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Large plant breeding populations are traditionally a source of novel allelic diversity and

are at the core of selection efforts for elite material. Finding rare diversity requires

a deep understanding of biological interactions between the genetic makeup of one

genotype and its environmental conditions. Most modern breeding programs still rely

on linear regression models to solve this problem, generalizing the complex genotype

by phenotype interactions through manually constructed linear features. However, the

identification of positive alleles vs. background can be addressed using deep learning

approaches that have the capacity to learn complex nonlinear functions for the inputs.

Machine learning (ML) is an artificial intelligence (AI) approach involving a range of

algorithms to learn from input data sets and predict outcomes in other related samples.

This paper describes a variety of techniques that include supervised and unsupervised

ML algorithms to improve our understanding of nonlinear interactions from plant breeding

data sets. Feature selection (FS) methods are combined with linear and nonlinear

predictors and compared to traditional prediction methods used in plant breeding.

Recent advances in ML allowed the construction of complex models that have the

capacity to better differentiate between positive alleles and the genetic background.

Using real plant breeding program data, we show that ML methods have the ability to

outperform current approaches, increase prediction accuracies, decrease the computing

time drastically, and improve the detection of important alleles involved in qualitative or

quantitative traits.

Keywords: machine learning, feature selection, linear models, genomic selection, wheat, oilseed rape

INTRODUCTION

Feature selection (FS) represents the identification of a subset of predictor variables that have
the ability to find genetic patterns associated with a variable, in our case with a phenotypic
trait. Reducing the amount of data from high-dimensional data sets, such as those we have in
practical plant breeding populations, decreases computational time and can prevent overfitting
and the curse of dimensionality (Guyon and Elissee, 2003). In genomics, FS allows the reduction
of redundant genetic areas from the new, high-yielding genetic tools, such as single-nucleotide
polyphormism (SNP) chips or genome-wide sequencing data. Moreover, many modern genomic
techniques produce data that have large levels of redundancy. In this context, FS can contribute
to the design of low-density SNP chips that capture most of the genetic variation necessary for
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practical plant breeding. In modern plant breeding programs,
extracting the key features that are involved in biological
processes of traits of interest and designing cost-efficient
prediction tools are preferred.

Modern statistical models used for predicting phenotypes,
estimating breeding values, or that deliver high rates of
genetic gain over time are essential for breeding. Methods
such as genome-wide association studies (GWAS) and genomic
selection (GS), which use the genetic variation from markers
to associate/predict phenotypic information, are frequently used
in breeding programs (Bernardo, 1994; Meuwissen et al., 2001).
GS is a standard tool used in breeding program nowadays as it
can decrease costs by reducing the length of breeding cycles or
increasing selection gain over time (Pérez-Rodríguez et al., 2012).

Machine learning (ML) algorithms could be used for genomic
predictions in data sets that contain a larger number of
parameters than observations, as is the case for most plant or
animal breeding populations. ML implements a wide variety
of techniques to identify patterns or predict characteristics in
extremely large data sets. In addition to trivial examples, like
unsupervised machine recognition software used to identify
cats in YouTube videos, or the software “AlphaGO”, which
defeated professional players in the highly complex computer
game “Go” (Silver et al., 2016), ML techniques have also found
their way into daily life in the form of numerous widely
used personal computer software applications (e.g., Google).
ML was efficiently applied, in very different research fields,
to improve forecasts of major earthquakes (DeVries et al.,
2018), the prediction of human population responses to toxic
compounds (Eduati et al., 2015), and the prediction of drug–
target interaction (Chen et al., 2018). As with suggestions made
by Google and other “consumer choice” software, crop breeding
shares the important objective of predicting and selecting the
most favorable candidates from enormous, diffuse, and diverse
data sets. Human genetics already widely exploits the two
major ML branches. Firstly, supervised ML techniques help
solve problems for which explanatory and response variables are
available, which are commonly applied to quantitative genetics
methods used for prediction, selection, and classification (e.g.,
the discovery of genetic factors associated with complex traits).
Secondly, unsupervised procedures are used when no response
variable exists. For example, population genetics often uses
unsupervised procedures for problems associated with clustering
of individuals and detecting genetic patterns in populations.
ML-based prediction in animal or plant breeding is using high-
density marker data to predict many complex traits (Gianola
et al., 2011; Khaki and Wang, 2019).

In this study, we investigated several linear and nonlinear
approaches for efficient FS methods combined with various
parametric learners to predict important agronomical traits
in a hybrid breeding population. The major objective was to
identify the most efficient FS, the optimal SNP subset size,
and the prediction accuracies and stabilities of the predictive
models. As a benchmark, ridge regression models for GS were
selected according to the methods described by Endelman
(2011). Three types of FS methods were implemented: (i) linear

dimensionality reduction using principal component analysis-
(PCA-) basedmethod with selection of the top PCs, (ii) nonlinear
dimensionality reduction using an embedded method, such as
random forest (RF), and (iii) a random selection of n features
from the data set. The features obtained from the FS filter
methods were used for the prediction of agronomical traits using
ridge regression best linear unbiased prediction (rrBLUP), least
absolute shrinkage and selection operator (LASSO) regression,
gradient boosting machines (GBM), artificial neural networks
(ANN), and Random Forest (RF).

Training and predictions were done on a spring-type Brassica
napus population composed of 950 F1 hybrids obtained from
a cross design of two mother lines (00 quality) and 475 father
lines and a diversity collection of 191 wheat cultivars, registered
in Europe between 1966 and 2013, tested in multi-location,
multiyear field trials. Prediction accuracies were obtained as
the median of the Pearson correlation between observed and
predicted values in a 10-fold cross-validation (CV) scenario. The
results suggested that filter methods have a positive impact on
prediction accuracies for specific, in general, monogenic traits.
With small- to medium-subset sizes (100–1,000 SNPs), the filter
methods outperformed predictions performed with the entire
data set, while decreasing drastically the computation time. The
FS methods generated stable results suggesting that a low-density
SNP matrix could be extracted for genome-based predictions
of agronomical important traits in oilseed rape (B. napus) and
wheat (Triticum aestivum).

MATERIALS AND METHODS

Experimental Phenotype Data
Phenome data were generated for a population of 950 F1 hybrids
obtained by crossing between two male sterile testers (MSL-T1
and MSL-T2, NPZ Lembke, Hohenlieth, Germany) and a diverse
population of 475 spring-type “00” B. napus cultivars (Jan et al.,
2016). F1 hybrids were tested at four different locations in Europe
using non-replicated trails. Six important agronomical traits were
investigated: seed yield (SY, in dt/ha), oil yield (OY, in dt/ha), seed
oil content (SOC, in percentage of volume per seed dry weight),
seedling emergence (SE, visual observation in a 1–9 scale), and
days of flowering (DTF, number of days from sowing until 50%
flowering plants per plot). We used phenotype data as predictors,
which were subjected to a restricted maximum likelihood model
(REML) and generated best linear unbiased estimate (BLUE).

For the diversity wheat panel, field trials included 191 cultivars
tested in six locations over the growing seasons 2014–2015
and 2015–2016 (Voss-Fels et al., 2019). Moreover, the selected
cultivars were analyzed in three different cropping intensities,
designated as HiN/HiF (220 kgN ha−1 mineral fertilizer, full
intensity of fungicides, insecticides, and growth regulators),
HiN/NoF (220 kgN ha−1 mineral fertilizer, no fungicides),
and low nitrogen inputs and no fungicide (LoN/NoF; 110
kgN ha−1 mineral fertilizer, no fungicides, insecticides, and
growth regulators) treatments. For the purpose of this study, we
selected the following traits for further investigations: grain yield
LoN/NoF, grain yield HiN/HiF, and grain yield HiN/NoF.
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SNP Genotyping
All founder lines from the B. napus panel were tested using
the Brassica 60k SNP Infinium consortium array (Illumina, Inc.,
San Diego, CA, USA). Genomic DNA was obtained using the
leaf material collected after seed sowing and extracted with
the BioSprint 96 extraction robot (Qiagen, Hilden, Germany).
DNA quality and quantity were evaluated using a Qubit 2.0
fluorometer (Life Technologies, Darmstadt, Germany) and by gel
electrophoresis. In total, 20 ng/µl of DNA per samples was sent
to TraitGenetics GmbH (Gatersleben, Germany) for genotyping
using the Brassica 60k SNP Infinium array (Illumina Inc., San
Diego, CA, USA). The basic local alignment search tool (BLAST)
was used to align SNPs to the B. napus cv. Darmor-bzh v4.1
reference genome (Chalhoub et al., 2014), according to the
protocol described by Jan et al. (2016). Further investigations
used 28,086 single-position SNPs for the genotyped material
(Supplementary Table S1).

All wheat cultivars from the panel were genotyped with
a 15K SNP Illumina Infinium iSelect genotyping platform.
Raw SNP data were filtered to remove markers with more
than 10% missing values and more than 5% minor allele
frequency (MAF). Physical genetic SNP marker positions in
the wheat genome were obtained by blasting to the genome
sequence assembly for the bread wheat cultivar Chinese
Spring (IWGCS Reference Sequence v1.0; https://wheat-urgi.
versailles.inra.fr/Seq-Repository/Assemblies) and filtered based
on quality control. For further analysis, 8,710 high-quality,
polymorphic SNP probes were given (Supplementary Data
File S1, Voss-Fels et al., 2019).

F1 Hybrid Genotyping for the Spring-Type
“00” B. napus
Single-nucleotide polyphormism marker profiles of the parental
lines (pollinators and male sterile mother lines) were used to
construct an in silico hybrid genotypes for all potential hybrid
combinations, as described byWerner et al. (2018). Bi-allelic SNP
markers were encoded into a 0, 1, and 2 matrices and a randomly
selected allele was used as the reference at a given locus. If both
parental genotypes were, at the specific locus, homozygous for
the same allele, then the hybrid genotype was encoded as 0 or
2, and if they were homozygous for a different allele, then 1 was
used. Heterozygous SNP from parental lines were encoded into
a 0.5, 1, or 1.5 in hybrid genotypes, assuming a probability of
0.5 that an allele is inherited by an offspring from one parent.
Even if it is uncertain which of the two potential alleles was
transmitted in the progenies, we can assume a ratio of 50–50%
of both paternal alleles to be present in a homogenous F1 hybrid
(Supplementary Table S2).

Feature Construction and Dimension
Reduction
Redundant features from the input data sets can influence
predictions using ML, therefore the input data should be
reduced or summarized into a smaller size of features. Moreover,
extraction of important features could also help understand
better the input data. These approaches are known as feature

learning methods that resolve the problem of setting peculiar
to vectors (Mamitsuka, 2018). Therefore, feature learners aim
at transforming the input data into learnable (reduce large or
redundant data and make ML models run more efficiently)
and interpretable (make the point of data comprehensible and
interpretable) features.

Trait association and variable selection algorithms include
variable ranking to make the breeding efforts and genetic-
based selection simpler, scalable, and with an increase success
rate. Moreover, variable importance ranking may prove to be a
lucrative step in building efficient predictions.

In our approaches, we selected the following approaches for
feature reduction:

(i). Dimensionality reduction to generate a small number of
features that confidently characterize the original data set,
and therefore containing the relevant properties embedded
in the input data.

In this scenario, all input data points are discarded
and replaced with new features, making ML models more
feasible, and results interpretable. For this paper, we
selected PCA as a method for dimensionality reduction. In
the literature, many other methods are available, such as
Laplacian eigenmaps, multidimensional scaling (MDS), or
locally linear embedding (LLE) (Mamitsuka, 2018).

Principal component analysis-based features are
generated by linear combinations of features from the
original data set, so that the new features explain the
data visually. Let wi represents the weight of the input
feature Xi:

w1X1+w2X2+ . . . + wnXn = wX,

where w is a numeric vector that has the same length
as the number of features in the input data X. For each
case, X can be projected into one value by Xw, which
transforms the points on one-dimensional axis, solving the
eigenvalue problem XT X and obtaining eigenvectors, or
principal components (PCs). PCs are ordered according to
the eigenvector and account for a level of variance in the
original data set.

Principal component analysis data reduction identifies
the direction of the maximum variance in high-
dimensional data and projects it onto a new set of
coordinates (PCs).

X = [X1,X2,X3, . . . ,Xn] , X ∈ Rn

wX, w ∈ Rn x k

z = [z1, z2, z3, . . . , zk] , z ∈ Rk

1. Selection of k eigenvectors for the k largest eigenvalues
(k ≤ n).

2. Construct the wmatrix for the top k eigenvectors.
3. Transform the n-dimensional data set X using the w

matrix to obtain the new k-dimensional features (PCs).
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Implementation was performed using the “prcomp()”
function implemented in R code, R version 3.6.2 (R Core
Team, 2013). The same R code version was used for all
other analysis.

(ii). Feature selection of only important features out of the
original data sets and discarding the unselected ones,
making our data sets for the learners smaller and
easily understandable.

In this scenario, all input data points are analyzed at the
same time and non-informative ones were discarded. For
this paper, we selected a tree-based approach using RF as a
method for FS.

Random forests are comprised of trees, as base learners,
and classified as bagging ensembles. For RF, feature
importance could be measured by considering, in the
model, the out-of-bag (oob) instances of each tree, known
as permutation importance or by considering the node
impurity of a tree, or impurity filtering that uses the Gini
index (Izenman, 2013).

The importance of the variables, based on
permuting oob data, was calculated using the R
package “randomForest” functions “randomForest,”
and “importance (type=1)” (Breiman, 2001).

(iii). Random selection of 1,000 features from the original data set
(random). As there is a high probability of a random SNP
marker to be associated with a specific trait, we shuffled the
SNP alleles and kept the MAF for each selected marker.
This approach generates a true random marker selection
matrix and removes all potential SNP alleles linked with
the trait of interest. Moreover, a new marker matrix was
generated that allows us to include an extra level of testing
for model overfitting.

Linear and Nonlinear Genomic Learning
Models
In this paper, the following learners were selected for predicting
trait-genotype breeding values: rrBLUP, LASSO, GBM, ANN,
and RF.

Ridge Regression Best Linear Unbiased
Prediction
Genomic prediction accuracies were estimated using the rrBLUP
model described by Endelman (2011) and Endelman and Jannink
(2012) assuming the same distribution of marker effects across
the whole genome. The following equation should be interpreted
as a mixed linear model:

yj = µj +

p∑

k=1

xjkβkδk + ej

where y is a p × 1 vector of phenotype; µ is the overall mean; xjk
is the kth marker for individual j. We assume that δk = 1 for all k,
overall mean (µ) is a fixed effect, and β , e are random effects.

Implementation was performed using the “caret” R
package (Kuhn, 2008). The following parameters were used:
function “train,” method = “glmnet,” tuneGrid = expand.grid
(α = 0, λ = 0.01).

Least Absolute Shrinkage and Selection
Operator
The LASSO approach aims to archive a sparse solution via an
additional penalty (l1), while ridge regression uses another penalty
(l2) to deal with many predictors that have nonzero coefficients
(Tibshirani, 1994). One could consider that both LASSO and
ridge regressions are special cases of the Elastic Net, which uses
both l1 and l2 penalty and a parameter between them (Zou and
Hastie, 2005).

Implementation was performed using the “caret” R
package (Kuhn, 2008). The following parameters were used:
function “train”, method= “glmnet,” tuneGrid=expand.grid
(α = 1, λ = 0.01).

Gradient Boosting Machines
Gradient boosting machines are a prediction method that
represents an ensemble of weak prediction models, normally
used for its fast and easy computational leaning and improved
predictive performance over stand-alone algorithms (Mason
et al., 1999). The model construction is performed in a stage-
wise fashion and generalized by an arbitrary differentiable
loss function. The implementation was performed using the
“h2o.gbm” function implemented in the R package H2O.ai
(2021), H2O version 3.32.0.4.

Default settings were used for the GBM analysis,
with the hyper-tuned parameter being “ntrees = 1,000,
sample_rate= 0.7.”

Artificial Neural Network
Artificial neural networks are an extension of the fundamental
principle of the Perceptron model, which is trained on gradient
data using backpropagation (Rosenblatt, 1958). Hastie et al.
(2009) introduced a multiple-layer feed-forward neural network
concept, and it can be seen as a multiple-step regression that
extracts linear combinations of the input data in the hidden layers
and model then in the output layer. For genomic prediction, in
the hidden layer of an ANN, the covariates (e.g., genetic markers)
are linearly combined with a weight vector and an intercept that
represents the number of neurons. This linear combination is
converted using an activation function,

∫
t ( ), so that it generates

the output of the hidden neuron for genotype Xj.
We used an ANN with two hidden levels, epochs = 60,

and “Tanh” as the activation function, in the “h2o.deeplearning”
function implemented in the R package H2O.ai (2021).

Random Forest
Random forest regression was used to investigate the nonlinear
combinations of variables and detect the complex interactions
among variables. Variable importance was determined using a
wrapper algorithm build in the “h2o.randomForest” function
from the R package H2O.ai (2021).

Default settings were used for the RF analysis, only hyper-
tuned parameter being “ntrees= 1,000.”

Model CV
The training population (TP) for all selected models was set up
at 80% of the total F1 hybrids in the given data set, genotype,
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FIGURE 1 | Machine learning (ML) workflow that include feature selection (FS) methods [principal component analysis (PCA)], nonlinear dimensionality reduction

[random forest (RF)], and random selection using 80% of the input data set, while the evaluation of prediction accuracies was done with the remaining 20%, the

validation populations (VPs). Features obtained from the FS filter methods were combined with ridge regression best linear unbiased prediction (rrBLUP), least

absolute shrinkage and selection operator (LASSO) regression, gradient boosting machines (GBM), artificial neural networks (ANN), and RF predictors.

and phenotype. At the beginning of each run, the data set was
divided into a random 80% TP containing both genotype and
phenotype data, and 20% validation population (VP), containing
only genotype data. The prediction population (PP) contained
only SNP data with no consideration of phenotype values. To
evaluate the prediction accuracy of the models, we conducted a
10 times CV using the entire data set. For each CV, the 80% TP
and the 20% VP were recalculated, and the training-validation
cycle was repeated independently 10 times for each FS method.
Models trained using only 80% of the input data, were used to
calculate the predictive values using the 20% validation subset
of the input data. The generated results were used to assess the
prediction accuracy, using Pearson’s correlation coefficients (r)
and root-mean-square error (RMSE) between the predicted and
observed phenotype data from the PP.

Figure 1 describes the proposed models for FS and predictors
used for the evaluation of the prediction accuracies.

Computer Architecture

All data analyses were performed on an Intel(R) Core(TM) i9-
10900 CPU @ 2.80GHz, with 64 Gb RAM, system type: 64-bit
operating system, display: NVIDIA GeForce RTX 2070 SUPER,
storage: 1 Tb.

RESULTS

Feature Construction and Space
Dimensionality Reduction
The selection of a subset of the original data set, through
dimensionality reduction or FS, may have many advantages in
various applications due to reduced costs related to storage and
data processing. ML algorithms have the ability to design the
most appropriate representation of a given data set; therefore, in
many cases improved performances are observed when models
use features derived from the original set (Guyon and Elissee,
2003). However, detecting the optimal feature reduction and

including in the model of the key representation of the input
data are specific for a given application. Therefore, in ML,
there are a large number of feature construction methods,
such as clustering, linear transformations [PCA/singular value
decomposition (SVD)], spectral transformations, convolutions of
kernels, etc.

For each FS method, 10 arbitrary selected subsets that contain
80% of the input data are selected and CV is performed in the
10-fold prediction performances of the rest 20% to evaluate the
prediction accuracy for each individual feature filter method-
learner combination.

The first FS method, PCA-based dimensionality reduction,
used only the top 100 PCs that explained 85.8% of the
genetic variance present in the SNP marker matrix
(Supplementary Figure S1). The selected features were
converted into input data for the selected learners and used in
further analysis.

The RF-based FS investigated the number of features that
have an importance score, according to the “mean decrease
in accuracy,” as it has superior meaning for measuring feature
relevance and can extract the optimal subset of features and
reduce noise from biological data (Menze et al., 2009). In total,
we selected the top 1,000 features that contributed most to the
trait-marker using the RF-FS algorithms.

Modern algorithms have the possibility to perform reliable
trait-genotype association, through GWAS and rank variables
according to their importance for breeding objectives. These
genomic-based selection algorithms, such as GS, are capable
of fast and easy scalable data analysis that generates increased
rates of genetic gain. Up to date, several papers described the
utility of variable selection and ranking prior to the use of
learners and performing predictions. A microarray analysis for
the development of drug leads and identification of gene–protein
interactions are some examples of successful ranking-based FS
used in prediction (Guyon and Elissee, 2003). Feature importance
can distinguish among redundant data entries in the input data
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FIGURE 2 | Boxplots for (A) hybrid yield and (B) days to flower predictions of the B. napus data set obtained on 10-fold cross-validation (CV) sets, using Pearson

correlations, with rrBLUP, LASSO, GBM, ANN, and RF, with 100, and 1,000 SNP subsets selected with different filter methods and the entire SNP data set (colored in

gray). Filter methods: principal component analysis 100 PCA (red), 1,000 RF (green), 1,000 RS (blue), and 14,718 (gray, no FS using the total number of markers after

QC).

set and key factors that influence the trait of interest and genetic
marker associations.

Learners’ Prediction Accuracies
Prediction accuracies were generated by CV of each FS method
using the corresponding input data and on an individual trait
basis. Figure 2 shows the boxplots for hybrid yield performance
and days to flower data obtained in the 10 CV scenarios for
rrBLUP, LASSO, GBM, ANN, and RF learners with preselection
of SNPs performed using the different FS methods (first 100 PCs,
top 1,000 high importance SNPs for the RF-based selection, and
1,000 randomly selected SNP markers).

Hybrid yield predictions performed with rrBLUP using the
entire data set generated a median Pearson correlation index
of 0.30, which was not significantly different from predictions
obtained with PCA-based reduction or RF-based FS. However,
statistical differences were obtained between the PCA and

RF reduction methods (p = 0.01, Figure 2A, Table 1), and
among all methods and the random selection of markers. For
the LASSO, GBM, and RF learners, no statistical differences
were observed between the data generated with the entire
set and PCA or RF-based FS. Interestingly, for the ANN
learner, there is a statistical difference among predictors that
use the entire SNP data set and the RF-based FS (0.01,
Table 1).

Ridge regression best linear unbiased prediction,
LASSO, GBM, ANN, and RF combined with different
filter methods showed a similar pattern and comparable
prediction performance. Statistical differences were observed
between rrBLUP (all SNPs) and ANN (all SNPs) with a
value of p = 0.04 and rrBLUP (RF-FS) and ANN (all
SNPs) with a value of p = 0.01 (Supplementary Table S3).
In this comparison, random-selected markers were
not included.

Frontiers in Artificial Intelligence | www.frontiersin.org 6 May 2022 | Volume 5 | Article 876578

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Gabur et al. Feature Selection Based Genomic Predictions

TABLE 1 | Median accuracy of cross-validation (CV) results using the Pearson

correlation coefficient, over all pairs of feature scores in the 10-outer training sets

obtained with different filter methods for feature selection (FS), of hybrid seed yield

(SY), and days to flower for the B. napus panel and grain yield under three

management practices [HiN HiF, HiN NoF, low nitrogen inputs (LoN), and no

fungicides (NoF)] for the 191 wheat cultivars.

Population Trait Filter Learner Subset

size

Median

accuracy

(Pearson’s

correlation)

Brassica

napus (F1)

Hybrid yield - rrBLUP 1,4718 0.3674

LASSO 1,4718 0.3566

GBM 1,4718 0.3019

ANN 1,4718 0.2224

RF 1,4718 0.3603

PCA rrBLUP 100 0.2964

LASSO 100 0.2954

GBM 100 0.2878

ANN 100 0.2810

RF 100 0.3401

RF rrBLUP 1,000 0.4055

LASSO 1,000 0.3089

GBM 1,000 0.3478

ANN 1,000 0.3349

RF 1,000 0.3525

random rrBLUP 1,000 0.0047

LASSO 1,000 −0.0021

GBM 1,000 0.0596

ANN 1,000 −0.0303

RF 1,000 0.0244

Days to flower - rrBLUP 14,718 0.8164

LASSO 14,718 0.8089

GBM 14,718 0.7932

ANN 14,718 0.6712

RF 14,718 0.7658

PCA rrBLUP 100 0.6795

LASSO 100 0.6791

GBM 100 0.7894

ANN 100 0.7388

RF 100 0.7600

RF rrBLUP 1,000 0.6810

LASSO 1,000 0.7202

GBM 1,000 0.7437

ANN 1,000 0.7184

RF 1,000 0.7056

random rrBLUP 1,000 0.0048

LASSO 1,000 0.0022

GBM 1,000 0.0597

ANN 1,000 0.0303

RF 1,000 0.0245

Triticum

aestivum

Grain yield

(LoN.NoF)

- rrBLUP 8,630 0.5588

LASSO 8,630 0.5640

GBM 8,630 0.5430

ANN 8,630 0.5496

(Continued)

TABLE 1 | Continued

Population Trait Filter Learner Subset

size

Median

accuracy

(Pearson’s

correlation)

RF 8,630 0.6018

PCA rrBLUP 100 0.6849

LASSO 100 0.6865

GBM 100 0.5274

ANN 100 0.6921

RF 100 0.5530

RF rrBLUP 1,000 0.6686

LASSO 1,000 0.5725

GBM 1,000 0.5922

ANN 1,000 0.5987

RF 1,000 0.6112

random rrBLUP 1,000 0.0015

LASSO 1,000 0.0803

GBM 1,000 0.0046

ANN 1,000 0.0230

RF 1,000 0.0299

Grain yield

(HiN.HiF)

- rrBLUP 8,630 0.8003

LASSO 8,630 0.7279

GBM 8,630 0.7280

ANN 8,630 0.7829

RF 8,630 0.7289

PCA rrBLUP 100 0.7812

LASSO 100 0.7820

GBM 100 0.7423

ANN 100 0.7788

RF 100 0.7314

RF rrBLUP 1,000 0.8030

LASSO 1,000 0.7131

GBM 1,000 0.7361

ANN 1,000 0.8030

RF 1,000 0.7579

random rrBLUP 1,000 0.0007

LASSO 1,000 0.0050

GBM 1,000 0.0381

ANN 1,000 0.0537

RF 1,000 0.0021

Grain yield

(HiN.NoF)

- rrBLUP 8,630 0.5709

LASSO 8,630 0.5047

GBM 8,630 0.5226

ANN 8,630 0.4482

RF 8,630 0.4482

PCA rrBLUP 100 0.5472

LASSO 100 0.5474

GBM 100 0.4421

ANN 100 0.5150

RF 100 0.4317

(Continued)
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TABLE 1 | Continued

Population Trait Filter Learner Subset

size

Median

accuracy

(Pearson’s

correlation)

RF rrBLUP 1,000 0.5362

LASSO 1,000 0.3712

GBM 1,000 0.4844

ANN 1,000 0.4850

RF 1,000 0.5349

random rrBLUP 1,000 0.0231

LASSO 1,000 0.0050

GBM 1,000 0.0014

ANN 1,000 0.0803

RF 1,000 0.0109

For a less complex trait, such as days to flowering,
predictions performed with rrBLUP using the entire data
set generated a median Pearson correlation index of 0.67,
significantly different from predictions obtained with PCA-
based reduction or RF-based FS (p < 0.001). However, no
statistical differences were obtained between the rrBLUP_PCA
and rrBLUP_RF reduction methods (Figure 2B, Table 1). A
similar pattern was recorded for the LASSO combined with
FS methods. Moreover, among all nonlinear learners (GBM
and RF) methods and PCA, RF-based selection methods,
no statistical significance was observed, suggesting that in
the case of nonlinear predictors, the entire data set-based
predictions performed similarly to the feature selected markers.
In addition, for ANN, we observed a statistical difference among
the entire data set and the PCA FS methods (p < 0.05)
(Supplementary Table S3).

The analysis of the mean of the Pearson correlation over
all pairs of feature scores in the 10 CV training sets obtained
with different filter methods for FS showed the highest mean,
for hybrid yield, using the RF-FS method, and rrBLUP learner,
namely, 0.4055. The lowest PC mean for hybrid yield was
observed for predictions using all data and the ANN learner,
namely, 0.2224. For days to flowering, the highest PC mean was
observed for rrBLUP using all data and the lowest for ANN using
all data, namely, 0.8164 and 0.6712, respectively.

Interestingly, nonlinear learners (GBM, ANN, and RF)
outperformed, on average, linear learners (rrBLUP and LASSO)
when the selection of relevant features was introduced in
predictions across training sets. Tree-based methods (GBM and
FR) exhibited a high prediction accuracy when combined with
PCA-based dimensionality reduction and RF-FS of the input
data. PCA-based dimensionality reduction combined with GBM
generated a 0.7895 prediction accuracy, while for ANN, 0.7388
and RF with 0.7600. For rrBLUP and LASSO combined with
PCA filter methods, the prediction accuracies were at 0.679,
statistically different from nonlinear learners (Table 1).

Similar analyses for the prediction accuracy were performed
for all other traits (OY, SOC, and SE) and comparable results were

obtained. Corresponding tables and figures are available in the
Supplementary Table S4).

For the diversity panel that includes 191 commercial wheat
cultivars, we observed a clear improvement in prediction
accuracies when FS models were implemented (Table 1),
especially for studies conducted under LoN/NoF. In this scenario,
PCA-based FS showed the highest median prediction accuracy, of
0.692 for ANN, while using the entire data set the accuracy was
0.549, for the same predictor. Similar patters can be observed for
all FS-learner combinations (Figure 3).

In terms of computing time, PCA-based data reduction
outperformed all other FS filter methods, reducing the
computing time, for all feature identification methods and
learners, from 1,200min (when using the entire SNPs data set),
to 6.7min, an approximately 200× decrease for hybrid yield
predictions using the B. napus population. Similar results were
observed for wheat grain yield LoN/NoF predictions using
PCA-based FS, which reduces the processing time from 103.2
to 3.1min, a 33× decrease. This trend was observed for all
other traits investigated. Similarly, RF-based FS decreased the
computing time by approximately 10×, from 1,200 to 139.7min
for hybrid yield predictions using all learners. In general, FS
reduces considerably the processing time, while generating
similar or improved prediction accuracies (Table 2).

DISCUSSIONS

Diversity panels and new breeding populations are traditionally
a source of novel allelic diversity and are at the core of selection
efforts for elite material. Finding rare diversity requires a deep
understanding of biological interactions among the genetic
makeup of one genotype and its environmental conditions.
However, most modern breeding programs still rely on linear
regression models to solve this problem, generalizing the
biological problem into an infinitesimal model (Fisher, 1919).

However, the recent success of ML techniques has boosted
researchers to also use in modeling breeding methods that
identify relevant patterns in the input data and perform deep
data mining.

Human genetics already widely exploits the two major ML
branches, using supervised or unsupervised leaning algorithms.
ML techniques help solve problems for which explanatory and
response variables are available, which are commonly applied
to quantitative genetics methods used for prediction, selection,
and classification (e.g., the discovery of genetic factors associated
with complex traits). For example, population genetics often
uses unsupervised procedures for problems associated with
clustering of individuals and detecting genetic patterns in
populations. Modern ML models use a wide range of statistical
approaches to learn from the input data, or the training data,
and predict in further genotypes. ML algorithms are extremely
useful when dealing with large heterogeneous data sets (Collins
and Yao, 2018), such as those commonly found in plant
breeding populations.

Recently, applying FS techniques in data analysis and
bioinformatics has started to gain momentum and FS becomes
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FIGURE 3 | Boxplots for wheat (A) grain yield LoN/NoF, (B) grain yield HiN/HiF, and (C) grain yield HiN/NoF predictions of the Triticum aestivum 191 commercial

cultivars obtained in 10-fold cross-validation (CV) sets, using Pearson’s correlations, with rrBLUP, LASSO, GBM, ANN, and RF, with 100, and 1,000 SNP subsets

selected with different filtering methods and the entire SNP data set (colored in gray). Filtering methods: principal component analysis 100 PCA (red), 1,000 RF (green),

1,000 RS (blue), and 14,718 (gray, no FS using the total number of markers after QC).

a prerequisite for building prediction models that have increased
accuracies. The high dimensionality present in modern biological
data, as genomic sequence analysis, SNP chip arrays, or
hyperspectral phenomics, needs tools for a better understanding
of the underling genetic mechanisms and identify patterns,

sometimes in the noise, that are correlated with a specific
trait (Yoosefzadeh-Najafabadi et al., 2021). An efficient feature
construction method should represent the best reconstruction
of the input data set, which usually triggers an increased
efficiency in prediction. Identification of the most appropriate
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TABLE 2 | Processing time for filter methods, principal component analysis-(PCA-) based data reduction and random forest-(RF-) based FS, combined with linear and

nonlinear learners, ridge regression best linear unbiased prediction (rrBLUP), least absolute shrinkage and selection operator (LASSO), gradient boosting machines

(GBM), artificial neural networks (ANN), and RF.

Population Trait Filter method Learner Computing time(min)

Brassica napus Hybrid yield - rrBLUP, LASSO, GBM, ANN, RF 1,200

PCA rrBLUP, LASSO, GBM, ANN, RF 6.7 (200×)

RF rrBLUP, LASSO, GBM, ANN, RF 139.7 (10×)

random rrBLUP, LASSO, GBM, ANN, RF 39.3 (30×)

Days to flower - rrBLUP, LASSO, GBM, ANN, RF 749.9

PCA rrBLUP, LASSO, GBM, ANN, RF 7.4 (100×)

RF rrBLUP, LASSO, GBM, ANN, RF 135.7 (6×)

random rrBLUP, LASSO, GBM, ANN, RF 78.7 (10×)

Triticum aestivum Grain yield LoN/NoF - rrBLUP, LASSO, GBM, ANN, RF 103.2

PCA rrBLUP, LASSO, GBM, ANN, RF 3.1 (33×)

RF rrBLUP, LASSO, GBM, ANN, RF 15.2 (7×)

random rrBLUP, LASSO, GBM, ANN, RF 19.6 (5×)

Grain yield HiN/HiF - rrBLUP, LASSO, GBM, ANN, RF 97.5

PCA rrBLUP, LASSO, GBM, ANN, RF 3.2 (32×)

RF rrBLUP, LASSO, GBM, ANN, RF 15.3 (6×)

random rrBLUP, LASSO, GBM, ANN, RF 19.7 (5×)

Grain yield HiN/NoF - rrBLUP, LASSO, GBM, ANN, RF 97.4

PCA rrBLUP, LASSO, GBM, ANN, RF 3.1 (31×)

RF rrBLUP, LASSO, GBM, ANN, RF 15.2 (6×)

random rrBLUP, LASSO, GBM, ANN, RF 21.2 (5×)

representation of the input data is an unsupervised leaning
problem, due to its demand for data compression, while better
prediction performance is a supervised learning problem. In
general, unsupervised FS methods are less prone to overfitting
(Guyon and Elissee, 2003), and have the ability to improve
predictions, while discarding redundant data points.

Processing of high-dimensional data requires large
computational power, while it may overfit a model and
generate poor prediction. In the literature, several authors
compared the combined prediction models and FS methods, as
for microarrays data sets (Bolón-Canedo et al., 2014; Bommert
et al., 2020), text analysis (Forman, 2003), or image interpretation
(Dy et al., 2003).

In this research, several FS methods combined with linear
and nonlinear learners were used to predict agronomical
important traits from a high-dimensional 60K B. napus
SNP chip data and the 15K SNP Illumina Infinium iSelect
wheat genotyping platform. One major goal was to identify
appropriate combinations among FS methods and linear and
nonlinear learners, to decrease drastically the computing
time and improve prediction accuracies for qualitative and
quantitative traits. All predictions for FS-learner combinations
were compared with data sets that included no SNP selection,
as a benchmark. Filter methods included PCA-based data
reduction and RF-based FS, while combining them with rrBLUP,
LASSO, GBM, ANN, and RF learners. Similar approaches
were applied in social sciences (Attewell et al., 2015), or
breeding (Long et al., 2011; Montesinos-Lopez et al., 2019;
Piles et al., 2021). Our results indicate that is possible

to decrease the computing time up to 100 times, as for
hybrid yield predictions of a B. napus F1 population, and
also generate higher accuracies from complex traits, such
as wheat grain yield under low mineral fertilizer and no
fungicide treatments.

Bommert et al. (2020) investigated 16 high-dimensional data
sets and compared 22 FS methods in terms of accuracy and
computing time. Their findings suggested that there is no
group of FS methods that outperformed all others; however,
some filter methods performed much better on a specific data
set. Similar results were observed also in our study. PCA
data reduction combined with nonlinear learners outperformed
rrBLUP and LASSO predictions. Using wheat and Jersey cows
for the prediction of complex quantitative traits, Gianola et al.
(2011) compared multilayer perceptron (MLP) and Bayesian
ridge regression models. The authors found that the predictive
Pearson’s correlation in the wheat data set ranged from 0.48
with the Bayesian ridge regression, while 0.54–0.59 for MLP with
one, or more, neurons. These differences were also statistically
significant, improving prediction performance, between BRR and
MLP, up to 18.6%. In another publication, the authors compared
various types of neural networks (radial basis function neural
networks and Bayesian regularized neural networks), classic
linear models (Bayesian ridge regression, Bayesian LASSO,
Bayes A, and Bayes B), and kernel-based models (reproducing
kernel Hilbert spaces) and concluded that neural networks
and kernel-based model had improved prediction accuracies in
several wheat data sets (Pérez-Rodríguez et al., 2012). Similarly,
Ma et al. (2018) found that neural network methods could
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outperform rrBLUP and GBLUP, if specific architectures, such
as convolutional neural networks (CNN) or MLP, are used. The
authors compared the Pearson correlation coefficient values for
the prediction performed on eight important agronomic wheat
traits and found that CNN had higher values than linear models,
while MLP architectures underperformed. For maize, González-
Camacho et al. (2012) found that kernel models [reproducing
kernel Hilbert space (RKHS)] and neural networks [radial basis
function neural network (RBFNN)] have similar performance
in comparison with Bayesian LASSO. Also, Khaki and Wang
(2019) investigated the prediction accuracies of linear methods
(LASSO and regression tree) and multi-layer perception in a
maize data set containing 2,267 hybrids. The results indicated
that the predictions of hybrid grain yield were better with a 20
hidden layer MLP model than classical linear models.

In a recent review, the authors compared 23 independent
studies in terms of linear and nonlinear prediction performance
(Montesinos-López et al., 2021). The results suggested that
nonlinear models outperformed linear ones in 47% of all studies
(11/23), when including G × E, and in 56% (13/23), when
ignoring G × E interactions. The same authors suggested
that the differences could be attributed to population size,
parameter tuning, or nonlinear model architecture. However,
neural networks outperformed linear GS models because of
their ability to better capture the structural pattern in the input
data, as the CNN do. CNN are nowadays among the frequently
used algorithms in plant trait analysis due to their capacity to
identify complex patterns, as for root and shoot image-based
feature identification (Pound et al., 2017), or to generate reliable
classifications of plant stress symptoms (Ghosal et al., 2018), and
wheat spikes (Hasan et al., 2018).

Machine learning methods have a high potential to become
an indispensable tool for scientists and applied plant breeders.
FS and modern learners can address multiple challenges as they
are demonstrably powerful for integrating heterogeneous and
large data sets, improve tools for higher prediction accuracies,
and extracting relevant functional impacts of genotype and
phenotype relationships.

Based on our approaches, the results suggested that by
reducing the set of features, the computing time decreased
considerably, while the accuracy of predicting was enhanced,
especially for nonlinear learners. Efficient combinations among
feature identification methods and modern prediction models
could provide breeding programs with the necessary tools to
effectively exploit cost-efficient genotyping data and improve
prediction accuracies.
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