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We review the results for stochastic learning strategies, both classical (one-shot

and iterative) and quantum (one-shot only), for optimizing the available many-choice

resources among a large number of competing agents, developed over the last decade

in the context of the Kolkata Paise Restaurant (KPR) Problem. Apart from few rigorous

and approximate analytical results, both for classical and quantum strategies, most of the

interesting results on the phase transition behavior (obtained so far for the classical model)

uses classical Monte Carlo simulations. All these including the applications to computer

science [job or resource allotments in Internet-of-Things (IoT)], transport engineering

(online vehicle hire problems), operation research (optimizing efforts for delegated search

problem, efficient solution of Traveling Salesman problem) will be discussed.

Keywords: collective learning, critical slowing down, decoherence, KPR problem, minority game, quantum

entanglement, three-player quantum KPR

1. INTRODUCTION

Game theory was initially developed to investigate different strategic situations with competing
players (Morgenstern and Von Neumann, 1953). Of late, the concept of game theory is being
applied to different statistical events to measure the success rate when one’s success depends on
the choice of the other agents. The game of Prisoners’ dilemma (refer to e.g., Prisoner’s Dilemma,
2019) is a popular example where two non-communicating (or non-interacting) agents choose their
actions from two possible choices. It is a two-person, two-choice, one-shot (one-time decision)
game. The Nash equilibrium (refer to e.g., Osborne and Rubinstein, 1994) solution employs the
strategy, where the other player can not gain from any of the choices, and both the players
necessarily defect. However, this is not a Pareto optimal solution (refer to e.g., Lockwood, 2008),
where no change in the decision can lead to a gain for one player without any loss for the other.
This problem has been used to model many real life problems such as auction bidding, arms races,
oligopoly pricing, political bargaining, and salesman effort.

The minority game theory (refer to e.g., Challet et al., 2005) generalizes this idea of a very
large number of non-communicating players with two choices for each of them. As the name
suggests, the players who make the minority group choice (at any time) receive a payoff. This
game is not a one-shot game, and the players learn from their previous mistakes (loss of payoffs)
and continuously try to upgrade their respective strategies to gain the payoffs and they (the
society as a whole) learn collectively to reach a level of maximum efficiency, where no one can
improve their payoff any further. A phase transition (refer to e.g., Challet et al., 2005) occurs at
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a critical value of the memory size (number of distinct strategies
individually remembered; assumed to be the same for all the
players) and the number of players and the socially optimal
learning time diverges at this critical point (refer to e.g., Stanley,
1987). The game has many important applications of social
dilemmas, including a decision of making an investment in a
stock market; over-crowding of the agents any day due to the
decision of either buying or selling a particular stock in the
financial market can lead to a loss for the majority of players.

The minority game is further generalized for many choices in
addition to many players (as the minority game) in the Kolkata
Paise Restaurant (KPR) game theory, introduced by Chakrabarti
(2007) and Chakrabarti et al. (2009) (for a recent review refer to
e.g., Chakrabarti et al., 2017). The KPR game is also an iterative
game, played by the agents or players without any interaction or
communication between each other.

Long ago in Kolkata, there were very cheap and fixed price
“Paise Restaurants” (also called “Paise Hotels”; Paise was the
smallest Indian coin) which were very popular among the daily
laborers in the city. During lunch hours, these laborers used
to walk down (to save the transport costs) from their place
of work to one of these restaurants. These Paise Restaurants
would prepare everyday a fixed (small) number of such dishes,
and if several groups of laborers would arrive any day at the
same restaurant, only one group perhaps would get their lunch
and the rest would miss lunch that day. There were no cheap
communication means (mobile phones) for mutual interactions,
in order to decide about the respective restaurants of the day.
Walking down to the next restaurant would mean failing to
report back to work on time. To complicate this collective
learning and decision making problem, there were indeed some
well-known rankings of these restaurants, as some of themwould
offer tastier items compared to the others (at the same cost, paisa,
of course) and people would prefer to choose the higher rank
of the restaurant, if not crowded. This “mismatch” of the choice
and the consequent decision not only creates inconvenience for
the prospective customer (going without lunch), but would also
mean “social wastage” (excess unconsumed food, services, or
supplies somewhere).

A similar problem arises when the public administration
plans and provides hospitals (beds) in different localities, but the
local patients prefer “better” perceived hospitals elsewhere. These
“outsider” patients then compete with the local patients and
have to choose other suitable hospitals elsewhere. Unavailability
of the hospital beds in the overcrowded hospitals may be
considered as insufficient service provided by the administration,
and consequently, the unattended potential services will be
considered a social wastage. Playing this kind of game,
anticipating the possible strategies of the other players and acting
accordingly, is very common in society. Here, the number of
choices need not be very limited (as in the standard binary-choice
formulations of most of the games), and the number of players
can be truly large. Also, these are not necessarily one-shot games,
rather the players can learn from past mistakes and improve on
the selection of their strategies for the next move. These features
make the games extremely intriguing and also versatile, with
major collective or socially emerging structures.

The KPR problem seems to have a trivial solution: suppose
that somebody, say a dictator (who is not a player), assigns a
restaurant to each person and asks them to shift to the next
restaurant cyclically, on successive evenings. The fairest andmost
efficient solution: each customer gets food each evening (if the
number of plates or choices is the same as that of the customers
or players) with the same share of the rankings as others, and
that too from the first evening (minimum evolution time). This,
however, is not a true solution to the KPR problem, where
each customer or agent decides on their own every evening,
based on complete information about past events. Several recent
applications of the classical KPR strategies to the Vehicle for
Online Hire problem (Martin, 2017; Martin and Karaenke, 2017),
resource allocation problem in the context of Internet-of-Things
(IoT) (Park and Saad, 2017), development of a different strategy
for solving the Traveling Salesman Problem (Kastampolidou et
al., 2021), etc have been made.

In recent decades, quantum game theory has been developed,
promising more success than classical strategies (Eisert et al.,
1999; Meyer, 1999; Marinatto and Weber, 2000; Benjamin and
Hayden, 2001; Piotrowski and Sładkowski, 2003; Bleiler, 2008;
Salimi and Soltanzadeh, 2009; Landsburg, 2011). This is an
interdisciplinary approach that connects three different fields:
quantum mechanics, information theory, and game theory in a
concrete way. Quantum game theory offers different protocols
that are based on the uses of quantum mechanical phenomena
like entanglement, quantum superposition, and interference
arising due to wave mechanical aspects of such systems. In the
context of game theory, quantum strategies are first introduced in
two articles by Eisert et al. (1999) and Meyer (1999) where they
showed that a player performing a quantum move wins against
a player performing a classical move regardless of their classical
choices. The advantage of a quantum strategy over a classical one
has been specifically investigated in Eisert et al. (1999) for the
case of Prisoners’ dilemma. This idea is generalized for multiple
players by Benjamin and Hayden (2001) with a specific solution
for four players. The authors here introduced the quantum
minority game where they showed that an entanglement shared
between the players promises better performance of quantum
strategy over the classical one. Chen et al. (2004) further extends
this result of quantum minority game for N-players.

Since then, different aspects of multi-player quantum
minority games are being studied extensively. As already
mentioned, the KPR problem is a minority game with a large
number of choices for each of the players, who are also equally
large in number. Sharif and Heydari (2011) introduced the
quantum version of the KPR game, with a solution for three
agents and three choices. This study was later extended by
Sharif and Heydari (2012a), Ramzan (2013), and Sharif and
Heydari (2013) for the three and multi-player quantum minority
games, including the quantum KPR games (essentially one-shot
solutions). For a detailed discussion refer to Chakrabarti et al.
(2017).

We review here the statistics of the KPR problem employing
both classical and quantum strategies. The article is organized as
follows. In Section 2, we describe the classical strategies of the
KPR game and show that there exists a phase transition when the
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number of customers is less than the number of restaurants. We
also discuss there the possible ways by which we can minimize
the social wastage fraction. In Section 3, we first discuss the
general setting of quantum games and then provides a flavor
of two game theoretical problems, such as Prisoners’ dilemma
and minority game in the context of both classical and quantum
strategies. In Section 4, we introduce the quantum version of
the KPR problem. We review here the results of the one-shot
quantum KPR problem with three players and three choices by
Sharif and Heydari (2011, 2012a,b), and Ramzan (2013). We
show that by using quantum strategies one can gain in payoff by
50% compared to the classical strategies for a one-shot KPR game
with three players and three choices. We also discuss the effect of
entanglement and decoherence (or loss of phase coherence) in
finding the expected payoff of a player for the above mentioned
problem.

2. STATISTICS OF KPR GAME: CLASSICAL
STRATEGIES

Let us consider the KPR game with N restaurants and λN non-
communicating players (agents or customers). We assume that
everyday or evening or time (t), each restaurant prepares only
one dish (generalization to a larger number would not affect the
statistics of the game). As discussed, every time t, the objective
of each of the players is to choose one among N restaurants
such that she will be alone there in order to get the only dish.
If some restaurant is visited by more than one customer, then the
restaurant selects one of them randomly and serves the dish to
her; thus, the rest of the visitors there would remain unhappy by
starving that evening.

Let us consider first the random choice (no learning) case
where each player chooses randomly any of the restaurants. Then
the probability P of choosing one restaurant by n (≤ N) players
is

P(n) =
(
λN

n

)

pn(1− p)λN−n; p =
1

N
. (1)

In the case of N going to infinity, we get

P(n) =
λn

n!
exp(−λ). (2)

Hence, the fraction P(n = 0) of restaurants not chosen by any
customer is exp(−λ). The fraction of restaurants chosen by at
least one customer on any evening is, therefore, the utilization
fraction (Chakrabarti et al., 2009)

f = 1− exp(−λ). (3)

If N agents (where λ = 1) randomly choose and visit anyone
among N restaurants then utilization fraction f becomes 1 −
exp(−1) ≃ 0.63. Since there is no iterative learning for this case,
every time the utilization fraction will be about 63% starting from
the first day (convergence time τ = 0).

It may be noted that a dictated solution to the KPR problem
is simple and very efficient from the first day. The Dictator is

not a player in the game and asks the players to form a queue
(with periodic boundary conditions), visit a restaurant according
to her respective positions in that queue, and continue shifting
by one step every day. Every player gets a dish, and hence, the
steady state (t-independent) social utilization fraction f becomes
maximum (unity) from the first day (τ = 1). This dictated
solution is applicable even when the restaurants have ranks
(agreed by all the customers) i.e., agents have their preferences
over the restaurants. Thus, the dictated solution is very efficient
in achieving maximum utility from the first day (f = 1, τ = 1).
However, no choice of the individual is considered here and in a
democratic set-up no such a dictatorial strategy is acceptable.

We now consider the case where the players try to learn
and update their strategies for choosing a restaurant to avoid
overcrowding the chosen restaurant. As already discussed, we
measure the social utilization fraction f (t) on any day t as

f (t) =
N

∑

i=1

[δ(ni(t))/λN], (4)

where δ(n) = 1 for n ≥ 1 and δ(n) = 0 for n = 0; ni(t) denotes
the number of customers arriving at the ith (rank if customer
choice is considered) restaurant on t th evening. The goal is to
learn collectively toward achieving f (t) = 1 preferably in finite
convergence time τ , i.e., f (t) = 1 for t ≥ τ , where τ is finite.

Earlier studies (refer to e.g., Chakrabarti et al., 2009, 2017;
Ghosh et al., 2010a,b, 2012; Sinha and Chakrabarti, 2020) had
proposed several learning strategies for the KPR game. In Ghosh
et al. (2010b), Ghosh et al. (2012), Sinha and Chakrabarti (2020),
and Chakrabarti and Sinha (2021), the authors had studied
several stochastic crowd avoidance learning strategies leading to
increased utilization fraction (compared to the random choice
case Equation 3). In some of the cases, this is achieved (f = 1)
at a critical point (Stanley, 1987) where τ goes to infinity due to
critical slowing down.

Here, we discuss numerical (Monte Carlo) results for the
statistics of the KPR game where λN (λ > 0) customers choose
one among N restaurants following a strategy discussed next. On
day t, an agent goes back to her last day’s visited restaurant k with
a probability

pk(t) = [nk(t − 1)]−α; α > 0 (5a)

and chooses a different restaurant (k′ 6= k) among any of the
(N − 1) neighboring restaurants, with probability

pk′ (t) = (1− pk(t))/(N − 1). (5b)

These “learning” strategies employed by the players, for the
choice of restaurants placed on different dimensional (d) lattices.
In infinite dimension (mean field case), the restaurant indices k
and k′ in Equation (5a, 5b) run from 1 to N of the lattice. For
finite dimensions, k runs from 1 to N while k′ corresponds to the
nearest neighbor of the kth restaurant on the lattice.

Authors in Ghosh et al. (2012) had studied crowd dynamics
with α = 1, λ = 1 in infinite, 2d, 1d lattice structure of
restaurants. KPR dynamics for α ≤ 1, λ = 1 had been studied
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in Sinha and Chakrabarti (2020) for infinite, 3d, 2d, 1d lattice
structure of restaurants. Phase transition behaviors are observed
for α near αc = 0+ for infinite, 3d and 2d lattice structure of
the restaurants. The steady state statistics are studied when the
utilization fraction f (t) remains the same (within a predefined
margin) for further iterations. The steady state wastage fraction
(1 − f ) and the convergence time τ for reaching the steady state
are found to vary with 1α ≡ |α − αc| as (1 − f ) ∼ 1αβ and
τ ∼ 1α−γ with β ≃ 0.8, 0.87, 1.0 and γ ≃ 1.18, 1.11, 1.05
in infinite-dimension, 3d and 2d lattice structures, respectively.
Results of 1d lattice structure are found to be trivial unlike other
dimensions and no phase transition (f reaches unity with no
divergence in τ ) is seen for any α > 0.

Here, we discuss the numerical results of the Monte Carlo
studies on steady state statistics of the KPR game dynamics for
general α and λ cases. In the case where α = 1 and λ is < 1, we
find power law fits for social wastage fraction (1 − f ) ∼ 1λβ

and convergence time τ ∼ 1λ−γ with β = 1.0 ± 0.02 and
γ = 0.5 ± 0.02 in infinite dimension with 1λ ≡ |λ − λc|,
where λc = 0.74 ± 0.01 (refer to Figures 1, 2). For finite size N,
we observe the effective critical point λc(N) for which the finite
size scaling (refer to Figure 2) gives the best fit for dν = 2.0 and
λc = 0.74± 0.01.

A crude estimate of the mean field value of λc can be
obtained as follows. Here, λN agents choose every day among
the N restaurants. Hence, the probability of any restaurant being
chosen by a player is λN

N = λ, and the fraction of restaurants
not visited by any player will be (1 − λ). In the steady state, the
number of players n choosing any restaurant can be 0, 1, 2, 3, . . . .
If we assume the maximum crowd size at any restaurant on any
day to be 2, then the probability of those restaurants going vacant
next day will be ( 12 )

2. Hence, the critical value λc of λ in the steady
state will be given by

1− λc =
1

4
, (6)

giving λc ≃ 0.75. For more details refer to Ghosh et al. (2012).

3. QUANTUM GAMES

In the setting of quantum games, the N different choices of
any arbitrary player or agent are encoded in the basis states of
an N-level quantum system that acts as a subsystem with N-
dimensional Hilbert space. The total system for M (= λN as
defined in Section 2) players or agents can be represented by a
state vector in a

∏M
i=1 dim(HLi ) dimensional Hilbert spaceHL =

HLM ⊗HLn−1 · · ·⊗HL1 , whereHLi is the Hilbert space of the i-
th subsystem. The different subsystems are distributed among the
players and the initial state of the total system is chosen so that the
subsystems become entangled. The players do not communicate
with each other before choosing a strategy. A strategy move in
quantum games is executed by the application of local operators
associated with each player on the quantum state. The players do
not have access to any other parts of the system except their own
subsystems. In addition, no information is shared between the
players exploiting the quantum nature of the game. The quantum
strategies are indeed the generalized form of classical strategies

with si ∈ Si ⇒ Ui ∈ S(Ni), where the set of permitted local
quantum operations S(Ni) is some subset of the special unitary
group SU(Ni).

We will now describe different steps of the quantum game
protocol (Sharif and Heydari, 2012b). The game starts with an
initially entangled state |ψn〉 shared by different players. We have
considered the subsystems of the same dimension N that indeed
denotes the number of pure strategies available to each player.
The number of subsystems is equal to the number of players.
It can be thought that |ψn〉 has been prepared by a referee who
distributes the subsystems among the players. By choosing a
unitary operatorU from a subset of SU(N), the players apply that
on their subsystems and, the final state is given by

ρfin = U ⊗ U ⊗ · · · ⊗ UρinU
† ⊗ U† ⊗ · · · ⊗ U†, (7)

where ρin and ρfin are the initial and final density matrix of
the system, respectively. Due to the symmetry of the games
and, since the players do not communicate among themselves,
they are supposed to do the same operation. The advantage of
the quantum game over the classical one is that it reduces the
probability of collapsing the final state ρfin to the basis states
that have lower or zero payoff $. Since quantum mechanics is
a fundamentally probabilistic theory, the only notion of payoff
after a strategic move is the expected payoff. To evaluate the
expected payoffs, the first step is to define a payoff operator Pi
for an arbitrary player i and that can be written as

Pi =
∑

j

$
j
i|α

j
i〉〈α

j
i |, (8)

where $
j
i are the associated payoffs to the states |αji〉 for i-th

player. The expected payoff Ei($) of player i is then calculated by
considering the trace of the product of the final state ρfin and the
payoff-operator Pi,

Ei($) = Tr
(

Piρfin
)

. (9)

The Prisoners’ dilemma is a game with two players and both of
them have two independent choices. In this game, two players,
Alice and Bob choose to cooperate or defect without sharing
any prior information about their actions. Depending on their
combination of strategies, each player receives a particular payoff.
Once Bob decides to cooperate, Alice receives payoff $A = 3 if
she also decides to cooperate, and she receives $A = 5 if she
decides to defect. On the other hand, if Bob sets his mind to
defect, Alice receives $A = 1 by following Bob and, $A = 0 by
making the other choice. It reflects that whatever Bob decides
to choose, Alice will always gain if she decides to defect. Since
there is no possibility of communication between the players,
the same is true for Bob. This leads to a dominant strategy
when both the players defect and they both have a payoff of
$A/B = 1. In terms of game theory, this strategy of mutual
defection is a Nash equilibrium, because none of the players
can do better by changing their choices independently. However,
it can be noted that this is not an efficient solution. Because
there exists a Pareto optimal strategy when both the players
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FIGURE 1 | Plots of steady state convergence behavior in infinite dimensional lattice; Social wastage fraction (1− f ) and convergence time τ against customer

fraction λ. Observed power laws are (1− f ) ∼ 1λβ where β = 1.0± 0.02 and τ ∼ 1λ−γ where γ = 0.5± 0.02. Here, 1λ ≡ |λ− λc(N)|. The insets show the variation

of f and τ against λ, showing the diverging behavior of τ where f reaches unity at λ = λc(N). (A) for N = 16,000 and (B) for N = 32,000.

cooperate, and they both receive $A/B = 1. This gives rise
to a dilemma in this game. After a few decades, the quantum
version of this game is introduced by Eisert et al. (1999). In
the quantum formulation, the possible outcomes of classical
strategies (cooperate and defect) are represented by two basis
vectors of a two-state system, i.e., a qubit. For this game, the
initial state is considered as amaximally entangled Bell-type state,
and the strategic moves for both the players are performed by
the unitary operators from the subset of the SU(2) group. In this
scenario, a new Nash equilibrium is emerged in addition to the
classical one, i.e., when both the players choose to defect. For
the new case, the expected payoffs for both the players are found
to be E($A) = E($B) = 3. This is exactly the Pareto optimal
solution for the classical pure strategy case. In the quantum
domain, this also becomes a Nash equilibrium. Thus, considering
a particular quantum strategy one can always get an advantage
over a classical strategy.

The above game is generalized for multiple players with two
choices in the minority game theory. In this game, n non-
communicating agents independently make their actions from
two available choices, and the main target of the players is to
avoid the crowd. The choices are then compared and the players
who belong to the smaller group are rewarded with a payoff
$ = 1. If two choices are evenly distributed, or all the players
make the same choice, no player will get any reward. To get
the Nash equilibrium solution, the players must choose their
moves randomly, since the deterministic strategy will lead to
an undesired outcome where all the players go for the same
choice. In this game, the expected payoff E($) for a player can
be calculated by the ratio of the number of outcomes that the
player is in the minority group and the number of different
possible outcomes. For a four-player game, the expected payoff
of a player is found to be 1/8, since each player has two minority
outcomes out of sixteen possible outcomes. A quantum version
of this game for four players was first introduced by Benjamin
and Hayden (2001). They have shown that the quantum strategy

FIGURE 2 | Extrapolation study of the effective finite size dependent critical

density of customers λc(N). The system size dependence is fitted to 1√
N
and

we get λc = 0.74± 0.01 for λc ≡ λc(N → ∞).

provides better performance than the classical one for this game.
The application of quantum strategy reduces the probability of
even distribution of the players between two choices, and this
fact is indeed responsible for the outer performance of quantum
strategy over classical one. The quantum strategy provides an
expected payoff E($) = 1/4 for the four-player game which is
twice of the classical payoff.

4. QUANTUM KPR PROBLEM

As already mentioned, the Kolkata restaurant problem is
a generalization of the minority game, where λN non-
communicating agents or players generally have N choices.
The classical version of the KPR problem has been discussed
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in Section 2. This problem is also studied in the quantum
mechanical scenario, where the players are represented by
different subsystems, and the basis states of the subsystems
are different choices. To remind, for the KPR game, each of
λN customers chooses a restaurant for getting the lunch from
N different choices in parallel decision mode. The players
(customers) receive a payoff if their choice is not too crowded,
i.e., the number of customers with the same choices is under
some threshold limit. For this problem, this limit is considered
as one. If more than one customer arrives at any restaurant for
their lunch, then one of them is randomly chosen to provide the
service, and the others will not get lunch on that day.

Let us consider a simple case of three players, say, Alice,
Bob, and Charlie who have three possible choices: restaurant 1,
restaurant 2, and restaurant 3. They receive a payoff $ = 1
if they make a unique choice, otherwise they receive a payoff
$ = 0. Therefore, it is a one-shot game, i.e., non-iterative, and
the players do not have any knowledge from previous rounds
to decide their actions. Since the players can not communicate,
there is no other way except to randomize the choices. In this
case, there is a total of 27 different combinations of choices and
12 of that provide a payoff $ = 1 to each of the players. Therefore,
randomization between the choices leads to an expected payoff
Ec($) = 4/9 for each of the players using the classical strategy.

The quantum version of the KPR problem with three players
(M = 3; λ = 1) and three choices (N = 3) is first introduced
by Sharif and Heydari (2011). In this case, Alice, Bob, and
Charlie share a quantum resource. Each of these players has
a part in a multipartite quantum state. Whereas, the classical
players are allowed to randomize between their discrete set of
choices, for the quantum version, each subsystem is allowed to be
transformed by local quantum operations. Therefore, choosing
a strategy of choice is equivalent to choosing a unitary operator
U. In absence of the entanglement in the initial state, it has
been found that quantum games yield the same payoffs as its
classical counterpart. On the other hand, it has been shown that
sometimes a combination of unitary operators and entanglement
outperform the classical randomization strategy.

In this particular KPR problem, the players have three choices,
therefore, we need to deal with qutrits instead of qubits that are
used for two choices to apply quantum protocols (Sharif and
Heydari, 2012b). The local quantum operations on qutrits are
performed by a complicated group of matrices from SU(3) group,
unlike in the case of qubits where the local operators belong to the
SU(2) group. A qutrit is a three-level quantum system on a three-
dimensional Hilbert space HL = C3. The most general form of
the quantum state of a qutrit on the computational basis is given
by

|ψ〉 = c0|0〉 + c1|1〉 + c2|2〉, (10)

where c0, c1, and c2 are three complex numbers satisfying the
relation |c0|2 + |c1|2 + |c2|2 = 1. The basis states follow the
orthonormal condition 〈i|j〉 = δi,j, where i, j = 0, 1, 2. Then,
the general state of an n-qutrit system can be written as a linear

combination of 3n orthonormal basis vectors:

|9〉 =
2

∑

yn ,..,y1=0

cyn ...y1
∣
∣yn · · · y1

〉

, (11)

where the basis vectors are the tensor product of individual qutrit
states, defined as,

∣
∣yn · · · y1

〉

=
∣
∣yn

〉

⊗
∣
∣yn−1

〉

⊗ · · · ⊗
∣
∣y1

〉

∈ HL =

n-times
︷ ︸︸ ︷

C3 ⊗ ...⊗ C3,
(12)

with yi ∈ {0, 1, 2}. The complex coefficients satisfy the
normalization condition

∑

|cyn ...y1 |2 = 1.
A single qutrit can be transformed by a unitary operator U

that belongs to the special unitary group of degree 3, denoted by
SU(3). In a system of n qutrits, when an operation is performed
only on a single qutrit, it is said to be local. The corresponding
operation changes the state of that particular qutrit only. Under
local operations, the state vector of a muti-qutrit system is
transformed by the tensor products of individual operators, and
the final state is given by

|9fin〉 = Un ⊗ Un−1 ⊗ · · · ⊗ U1 |9in〉 , (13)

where |9in〉 is the initial state of the system.
The SU(3) matrices, i.e., 3 × 3 unitary matrices are

parameterized by defining three orthogonal complex unit vectors
ū, v̄, w̄, such that ū · v̄ = 0 and ū∗ × v̄ = w̄ (Mathur and Sen,
2001). A general complex vector with a unit norm is given by

ū =





sin θ cosφeiα1

sin θ sinφeiα2

cos θeiα3



 , (14)

where 0 ≤ φ, θ ≤ π/2, and 0 ≤ α1,α2,α3 ≤ 2π . An another
complex unit vector satisfying ū · v̄ = 0 is given by

v̄ =





cosχ cos θ cosφei(β1−α1) + sinχ sinφei(β2−α1)

cosχ cos θ sinφei(β1−α2) − sinχ cosφei(β2−α2)

− cosχ sin θei(β1−α3)



 , (15)

where 0 ≤ χ ≤ π/2 and 0 ≤ β1,β2 ≤ 2π . The third complex
unit vector w̄ is determined from the orthogonality condition of
the complex vectors. Then, a general SU(3) matrix is constructed
by placing ū, v̄∗, and w̄ as its columns (Mathur and Sen, 2001),
and it can be written as

U =





u1 v∗1 u∗2v3 − v∗3u2
u2 v∗2 u∗3v1 − v∗1u3
u3 v∗3 u∗1v2 − v∗2u1



 . (16)

Therefore, this 3 × 3 matrix is defined by eight real parameters
φ, θ ,χ ,α1,α2,α3,β1,β2.

To start the game, we need to choose an initial state that is
shared by the players. It can be assumed that an unbiased referee
prepares the initial state and distributes the subsystems among
the players. Thenceforth, no communication or interaction is
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allowed between the players and the referee. To choose an initial
state, we need to fulfill three criteria: (a) The state should be
entangled so that it can accommodate correlated randomization
between the players. (b) The state must be symmetric and
unbiased with respect to the positions of the players since the
game follows these properties. (c) It must have the property
of accessing the classical game through the restrictions on the
strategy sets. A state that fulfills these criteria is given by

| ψin〉 =
1
√
3
(|000〉 + |111〉 + |222〉) . (17)

This is also a maximally entangled GHZ-type state that is defined
on HL = C

3 ⊗ C
3 ⊗ C

3. We consider this as the initial state to
start the game.

To show that the assumed initial state satisfies the above
criterion (c), we consider a set of operators representing the
classical pure strategies that leads to deterministic payoffs when
those are applied to the initial state |ψin〉. This set of operators is
given by the cyclic group of order 3, C3, generated by the 3 × 3
matrix

s =





0 0 1
1 0 0
0 1 0



 , (18)

with the following properties: s0 = s3 = I and s2 = s−1 = sT .
Then the players choose their classical strategies from a set of
operators S = {s0, s1, s2} with sa ⊗ sb ⊗ sc|000〉 = |a b c〉, where
a, b, c ∈ {0, 1, 2}. By acting the set of classical strategies on the
initial state |ψin〉, we get the final state as

sa ⊗ sb ⊗ sc
1
√
3
(|000〉 + |111〉 + |222〉)

=
1
√
3
(|0+ a 0+ b 0+ c〉 + |1+ a 1+ b 1+ c〉

+ |2+ a 2+ b 2+ c〉). (19)

It is important to note here, that the superscripts indicate the
powers of the generator matrix and the addition is Modulo 3.

To proceed with the quantum game, an initial density matrix
is constructed by using the initial state |ψin〉 and adding a noise
term, controlled by the parameter f (Schmid et al., 2010). The
density matrix can be written as

ρin = f | ψin〉〈ψin | +
1− f

27
I27, (20)

where the parameter f ∈ [0, 1] and I27 is the 27 × 27 identity
matrix. The parameter f is a measure of the fidelity of production
of the initial state (Ramzan and Khan, 2012; Sharif and Heydari,
2012b). For f = 0, the initial state is fully random, since the
corresponding density matrix has zero off-diagonal elements and
non-zero diagonal elements are of equal strength. On the other
hand, for f = 1, the initial state is entangled with zero noise.
For the values of f between 0 and 1, the initial state is entangled
with non-zero noise measured by f . Alice, Bob, and Charlie will
now choose their strategies by considering a unitary operator

U(φ, θ ,χ ,α1,α2,α3,β1,β2), and after their actions, the initial
state ρin transforms into the final state

ρfin = U ⊗ U ⊗ UρinU
† ⊗ U† ⊗ U†. (21)

Here we assume the same unitary operator U for all three
players since there is no scope of communication among
them. Therefore, it is practically impossible to coordinate which
operator to be applied by whom. The next step is to construct a
payoff operator Pi for each of the i-th player. This is defined as
a sum of outer products of the basis states for which i-th player
receives a payoff $ = 1. For example, the payoff operator of Alice
is given by

PA =





2
∑

y3 ,y2 ,y1=0

|y3y2y1〉〈y3y2y1|, y3 6= y2, y3 6= y1, y2 6= y1





+





2
∑

y3 ,y2 ,y1=0

|y3y2y1〉〈y3y2y1|, y3 = y2 6= y1



 . (22)

Note that the terms inside the first bracket of the operator
represents the scenario when all three players have different
choices, whereas the second bracket leads to the fact that Alice’s
choice is different from Bob and Charlie who have the same
choices. In the same way, one can find the payoff matrices for
Bob and Charlie. As defined in Equation (9), the expected payoff
of player i can be calculated as

Ei($) = Tr
(

Piρfin
)

, (23)

where i ∈ {A,B,C}.
The problem now is to find an optimal strategy, i.e., to

determine a general unitary operatorU(φ, θ ,χ ,α1,α2,α3,β1,β2)
that maximizes the expected payoff. In this game, all the players
will have the same expected payoff for a particular strategy
operator, since they do not communicate with each other during
the process. Therefore, the optimization of expected payoff can
be done with respect to any of the three players. It has been
shown in Sharif and Heydari (2011), that there exists an optimal
unitary operatorUopt with the parameter values listed in Table 1,
for which one finds a maximum expected payoff of E($) = 6/9,
assuming a pure initial state [f = 1; refer to Equation (20)]. Thus,
the quantum strategy outperforms classical randomization, and
the expected payoff can be increased by 50% compared to the
classical case where the expected payoff was found to be Ec($) =
4/9. It also has been shown that Uopt is a Nash equilibrium,
because no players can increase their payoff by changing their
individual strategy from Uopt to any other strategy U (for details,
refer to Sharif and Heydari, 2011).

By applying Uopt to the initial state (refer to Equation 17), the
final state is given by

| ψfin〉 =
1

3
(|000〉 + |111〉 + |222〉 + |012〉 + |021〉

+ |102〉 + |120〉 + |201〉 + |210〉). (24)
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TABLE 1 | Parameter values for an optimal unitary operator Uopt.

Parameter φ θ χ α1 α2 α3 β1 β2

Value
π

4
cos−1

(
1
√
3

)
π

4

5π

18

5π

18

5π

18

π

3

11π

6

Note that this is a collection of all the basis states that leads to
providing a payoff either to all three players or none of them.
We see that the optimal strategy profile Uopt ⊗ Uopt ⊗ Uopt

becomes unable to get rid of the most undesired basis states
|000〉, |111〉, |222〉 (i.e., no players will receive any payoff) from
the final state. This failure is indeed responsible for getting
expected payoff E($) = 6/9 instead of unity. For a general noise
term f and optimal strategy, the expected payoff can be calculated
as E($(Uopt, f )) = 2

9 (f + 2) (Sharif and Heydari, 2011). This
general result is compatible with the case of f = 1, and it also
reproduces the classical value as f → 0.

4.1. Effect of Entanglement
We now investigate whether the level of entanglement of the
initial state affects the payoffs of the players in quantum KPR
problem with three players and three choices. To show this effect,
one can start the game with a general entangled state

| ψin〉 = sinϑ cosϕ|000〉 + sinϑ sinϕ|111〉 + cosϑ |222〉, (25)

where 0 ≤ ϑ ≤ π and 0 ≤ ϕ ≤ 2π . Using the given optimal
strategy Uopt and the above general initial state, the expected
payoff can be found as

E($(Uopt ,ϑ ,ϕ)) =
1

9
(sin(ϕ) sin(2ϑ)+ cos(ϕ)(2 sin(ϕ) sin2(ϑ)

+ sin(2ϑ))+ 4). (26)

This relation is used to find the values of ϑ and ϕ for which the
expected payoff becomesmaximum. In Sharif andHeydari (2011,
2012a), it has been shown that the maximum expected payoff
occurs for ϕ = π

4 ,
3π
4 and ϑ = ± cos−1(1/

√
3), i.e., when the

initial state is maximally entangled that we have considered in
Equation (17). A small deviation from the maximal entangled
state reduces the expected payoff from its maximum value (refer
to Figure 3). It can be noted here that the expected payoff
has a strong dependence on the level of entanglement of the
initial state.

4.2. Effect of Decoherence
It is practically impossible to completely isolate a quantum
system from the effects of the environment. Therefore, the studies
that account for such effects have practical implications. In this
context, the study of decoherence (or loss of phase information)
is essential to understanding the dynamics of a system in
presence of system-environment interactions. Quantum games
are recently being explored to implement quantum information
processing in physical systems (Pakuła, 2007) and can be used to
study the effect of decoherence in such systems (Johnson, 2001;
Chen et al., 2003; Flitney and Abbott, 2004; Ramzan and Khan,
2008, 2010). In this connection, different damping channels can

be used as a theoretical framework to study the influence of
decoherence in quantum game problems.

We here study the effect of decoherence in three-player
and three-choice quantum KPR problem by assuming
different noise models, such as amplitude damping, phase
damping, depolarizing, phase flip and trit-phase flip channels,
parameterized by a decoherence parameter p, where
p ∈ [0, 1] (Ramzan, 2013). The lower limit of decoherence
parameter represents a completely coherent system, whereas the
upper limit represents the zero coherence or fully decohered case.

In a noisy environment, the Kraus operator representation
can be used to describe the evolution of a quantum state by
considering the super-operator 8 (Nielsen and Chuang, 2001).
Using density matrix representation, the evolution of the state is
given by

ρ̃f = 8(ρf ) =
∑

k

Ekρf E
†
k
, (27)

where the Kraus operators Ek follow the completeness relation,

∑

k

E†
k
Ek = I. (28)

The Kraus operators for the game are constructed using the single
qutrit Kraus operators as provided in Equations (30,31,32,33,34)
by taking their tensor product over all n3 combination of π (i)
indices

Ek = ⊗
π
eπ(i), (29)

with n being the number of Kraus operators for a single qutrit
channel. For the amplitude damping channel, the single qutrit
Kraus operators are given by Ann and Jaeger (2009).

E0 =





1 0 0
0

√
1− p 0

0 0
√
1− p



 , E1 =





0
√
p 0

0 0 0
0 0 0



 ,

E2 =





0 0
√
p

0 0 0
0 0 0



 . (30)

In a similar way, the single qutrit Kraus operators for the phase
damping channel can be found as (refer to e.g., Ramzan and
Khan, 2012)

E0 =
√

1− p





1 0 0
0 1 0
0 0 1



 , E1 =
√
p





1 0 0
0 ω 0
0 0 ω2



 , (31)
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FIGURE 3 | Expected payoff E($(Uopt,ϑ ,ϕ)) as a function of ϑ and ϕ, for a quantum KPR game with three players and three choices with the optimal strategy

operator Uopt. Each pair of ϑ and ϕ indicates a different initial state according to Equation (25). The peak in E($) occurs for a maximally entangled initial state, i.e., for

ϑ = cos−1(1/
√
3) and ϕ = π/4 (taken from Sharif and Heydari, 2012c).

where ω = e
2π i
3 . For the depolarizing channel, the single qutrit

Kraus operators take the forms as (refer to e.g., Salimi and
Soltanzadeh, 2009),

E0 =
√

1− pI, E1 =
√

p

8
Y , E2 =

√

p

8
Z, E3 =

√

p

8
Y2,

E4 =
√

p

8
YZ, (32)

E5 =
√

p

8
Y2Z, E6 =

√

p

8
YZ2, E7 =

√

p

8
Y2Z2, E8 =

√

p

8
Z2,

(33)
where

Y =





0 1 0
0 0 1
1 0 0



 , Z =





1 0 0
0 ω 0
0 0 ω2



 . (34)

The single qutrit Kraus operators associated with the phase flip
channel are given by

E0 =





1 0 0
0

√
1− p 0

0 0
√
1− p



 , E1 =





0
√
p 0

0 0 0
0 0 0



 ,

E2 =





0 0
√
p

0 0 0
0 0 0



 . (35)

Similarly, the single qutrit Kraus operators for the trit-phase flip
channel can be found as

E0 =
√

1−
2p

3





1 0 0
0 1 0
0 0 1



 , E1 =
√

p

3






0 0 e
2π i
3

1 0 0

0 e
−2π i
3 0




 ,

E2 =
√

p

3






0 e
−2π i
3 0

0 0 e
2π i
3

1 0 0




 , E3 =

√

p

3






0 e
2π i
3 0

0 0 e
−2π i
3

1 0 0




 ,

(36)

where the term p = 1 − e−Ŵt determines the strength of
quantum noise which is usually called a decoherence parameter.
This relation describes the bounds [0, 1] of p by two extreme
time limits t = 0, ∞, respectively. The final density matrix
representing the state after the action of the channel is given by

ρ̃f = 8p(ρf ) (37)

where 8p is the super-operator for realizing a quantum
channel parameterized by the decoherence parameter p. The
payoff operator for the ith player (say Alice) is given by
Equation (22).The expected payoff of ith player can be calculated
as

Ei($) = Tr{PAρ̃f } (38)
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FIGURE 4 | (Color online) Variation of Alice’s expected payoff as a function of the decoherence parameter p for (A) f = 0.2, (B) f = 0.5, (C) f = 1, and (D) θ = π
4 ,

φ = cos−1(1/
√
3) for amplitude damping, depolarizing, phase damping, trit-phase flip, and phase flip, channels (taken from Ramzan, 2011).

where Tr represents the trace of the matrix. We have already
studied the zero noise case (p = 0) in Section 4 considering the
fidelity f = 1. It has been found that there exists an optimal
unitary operator Uopt for which the expected payoff of a player
becomesmaximum.We here consider how a non-zero noise term
p and the fidelity, f 6= 1 affects the expected payoff.

In order to explain the effect of decoherence on the quantum
KPR game, we investigate expected payoff by varying the
decoherence parameter p for different damping channels. Due
to the symmetry of the problem, we have considered expected
payoff of one of the three players (say Alice) for further
investigations. In Figure 4, the expected payoff of Alice is plotted
as a function of decoherence parameter p for different values
of fidelity f and different damping channels, such as amplitude
damping, depolarizing, phase damping, trit-phase flip, and phase

flip channels. It is observed that Alice’s payoff is strongly affected
by the amplitude driving channel as compared to the flipping and
depolarizing channels. The effect of entanglement of the initial
state is further investigated by plotting Alice’s expected payoff as
a function of θ and φ in presence of noisy environment with
decoherence parameter p = 0.7 for different damping cases:
(a) amplitude damping, (b) phase damping, (c) depolarizing,
and (d) trit-phase flip channels (refer to Figure 5). In this
scenario, one can see that Alice’s payoff is heavily affected by
depolarizing noise compared to the other noise cases. This plot
is also repeated for the highest level of decoherence, i.e., p = 1
(see Figure 6). It is seen that there is a considerable amount of
reduction in Alice’s payoff for amplitude damping, depolarizing
and trit-phase flip cases, whereas phase damping channel almost
does not affect the payoff of Alice. Interestingly, the problem
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FIGURE 5 | (Color online) Alice’s expected payoff as a function of θ and φ [determined by Equation (25)] for (A) amplitude damping, (B) phase damping, (C)

depolarizing, and (D) trit-phase flip channels with decoherence parameter p = 0.7 (taken from Ramzan, 2011).

becomes noiseless for the maximum decoherence in the case
of the phase damping channel. Finally, the maximum payoff
is achieved for the case of the highest initial entanglement
and zero noise, and it starts decreasing when the degree of
entanglement deviates from maxima or introduces a non-zero
decoherence term. Moreover, it has also been checked that
the introduction of decoherence does not change the Nash
equilibrium of the problem.

5. SUMMARY AND DISCUSSION

In the Kolkata Paise Restaurant or KPR game λN players choose
every day independently but based on past experience or learning
one of the N (→ ∞) restaurants in the city. As mentioned,
the game becomes trivial if a non-playing dictator prescribes the
moves to each player. Because of iterative learning, the KPR game
is not necessarily a one-shot game, though it is so for random
choice (no memory or learning from the past) by the players.

For random choices of restaurants by the players, the game
effectively becomes one-shot with convergence time τ = 1 and
steady utilization fraction f = 1− exp(−λ) ≃ 0.63 (Chakrabarti
et al., 2009), as shown through Equations 1, 2, 3 of Section 2.With
iterative learning following Equations 5a,b for α = 1, λ = 1 it
was shown numerically, as well as with a crude approximation
in Ghosh et al. (2010b), that the utilization fraction f becomes
of order 0.8 within a couple of iterations (τ of the order of
10). In Sinha and Chakrabarti (2020) the authors demonstrated
numerically that for λ = 1, f can approach unity when α becomes
0+ from above. However, the convergence time τ at this critical
point diverges due to critical slowing down (refer to e.g., Stanley,
1987), rendering such critically slow leaning of full utilization is
hard to employ for practical purposes (San Miguel and Toral,
2020). The cases of λ < 1 (and α = 1) were considered earlier
in Ghosh et al. (2012) and Sinha and Chakrabarti (2020), and
have also been studied here in Section 2, using the Monte Carlo
technique. A mean field-like transition (refer to e.g., Stanley,
1987) is observed here giving full utilization (f = 1) for λ
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FIGURE 6 | (Color online) Plot of Alice’s expected payoff as a function of θ and φ [determined by Equation (25)] for (A) amplitude damping, (B) phase damping, (C)

depolarizing, and (D) trit-phase flip channels with decoherence parameter p = 1 (from Ramzan, 2011).

less than λc about 0.75 where τ also remains finite. As shown
in Figure 1, τ diverges at the critical point λc (a crude mean field
derivation of it is given in Equation 6).

For the quantum version of the KPR problem, we have
discussed the one-shot game with three players and three choices
that was first introduced in Sharif and Heydari (2011); Also refer
to Sharif and Heydari (2012b). For this particular KPR game
with three players and three choices, the classical randomization
provides a total of 27 possible configurations, and 12 out of them
gives a payoff $ = 1 to each of the players, thus leading to an
expected payoff Ec($) = 4/9. On the other hand, for the quantum
case, it has been shown that when the players share a maximally
entangled initial state, there exists a local unitary operation (same
for all the players due to the symmetry of the problem) for which
the players receive a maximum expected payoff Eq($) = 6/9,
i.e., the quantum players can increase their expected payoff by

50% compared to their classical counterpart. To show the effect
of entanglement, the expected payoff is calculated for a general
GHZ-type initial state with different levels of entanglement (refer
to Figure 3). It appears that the maximally entangled initial state
provides maximum payoff Eq($) = 6/9 to each of the players.
The expected payoff decreases from its maximum value for any
deviation from the maximum entanglement of the initial state
(refer to Figure 3). This is the highest expected payoff that is
attained so far for a one-shot quantum KPR game with three
players and three choices (refer to Sharif and Heydari, 2012a).
Until now, the study of the quantum KPR problem is limited to
one shot with three players and three choices, and no attempt is
found yet to make it iterative, and also to increase the number
of players and choices. Therefore, it is yet to be understood
whether one can increase the expected payoff by making the
quantumKPR game iterative with learning from previous rounds

Frontiers in Artificial Intelligence | www.frontiersin.org 12 May 2022 | Volume 5 | Article 874061

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Chakrabarti et al. Classical and Quantum Kolkata Restaurant Problem

as happened in the case of classical strategies studied here. As a
consequence, unlike the classical KPR case, the development of
the quantum version of the KPR game is at a preliminary stage,
and its practical applications are not explored yet. However, the
applications of quantum game theory have recently been made,
with some success, to simulate recovery in a mobile database
system (refer to e.g., Madbouly et al., 2021).

Decoherence is an unavoidable phenomenon for quantum
systems since it is not possible to completely isolate a system
from the effects of the environment. Therefore, it is important
to investigate the influence of decoherence on the payoffs of
the players in the context of quantum games. The effect of
decoherence in a three-player and three-choice quantum KPR
problem is studied in Ramzan (2013) using different noise
models like amplitude damping, phase damping, depolarizing,
phase flip, and trit-phase flip channels, parametrized by a
decoherence parameter. The lower and upper limits of the
decoherence parameter represent the fully coherent and fully
decohered system, respectively. Expected payoff is reported to
be strongly affected by amplitude damping channel as compared
to the flipping and depolarizing channels for the lower level of
decoherence, whereas it is heavily influenced by depolarizing
noise in case of a higher level of decoherence. However, for
the case of the highest level of decoherence, amplitude damping
channel dominates over the depolarizing and flipping channels,
and the phase damping channel has nearly no effect on the payoff.
Importantly, the Nash equilibrium of the problem is shown not
to be changed under decoherence.

There have been several applications of KPR game strategies to
various social optimization cases. KPR game has been extended
to Vehicle for Hire Problem in Martin (2017) and Martin and
Karaenke (2017). Authors have built several model variants
such as Individual Preferences, Mixed Preferences, Individual
Preferences with Multiple Customers per District, and Mixed
Preferences and Multiple Customers per District. Using these
variants, authors have studied various strategies for the KPR
problem that led to the foundation of an incentive scheme for
dynamic matching in mobility markets. Also in Martin and
Karaenke (2017), a modest level of randomization in choice
along with mixed strategies is shown to achieve around 80% of
efficiency in the vehicle for hire markets. A time-varying location
specific resource allocation crowd-sourced transportation is
studied using the methodology of mean field equilibrium (Yang
et al., 2018). This study provides a detailed mean field analysis
of the KPR game and also considers the implications of an
additional reward function. In Park and Saad (2017), a resource

allocation problem for a large IoT system, consisting of IoT
devices with imperfect knowledge, is formulated using the
KPR game strategies. The solution, where those IoT devices
autonomously learn equilibrium strategies to optimize their
transmission, is shown to coincide with the Nash equilibrium.
Also, several ‘emergent properties’ of the KPR game, such
as the utilization fraction or the occupation density in the
steady or stable states, and phase transition behavior, have been
numerically studied in Tamir (2018). A search problem often
arises as a time-limited business opportunity by business firms,
and is studied like a one-shot delegated search in Hassin (2021).
Authors here had discussed and investigated the searchers’
incentives following different strategies, including KPR, can
maximize search success. Authors in Kastampolidou et al. (2021)
have discussed KPR problem as Traveling Salesman Problem
(TSP) assuming restaurants are uniformly distributed on a two-
dimensional plane and this topological layout of the restaurants
can help provide each agent a second chance for choosing a better
or less crowded restaurant. Additionally, they have proposed a
meta-heuristics, producing near-optimal solutions in finite time
(as exact solutions of the TSP are prohibitively expensive). Thus,
agents are shown to learn fast, even incorporating their own
preferences, and achieve maximum social utilization in lesser
time with multiple chances.
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