standard
deviation over the performances for all five runs. Subsequently,
we refer to (the average performance of) these trained models
as BERT-{0,50,. . . ,500}-{CLF,SEQ} according to the size of the
corresponding eVA-TR dataset.

We assume that training the models on the eVA-TR
datasets will prevent overfitting and therefore result in better
performance, especially on real-world data. Together with the
eVA-TE datasets, we analyze the ability of the model to predict
data that reflect a better real-world class distribution without
additionally annotating a huge amount of data. Since we assume
that all added instances are negative, the results have to be seen as
an indication, but can still be very conclusive.

5.2.1. Classification
The performance of BERT-0-CLF, our base model, falls rapidly
with the increase of added negative instances in the test dataset
down to 0.37 in F1 score on eVA-TE-500, see Figure 4A.
This demonstrates that this model is able to show high result
scores on a test dataset similar to the training data, namely
the eVA-TE-0 dataset, but it is not robust on datasets that
are substantially different in class distribution and sentence
structure. In particular, the precision of the model is dropping
which indicates that the model is overfitting. All models between
BERT-50-CLF and BERT-300-CLF are more robust. While they
are almost as good as BERT-0-CLF on the eVA-TE-0 dataset,
they outperform BERT-0-CLF on the other eVA-TE datasets by
a large margin. More specifically, the F1 score of all models
decreases slowly with the size of the test datasets but stays above
0.87 on all eVA-TE datasets. This shows that the models are
able to identify sentences including VA expressions, even if the
class distribution is different and the negative instances are more
diverse. The models are also robust against the choice of the
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FIGURE 4 | Performance of BERT-CLF (A) and BERT-SEQ (B) trained and tested on different eVA datasets. The horizontal axis shows the different eVA test datasets,

the model names represent the eVA training datasets the model is fine-tuned on. All models are trained five times with five different versions of each eVA training

dataset. The figure shows the mean (horizontal line) and standard deviation (whiskers) of these results.

added instances, as their standard variation is small. BERT-350-
CLF and all following models perform worse. Either they have
huge differences in their results depending on the version’s choice
of the added negative instances, as can be seen by the whiskers of
the models, or they predict negative labels only, see BERT-450-
CLF. The noise of the added data is one reason that could cause
these results, as it is possible that there are VA records in this data
which are labeled negative. This can lead to a noisy fine-tuning of
the model. Another point to consider is the large class imbalance
of the training dataset which can influence the classifier in a way
that it predicts negative labels only.

Comparing the results to the binarized version of BERT-SEQ,
BERT-SEQ-b (omitted for brevity), all models of BERT-SEQ-b
equal or outperform the corresponding BERT-CLF models on
almost all datasets. Themost robustmodels are themodels BERT-
{300,. . . ,400}-SEQ-b with F1 scores only decreasing from 0.96
on the eVA-TE-0 dataset to 0.91 on the eVA-TE-500 dataset,
whereas the most robust BERT-CLF model is BERT-250-CLF
with an F1 score of 0.95 and 0.90 on eVA-TE-0 and eVA-TE-
500, respectively.

Summing up, the idea of adding randomly selected sentences
as negative instances to the datasets has a huge positive effect
(up to a certain point), as the models are much more robust
against data that is more similar to real-world data. Another
surprising result is that the implicit BERT-SEQ-b models are
better classification models than BERT-CLF. As we define BERT-
SEQ-b from BERT-SEQ with a loose definition of only needing a
predicted source tag and a predicted modifier tag, the sequence

tagger does not have to tag each word correctly to get a true
binarized prediction.

5.2.2. Sequence Tagging
Similar to BERT-0-CLF, the performance of BERT-0-SEQ also
decreases with the increase of negative added instances in the
test dataset. Figure 4B shows that all other models (BERT-50-
SEQ to BERT-500-SEQ) are—in contrast to BERT-CLF—more
robust. The performance of all models decreases only little with
the increase of the test dataset sizes. The results on eVA-Te-500
stay between 0.73 (BERT-0-SEQ) and 0.86 (BERT-{200, 250, 300,
400}-SEQ) in F1 score. Notably, all models perform best on eVA-
TE-0 although the class distribution is substantially different for
most models. BERT-50-SEQ even beats BERT-0-SEQ on the eVA-
TE-0 dataset. As the whiskers, and hence the standard deviation
of all five runs for all models, are small, the choice of the added
instances does not have any effects on the results.

In general, BERT-SEQ seems to handle class imbalance better
than BERT-CLF in terms of the decrease of the result scores. One
possible reason could be that the sequence tagger processes more
information in the learning phase, whereas the classifier averages
the scores of all words of a sentence. The sequence tagger, on
the other hand, uses each word information individually. The
other reason could be the effect of hyperparameters. We used the
hyperparameters we got from Section 5.1, since it was unfeasible
to fine-tune hyperparameters on each dataset for each model.
Both aspects could lead to a worse performance of the classifier.
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TABLE 5 | Number of positive labels and tags that were predicted from the

different models for both tasks.

Model TRG SRC MOD Positive label

Classification

BERT-0-CLF - - - 754

BERT-50-CLF - - - 192

BERT-200-CLF - - - 90

BERT-500-CLF - - - 88

Sequence tagging

BERT-0-SEQ 179 176 201 -

BERT-50-SEQ 131 138 125 -

BERT-200-SEQ 75 104 101 -

BERT-500-SEQ 54 84 80 -

Putting all together, the present study confirmed our
assumptions. Adding random negative instances to the training
dataset is leading to a small decrease in the performance on eVA-
TE-0 but has a huge robustness effect in both tasks for predicting
unseen and more diverse negative instances without loosing the
ability to identify positive instances.

5.3. Robustness Studies
In the following, we conduct two different robustness studies.
The first study is an analysis whether the models are robust
against new data. The second study focuses on the ability of the
sequence tagging model to find new VA in terms of new source
patterns and new sources, as this shows the generalization ability
of the model.

5.3.1. Robustness Study on Out-of-Corpus Data
We conduct a robustness study to analyze the models’
performance on out-of-corpus data. For this, we train BERT-CLF
and BERT-SEQ on four of the training datasets, namely eVA-TR-
0, eVA-TR-50, eVA-TR-200 and eVA-TR-500, and evaluate them
on the SIG dataset which is different to the NYT dataset in many
aspects as explained in Section 3. Different to the training data
generation in the previous section, we use the complete aVA data
for the generation of the training datasets. As the SIG dataset
is neither labeled nor annotated, we cannot evaluate precision,
recall, and F1 score on the complete data. Still, we have to use a
relatively large dataset because of the phenomenon’s sparseness.
Thus, we perform a sample-based evaluation.

5.3.1.1. Sample Selection
First, all trained models predict labels or tags for the whole SIG
dataset (one million sentences).

The number of VA predictions are summarized in Table 5 for
both tasks. As we can see, the number of predicted positive labels
and tags decreases by the number of added negative training data
to the model.

We then select samples for manual evaluation based on
the predictions and the prediction scores of the models. We
normalize the output scores of the models using a softmax
function. The computed values are used as the prediction scores.
For the classification models, we get a numerical value per class
that ranges between 0 and 1 and both values add up to 1. For
the sequence tagging models, we get a vector where each entry

corresponds to one of the IOB tags. The value range is also
between 0 and 1 and the vector entries add up to 1. We want
to achieve a selection which includes instances having different
labels or tags but also different prediction margins to gather
confident and unconfident predictions. As the predictions are not
equally distributed, a random or linear selection would not fit.
Consequently, we select samples as follows.
Classification. We order all predictions by their prediction
score (cf. Figure 5) and then select samples based on the
following two assumptions:

• The model is confident when the prediction score is close to
the boundaries, 0 and 1.

• The model is not confident when the prediction score is close
to the threshold, 0.5.

Thus, we choose four types of samples as follows:

• ⊤30: 30 instances whose score is highest.
• >15: 15 instances whose score is closest to but above the

threshold.
• <15: 15 instances whose score is closest to but below the

threshold.
• ⊥30: 30 instances whose score is lowest.

These samples cover confident predictions, namely ⊤30
(positive) and ⊥30 (negative), but also unconfident predictions
close to the threshold, >15 (positive) and <15 (negative). The
number of positive and negative predictions is equal.
Sequence Tagging. As in Section 5.1, we compute δwi for each
word wi of sentence S = w1w2 . . .wn. Then we compute the
mean µ of all δwi for a sentence S:

µs =
1

n

n
∑

i=1

δwi . (2)

The mean µs represents the model’s confidence of all predicted
word tags for sentence S. In the following, we use those
measures to select samples based on the model’s confidence.
Before ordering the predictions, we split them into two sets. The
first set SVA contains all sentences with at least one predicted
source tag and at least one predicted modifier tag. Thus, the set
consists of all instances that were (implicitly) regarded to contain
VA records by the model. The split is done to make sure that
we select instances containing VA tags because of the unequal
distribution of predictions and the higher mean scores of O-tags.
The second set SO contains all other sentences. For the selection
of samples, we use the assumption that the model is confident
about its predictions if the mean µ is high. Otherwise, if µ is low,
the model is unsure. That is, if the mean is high, the δ values in
the sentence are high which implies the model is confident about
the choice of each predicted tag.

Then, we order both sets according to µ and select the
following samples (cf. Figure 5):

• ⊤30: 30 instances whose score is highest in SVA.
• >15: 15 instances whose score is lowest in SVA.
• <15: 15 instances whose score is lowest in SO.
• ⊥30: 30 instances whose score is highest in SO.
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FIGURE 5 | Selection of samples for evaluation of the classification task (A) and of the sequence tagging task (B).

TABLE 6 | Performance on both tasks on the samples of the SIG dataset.

Model Precision Recall F1

Classification

BERT-0-CLF 0.644 1.000 0.784

BERT-50-CLF 0.733 0.917 0.815

BERT-200-CLF 0.778 0.833 0.805

BERT-500-CLF 0.756 0.773 0.764

BERT-0-SEQ-b 0.689 0.912 0.785

BERT-50-SEQ-b 0.800 0.947 0.867

BERT-200-SEQ-b 0.756 0.919 0.829

BERT-500-SEQ-b 0.756 0.829 0.791

Sequence tagging

BERT-0-SEQ 0.574 0.780 0.661

BERT-50-SEQ 0.681 0.793 0.733

BERT-200-SEQ 0.617 0.807 0.700

BERT-500-SEQ 0.679 0.704 0.691

⊤30 and ⊥30 cover the instances where the model is confident
about the predicted tags and>15 and<15 contain those where it
is not confident.

5.3.1.2. Evaluation
Overall, we select 720 instances: 360 per task and 90 per model.
Those instances are labeled and annotated by three trained
annotators. They achieved an inter-annotator agreement (IAA)
calculated by Fleiss’ kappa of 94.1% for the classification task
and 82.9% for the sequence tagging task. For the sequence
tagging task, the IAA for the source was highest (84.7%), for the
modifier it was lowest (79.7%), and for the target it was 84.0%.
As we can see, modifier detection was most complicated for the
annotators. The main reason was disagreement over the ending
of the chunk. All instances that were not annotated unanimously
were discussed to find consensus and then re-annotated.
Classification. The results of the BERT-CLF models, shown in
Table 6, are fairly different on the SIG dataset compared to the
eVA datasets in Section 5.2. BERT-0-CLF and BERT-500-CLF
perform better than onmost eVA-TE datasets, whereas the results
of BERT-50-CLF and BERT-200-CLF are worse. This surprises,
as the class distribution of the SIG dataset is probably even more
unequal than the eVA datasets. One reason why the results are
different is the fact that the models predicted correct labels for
a few confident instances (⊤30) which has a huge impact in
this sample-based evaluation. BERT-50-CLF achieved the best
F1 score, namely 0.815, but the differences of the models are
not substantial. There is a trend that recall decreases with the
increase of training data while precision is increasing except for
BERT-500-CLF where the precision falls as well.

The binarized BERT sequence tagging models show
better results, they beat all BERT-CLF counterpart models
in F1 although the models were not explicitly trained for
this task. BERT-50-SEQ-b performs best resulting in an F1
of 0.867.

Analyzing the accuracy of each of the samples, we see in
Table 7 that the predictions in ⊥30 are all correct for all models.
That was expected, as random sentences were easiest to predict
as negative. Most difficult was the prediction of the samples >15
which included the sentences that were predicted positive from
the model. As they were closest to the threshold, the model was
most unconfident about them, and thus it is expected that they
were hardest to predict.

Overall, the results of this section underline the results
from the previous (sub-)sections, namely, that BERT-SEQ-b
outperforms BERT-CLF and is more robust against real-world
data. One reason could be that it is easier for the model to
predict single words correctly even if not all words are predicted
correctly, as it is more differentiated than predicting a label for a
whole sentence.

The errors in this study tend to be false positive errors (70%)
including sentences with terms like “the dark side of Europe”,
“the Tiger of Asia”, or “the WINNER of Celebrity Big Brother”
where the syntax is similar to the most occurring source phrases
in the training data, “the SOURCE of”.
Sequence Tagging: As Table 6 shows, all scores are lower
compared to those in Section 5.2. For example, F1 for BERT-
0-SEQ drops to 0.661 from above 0.92 on eVA-TE-0. BERT-
50-SEQ performs best, its F1 drops only to 0.733. As in the
previous section, BERT-0-SEQ performs worst which supports
our assumption that the model is overfitted and not as good as
the other models for predictions on out-of-corpus data.

In Table 7, the different samples are analyzed and, as in the
classification task, >15 and <15 are most difficult to predict. In
contrast to the classification task, the prediction on ⊤30 seems
to be more difficult which we attribute to the complexity of
the sequence tagging task. Analyzing the chunks individually,
Table 8 shows that in general, predicting the source is easiest,
while predicting the target is most complicated. This confirms the
observations from Section 5.1.

Again, we analyze the errors more deeply on the word level.
For all models, most errors of each chunk were false positive
errors of type complete, where the model predicted the chunks
in sentences not including any VA expression. The syntax of the
prediction words inside those sentences are similar to many VA
expressions, for example, “Velvetbandittrg is our LomoHomesrc
of themod Daymod”, in which “LomoHome” is an award from a
website, or “Alicetrg Coopertrg is the God-voicesrc of rockmod”,
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TABLE 7 | Accuracy on each sample on the SIG dataset.

Model ⊤30 >15 <15 ⊥30

Classification

BERT-0-CLF 0.933 0.067 1.000 1.000

BERT-50-CLF 0.967 0.267 0.800 1.000

BERT-200-CLF 0.967 0.400 0.533 1.000

BERT-500-CLF 0.900 0.467 0.333 1.000

BERT-0-SEQ-b 0.900 0.267 0.800 1.000

BERT-50-SEQ-b 0.967 0.467 0.867 1.000

BERT-200-SEQ-b 0.867 0.533 0.800 1.000

BERT-500-SEQ-b 0.900 0.467 0.533 1.000

Sequence tagging

BERT-0-SEQ 0.733 0.000 0.200 1.000

BERT-50-SEQ 0.767 0.670 0.533 1.000

BERT-200-SEQ 0.633 0.267 0.200 1.000

BERT-500-SEQ 0.600 0.200 0.400 1.000

TABLE 8 | F1 of all VA chunks per model.

Model Target Source Modifier

BERT-0-SEQ 0.588 0.738 0.659

BERT-50-SEQ 0.659 0.773 0.764

BERT-200-SEQ 0.667 0.688 0.742

BERT-500-SEQ 0.578 0.745 0.739

where “God-voice” is no entity and thus, cannot be a source of a
VA expression.

5.3.2. Generalization Study
In the sequence tagging task, we can differentiate between two
types of VA generalizations in predictions:

1. New (unseen) syntactic VA patterns: We focus on source
phrases, that is, the boundary words around the predicted
source, as the modifier and target are typically not part of
common patterns.

2. New (unseen) chunks: We focus on sources, as the source is
the key component of any VA.

The BERT-50-SEQ model tags all sentences of the NYT dataset
that have not been included in the eVA-TR-50 dataset, as this
dataset is used for training the model. We use this model, as it
achieved high results in the previous experiments. Since we are
only interested in new and unseen VA records, and to make sure
that the model receives enough sentences with possible syntactic
variants of VA expressions, we use the NYT data for this study.
In total, the model tagged more than 60,000,000 sentences on
the word level. 9,578 sentences were tagged with at least one
source tag and one modifier tag which we defined as a positive
prediction. Since we cannot annotate all predicted sentences, we
conduct a sample-based evaluation.

5.3.2.1. Sample Selection
New source phrases. The training dataset consists only of
VA expressions that contain one of the source phrases “a/an/the

SOURCE among/for/of”. Thus, we here focus on predictions
where the source is enclosed by different boundary words.
Table 9 reports the top 10 predicted source phrases, split into
seen and unseen phrases based on the training dataset. We can
see that most predictions contain one of the seen source phrases,
especially “the-of”. This was expected, as the majority of VA
expressions in the training data also contain this pattern. The
majority of the unseen predicted source phrases only appear once
or twice. One reason is that the model does not always tag the
whole source correctly. Consequently, when extracting the source
phrase, that is, the words surrounding the words tagged as source,
it can contain parts of the actual source. Therefore, we ensure
to include frequent phrases in our sample as well, since those
phrases are more reliable as correct phrases around a predicted
source. Consequently, we randomly choose 25 sentences from
the 10 most frequent phrases surrounding the words tagged as
source that have not been in the training dataset (the “frequent”
sub-sample) and 25 instances from predicted source phrases that
appeared only once in the predictions (the “rare” sub-sample).
New sources. In Table 9, the 10 most frequent tagged
chunks are listed. As we can see, target and modifier chunks
are overlapping with the most frequently used modifier and
target chunks from the annotated dataset in Table 1, whereas
the tagged source chunks are not as they do not consist of
human entities. Again, we choose 25 instances that include one
of the 10 most frequently tagged sources that are not already
in the training data (“frequent” sub-sample) and 25 instances
where the tagged source only appeared once in the predictions
(“rare” sub-sample). With this selection, we can analyze the
model’s ability to predict new sources in general but also whether
frequently predicted sources aremore likely to be part of correctly
predicted VA compared to rare sources that are predicted
just once.

5.3.2.2. Evaluation
Annotating both samples by the same annotators as in the
previous study, we get an IAA by Fleiss’ kappa of 0.78. The
score is lower than before, since there was a misunderstanding
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TABLE 9 | Top 10 predicted source patterns [split into seen (only nine exist) in the training data and unseen (new)] and top 10 predicted VA chunks.

Source patterns Chunks

Freq Seen Freq Unseen Freq Target Freq Source Freq Modifier

6,895 the - of 104 of - of 2,419 - 116 Holy Grail 322 the world

393 a - of 104 and - of 450 he 88 Cadillac 157 the

79 a - for 62 the - in 299 it 85 Pied Piper 81 the 90s

60 an - of 61 as - of 210 him 71 Rolls-Royce 63 New York

34 the - for 57 a - in 128 they 60 Paris 55 America

21 a - among 31 or - of 122 this 58 Harvard 48 this world

14 an - for 29 - of 101 i 43 Microsoft 45 our time

13 the - among 29 this - of 94 we 42 Venice 44 his day

2 an - among 26 a - on 91 she 39 Demon Barber 43 the East

25 was - of 54 her 37 Switzerland 41 its day

TABLE 10 | Evaluating predictions of BERT-50-SEQ from the NYT dataset in

terms of new and unseen source phrases and sources, respectively.

Precision Recall F1

New source phrases

Total 0.471 (0.600) 0.733 (1.000) 0.574 (0.750)

TRG 0.385 0.652 0.484

SRC 0.529 0.794 0.635

MOD 0.480 0.727 0.578

New sources

Total 0.712 (0.760) 0.876 (1.000) 0.786 (0.864)

TRG 0.667 0.743 0.703

SRC 0.740 0.949 0.831

MOD 0.720 0.923 0.809

The label “total” represents the micro average. The binarized scores are in brackets.

in the annotation process which affected target and modifier
annotation. In particular, the article before the noun of the target
and modifier was not tagged by one of the annotators. Taking
this error out, we get a kappa score of 0.84 which is similar to the
agreement in the previous robustness study. All disagreements
were discussed and re-annotated.
New source phrases. The model achieves an F1 score of
0.574 (0.75 binarized), see Table 10. Compared to the evaluations
before, the scores are substantially lower. This indicates that it is
more difficult to predict VA expressions having different syntactic
patterns around a predicted source compared to the training data.
This is expected, as the model has never seen these types of VA
in the training data. Comparing the score with the binarized
score, there is a huge gap and the binarized score is much higher.
Consequently, we can conclude that the model often did not tag
all words belonging to the chunks correctly but parts of it. Hence,
it could predict at least one correct source tag and one correct
modifier tag if there appeared a VA expression in the sentence.
Looking at the predictions of the chunks independently, the
model shows a similar behavior to the previous evaluations.
Mainly, source prediction worked best, whereas target prediction
was most difficult.

Out of the 25 instances from the “frequent” sub-sample,
17 consist of a VA expression. In contrast, the sub-sample
with rare source phrases contains only 13 VA expressions. This
indicates that frequent source phrases aremore often correct. The
boundary word after the predicted source also seems to have an
impact. While the word “of” appeared 34 times (21 positive), “in”
appeared 8 times having 4 VA expression. The word “on” only
appeared two times but both times a VA expression was predicted
correctly. Interestingly, nine of the thirteen rare phrases that
contained a correct VA source actually consist of an extension
of an already seen source phrase, for example, “the soft-spoken
Barnum of the restaurant world” or “the deadly ‘Big Brother’ of
sports”. In these cases, a word, that in some of the cases is even
part of the modifier, is inserted between the first boundary word
and the source. Consequently, this inserted word was detected as
part of the source phrase. The model also found completely new
VA structures like “a Nepalese Robin Hood facing down corrupt
and ineffective governments” where “Nepalese” is the modifier
standing before the source “Robin Hood”. The model only
identified the source correct and tagged “corrupt and ineffective
governments” falsely as modifier. In this case, the phrase after
the source is an explanation of this VA rather than a modifier.
These findings suggest that the model is able to generalize to new
VA types even if the whole chunks are not tagged correctly. This
can be used to find syntactically new VA patterns which can be
leveraged for future analyses.

Typical false positive errors included established terms like
“the Nobelsrc in economicmod sciencemod” where the model
falsely tagged “Nobel” as source and “economic science” as
modifier or “Kittysrc Bethesrc of Manhattanmod”, where the
model tagged “Kitty Bethe” as source and “Manhattan” as
modifier but Manhattan turned out to be the residence of the
woman Kitty Bethe.
New sources. We used two approaches to analyze the model’s
ability to predict unseen sources. One way is to split the aVA
dataset into training (80%) and test (20%) data such that the test
data does not include any source entities from the training data.
The scores are similar to the five-fold cross validation scores from
Section 5.1.2 with an F1 score of 0.908 which gives a first clue on
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the ability of the model to predict VA with unseen sources. Still,
training and test data only contain human entities as sources—
this could lead to an easier prediction compared to other named
entity types. Hence, we conduct another sample-based evaluation
to understandwhether themodel is able to identify source entities
that are not limited to humans.

Here, themodel achieves an F1 score of 0.786 (0.864 binarized)
which indicates that it can successfully predict VA with unseen
sources that are not humans. One reason is the fact that most
correct predictions consist of an already seen source phrase (33
out of 38) which shows that the phrase around a source has
a huge impact on new predictions. Being more specific, the
“frequent” sub-sample only contains instances having the source
pattern: “a/the SOURCE of”, which is the most frequent pattern
in the training data as well. In this sample, 18 (23 binarized) out
of 25 instances are predicted correctly. The “rare” sub-sample,
however, only contains 9 (15 binarized) correctly predicted
instances. Here, 18 instances have already seen source phrases,
but there are some exceptions. On the chunk level, we can
see the differences in Table 10. In particular, source prediction
was easiest and target prediction hardest which matches the
previous analyses.

A common false positive prediction in the “frequent” sub-
sample was “Sweeney Todd, the Demon Barber of Fleet Street”
referring to a musical. In the “rare” sub-sample common
false positive source predictions included titles (“emperor”) or
consisted of an entity with a specification, falsely tagged as
source and modifier, for example, “Forest Sawyer of Arabia”.
Analyzing the most frequently tagged sources, they mainly
consist of brands (Cadillac, Microsoft, McDonald’s), fictional
characters (Pied Piper, Darth Vader), or locations (Paris, Mount
Everest, Switzerland).

6. DISCUSSION

We presented four new state-of-the-art models for the
identification of the stylistic device Vossian Antonomasia for
two different tasks: binary sentence classification and sequence
tagging. First, we could boost the F1 score for the classification
task to 0.974 (compared to 0.878 by Schwab et al., 2019) by
fine-tuning BERT. The results in the sequence tagging task are
even more remarkable. The tagger is able to identify all three
VA chunks, namely target, source, and modifier, in the sentence
on the word level. That allowed us to analyze the phenomenon
more deeply because we could study all chunks independently.
Furthermore, the identification of different parts of a VA
on a large scale now enables research from other disciplines
(e.g., cultural studies). Again, fine-tuning BERT achieves the
best F1 score of 0.926. We also showed that the sequence
tagging model is able to solve the classification task implicitly by
transforming the output of thismodel to binary labels. This works
almost as good as the classification models on the annotated
corpus and even outperforms the best classification model on
new data.

Another result is the positive effect of changing the class
distribution and the diversity of negative instances in the training
data with unlabeled and possibly noisy data which resulted in
the best performance on out-of-corpus data for both tasks. The

models that were trained only with the annotated data could
not compete with the models trained with the noisy data on
more diverse test data. The idea of using random sentences
as additional negative training data is simple but promising
not only for the extraction of VA but for tasks in general
where the target classes are rare on the sentence or word level
(which is true for many stylistic devices in linguistics, but also
in other areas) and should be explored further in future work
of sparse phenomenons. However, for tasks like named entity
recognition it probably would not work, since named entities
appear frequently on the sentence level such that the unlabeled
data would also be too noisy.

The robustness study on out-of-corpus data revealed that our
models are able to predict VA on different data in terms of
origin (articles from all over the world), style (local news and
blog articles), and publication date (more than 8 years after the
training data). For both tasks, the performance on the SIG data is
lower than on the annotated data. Still, some of the models were
able to achieve strong results. Especially the sequence tagging
model trained with a noisy dataset, BERT-50-SEQ, reached the
best results for both tasks, namely a binarized F1 score of
0.867 for the classification and 0.733 for the sequence tagging
task. The models trained on the annotated data exclusively,
however, could not achieve these scores. The gap between the
binarized and sequence tagging results shows that the model
is able to identify sentences containing VA expressions, but
could not always correctly tag all words that belong to the
chunks. An additional striking finding is the fact that the models
trained for the classification task (BERT-CLF) showed a lower
performance than their binarized sequence tagging counterparts
(BERT-SEQ-b), that is, the sequence tagging models trained on
the same data.

We could show that, to some extent, the model is able to
generalize in two directions. First, we analyzed the performance
on the prediction of VA containing new syntactic phrases around
the source. On the one hand, we found that the model could
find new correct source phrases but on the other hand, the
error rate is higher on such instances. A highly interesting
outcome is that we found new variants of source phrases and
that the model is able to identify such new phrases which can
help future studies to expand the analyses of VA. Second, we
analyzed whether the model is able to predict sources that are
not limited to human entities (as is the case for the training
data). We could show that the model indeed found new entity
types, especially locations, fictional characters, companies, and
brands. Compared to the source phrase analysis, all scores were
much higher which indicates that this is an easier task for the
model. To sum up, we conclude that our model is able to
predict unseen VA types which can be used to expand the data
and analyze the phenomenon further. As the evaluation of this
study is sample-based, we have to be careful with the results.
Still, both studies show promising results. The aVA dataset
from Section 3.2 that emerged from manual annotations on
the word-level is another contribution. The dataset is annotated
and consists of 3,066 sentences that include VA expressions and
2,929 that do not include any. All chunks of the phenomenon
are tagged, thus, this dataset can help to tackle further
open challenges.
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Since the phenomenon has not been studied deeply on an
automated level, there are open challenges left, for example
the extraction from non-English texts. The results of our work
also provide new questions for future research, for instance,
finding the full names of the targets to identify the corresponding
entities, or identifying the characteristics of the source that
the author wants to transfer to the target. A further goal
is the automated generation of VA which depends on the
transferred characteristics and is a future work we are going to
explore. Different approaches to detect VA, for example, using
a deeper semantic understanding, are a possible future project
as well, although it is not as trivial as one could think. We
already conducted preliminary experiments, for example, using
different embeddings to analyze the semantic distance between
VA chunks. The distance between source and modifier should
be larger than the distance between target and modifier, as the
modifier establishes the transfer to a context different from the
source’s. But there are too many exceptions, like semantically
neutral modifiers, (for example, time-related like “his time” or
“her era”), or modifiers that are a specification of the source’s
expertise and thus, still close to the source, as in “The Tiger
Woods of mini golf”.

In conclusion, we proposed an end-to-end method to extract
Vossian Antonomasia on the word-level that is able to tag all
parts of the phenomenon and is robust against real-world data.
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