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This paper studied the effects of applying the Box-Cox transformation for classification

tasks. Different optimization strategies were evaluated, and the results were promising

on four synthetic datasets and two real-world datasets. A consistent improvement in

accuracy was demonstrated using a grid exploration with cross-validation. In conclusion,

applying the Box-Cox transformation could drastically improve the performance by up to

a 12% accuracy increase. Moreover, the Box-Cox parameter choice was dependent on

the data and the used classifier.

Keywords: Box-Cox transformation, power transformation, Non-linear mappings, feature transformation,
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INTRODUCTION

Feature transformation can improve the performance of a machine learning algorithm. Simple
transformations already had a significant impact on classification performance (Bicego and Baldo,
2016; Liang et al., 2020). Motivated by their findings, the impact of the Box-Cox transformation
for classification tasks was studied. Often, Box-Cox is used to increase the Gaussianity of data. This
can help in some special cases; however, we observed that transformations that do not maximize
the Gaussianity of the data are often superior for classification accuracy. Additionally, Bicego and
Baldo (2016) have shown that the Gaussianity of datasets is not critical and by allowing the effect
of the Box–Cox transformation work in operational ranges that do not necessarily correspond to
an increase in Gaussianity, they have shown that class separability can be improved. Furthermore,
they proposed an automatic procedure for obtaining an optimal transformation. Their procedure
relied on the spherical and diagonal optimization of statistical measurements, such as maximum
likelihood or Fisher criterion. They showed that both are capable of improving the classification
result, although the diagonal case often gives higher accuracy. This can be expected due to the
higher number of parameters. Furthermore, they demonstrated that the choice of optimization
criteria depends on the classifier itself.

Gao et al. (2017) attempted to find the optimal Box-Cox transformation in big data. They
focused on regression and tried to get a maximum likelihood estimation (MLE) for the Box-Cox
parameter when the dataset is massive. By using MapReduce, they proposed an algorithm that can
be run in parallel and is able to process big data in chunks.

Cheddad (2020) investigated the effect of the Box-Cox transformation on images. They proposed
an image pre-processing tool by using the Box-Cox transformation for histogram transformation.
The parameters for the transformation were calculated using the MLE. By using image histograms
instead of the image data, the time complexity could be kept static, and thus independent of the size
of the image.

However, our focus is on the classification of tabular data that fits into the main memory. We
sought to explore a generalization of the approach from Bicego and Baldo (2016) and provide an
optimization procedure that is classifier dependent.
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BOX-COX TRANSFORMATION

The original Box-Cox transformation is a one-dimensional
transformation with one parameter often called λ and is applied
element-wise to a vector y (Box and Cox, 1964):

Let y ∈ R
n and λ ∈ R

y
(λ)
i =

{

y
(λ)
i −1

λ
if λ 6= 0

ln
(

yi
)

if λ = 0

Many different criteria have been proposed for an optimal λ.
The most used method, which was introduced by Box and Cox
(1964), is a MLE. Other approaches include a Bayesian approach
(Sweeting, 1984), robust estimators, Carroll and Ruppert (1985),
Lawrance (1988), and Kim et al. (1996) and an attempt to
iteratively maximize Gaussianity (Vélez et al., 2015). The Box-
Cox transformation is mostly studied for regression tasks. For
λ > 1 the transformation is convex and for λ < 1 the
transformation is concave. As described by Bicego and Baldo
(2016), the data is stretched in the positive direction for λ > 1
and stretched in the negative direction for λ < 1. Assuming
the data is range standardized between 1 and 2, this means for
λ > 1 that data points near 1 have a smaller relative distance
than points near 2 after applying the Box-Cox transformation
(Bicego and Baldo, 2016). The opposite behavior holds for λ < 1
(Bicego and Baldo, 2016). For λ = 1 the data is only shifted
by 1 in the negative direction. The Box-Cox transformation is
monotonic and therefore does not change the ordering of the
data. These properties might help to increase class separability.
For multi-dimensional data, X ∈ R

n×p, it is usually applied p
times as 1-dimensional mapping to each column with different
values for λ. Therefore, the overall transformation is specified by
a p-dimensional vector, 3 =

[

λ1, λ2, . . . , λp
]

.
The optimization of the parameter vector 3 can be done

in several ways. Naturally, one could optimize λi of the
corresponding column Xi independently with traditional criteria
such as MLE (Box and Cox, 1964) or the Bayesian approach
(Sweeting, 1984). This will be referred to as diagonal setting,
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(1)

where L(·, ·) is a criterion that needs to be minimized. A
simplification of this case is the spherical setting. Only a scalar
value λ gets optimized and applied to every column.

λ∗ = argmin
λ

i=p
∑

i=1

L(λ, Xi) (2)

The most general case is called full and optimizes.
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TABLE 1 | Evaluated classifiers for a grid exploration and to test the proposed

optimization method on real-world data: Details can be found in Pedregosa et al.

(2011).

Classifier Description

Linear Linear classifier with Perceptron loss and trained with stochastic

gradient descent

KNN Nearest neighbors voting with number of neighbors k = 5

Bayesian Gaussian naive Bayes classifier

SVC C-Support Vector Classification with radial basis function kernel

NN Multi-layer neural network with 2 hidden layers, 10 neurons each,

relu activation and cross entropy loss

MOTIVATION

To demonstrate the influence of the Box-Cox transformation,
a stratified cross validation with 10 folds and 5 repetitions was
executed on various artificial 2-dimensional binary classification
tasks with varying 3s. For each direction, i ∈ {1, 2}, λi
was distributed evenly in the interval [−5, 5] with a spacing
of 1. Hence, 11 × 11 accuracy estimates were conducted.
Accuracy measurements were carried out for the different
classifiers described in Table 1, as implemented in the Python
library scikit-learn (Pedregosa et al., 2011). Additionally, the
corresponding acronyms are given. Unless otherwise stated,
the default parameters were used, and if provided, random
seeds/states were set to 42. Python version 3.6.0, scikit-learn
version 0.24.2, NumPy version 1.19.5, and SciPy version 1.5.4
were used.

Figure 1 shows the different datasets that were used to study
the accuracy for different values of 3.

Figure 2 shows the accuracy measurements for the exhaustive
grid exploration of 3 on the random classification dataset
Figure 1D. The corresponding pseudo-code is given in
Algorithm 1. Before applying the Box-Cox transformation,
all datasets were preprocessed with a range standardization
between 1 and 2. This was done to show the exclusive behavior
of the Box-Cox transformation without the influence of other
effects; however, the transformation needed positive data. The
upper range bound ensured that the features did not explode
when transformed with a larger 3. The results of the Box-Cox
transformation were also standard scaled before being given to
the classifiers.

It was observed that the different heatmaps were not similar;
hence, the Box-Cox transformation was dependent on the
classifier itself. For example, 3 = [−5, 4] gave the best
performance for the SVC classifier, but it was almost the worst
for the neural network. While 3 = [1, 5] was the best for
the Bayesian classifier, it was bad for the KNN classifier. This
suggests that the optimization of the Box-Cox transformation
was not only dependent on the data but also on the classifier. This
observation was also made by Bicego and Baldo (2016).

The heatmaps also showed multiple local maxima. Hence, the
optimization should be non-convex. Similar observations were
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FIGURE 1 | Various artificial binary classification problems were created to study the influence of the Box-Cox transformation with a grid exploration. (A) Gaussian

quantiles, (B) interleaving half circles, (C) isotropic Gaussian blobs, and (D) random dataset.

made for the other datasets, and the corresponding heatmaps are
provided in Appendix A.

Finally, it was obvious that the full optimization gave better
results than the spherical and diagonal settings. The possible
spherical configurations were seen on the diagonal of the heatmap
(e.g., 3 ∈ {[−5, −5] , [−4, −4] , . . . , [5, 5]}). The diagonal can
be illustrated by first fixing one direction λi = 1 and optimizing
in the other direction and then vice versa. Possible optimal
solutions for the spherical, diagonal, and full optimization were
indicated with corresponding numbers 1, 2, and 3. If there were
multiple options for the optimal solution in one direction for
diagonal optimization, then the case that led to higher final
optimization accuracy was used.

Table 2 summarizes the accuracy heatmaps for all four
datasets in Figure 1. It shows the performance before applying
the Box-Cox transformation and after applying the Box-Cox

transformation with the best reported configuration of 3. The
numbers are rounded to the first decimal point. The accuracy
before applying the Box-Cox transformation corresponds to a
Box-Cox transformation with 3 = [1, 1] because this only shifts
the data by 1 in each direction and therefore does not influence
the classification result.

It was observed that the linear classifier benefited most from
the Box-Cox transformation. The other classifiers also benefited,
unless the classification result was almost perfect before applying
the transformation (KNN and NN in the interleaving half circles
dataset). Thus, Box-Cox transformation consistently improved
the classification result.

It was also seen that, mostly, spherical optimization did
not achieve the same improvements as full optimization. This
is expected because of the lower number of parameters. In
contrast, however, diagonal optimization resulted in even worse
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FIGURE 2 | Accuracy heatmaps generated by Algorithm 1 for a random dataset. The numbers 1, 2, and 3 correspond to the optimal solution for the spherical,

diagonal, and full optimization. If there are multiple solutions then only one possibility is shown. It was observed that the optimal parameter choice for the Box-Cox

transformation depends on the classifier. The heatmaps showed multiple local maxima and full optimization led to the best optimization result. (A) Linear classifier, (B)

KNN classifier, (C) Bayesian classifier, (D) SVC classifier, and (E) NN classifier.
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Algorithm 1 : 2D Accuracy Gridexploration

D: dataset (X,Y)

L1 ← {−5, −4, . . . , 4, 5}
L2 ← {−5, −4, . . . , 4, 5}
repetitions← 5
kfolds← 10 ⊲ number of folds in crossvalidation
C: classifier
A: matrix to store accuracies
for each item λ1 in L1 do

for each item λ2 in L2 do

a← 0 ⊲ current accuracy
for rep = 1 torepetitions do

for Itrain, Itest in cvpartition(D, kfold) do
X∗ = boxcox(X, [λ1, λ2])

Xtrain ← X∗[Itrain] ⊲ split data
Ytrain ← Y[Itrain]
Xtest ← X∗[Itest]
Ytest ← Y[Itest]

Scaler= Standard_Scaler()
Xtrain = Scaler.fit_transform(Xtrain) ⊲ train

model
Ct = train (C, Xtrain, Ytrain)

Xtest = Scaler.transform (Xtest) ⊲ evaluate
model

P = predict (Ct , Xtest)

a← a+ accuracy (P, Ytest)
end for

end for

A[λ1, λ2] =
a

repetitions∗kfolds

end for

end for

accuracies. This was observed, for example, for the linear
classifier in the interleaving half circles dataset. Fixing in one
direction and optimizing in the other direction resulted in an
increase in accuracy (fixing λ1 = 1 led to λ2 = 4 with an
improvement of 0.68%, and fixing λ2 = 1 led to λ1 = −3 with an
improvement of 0.54%). However, combining the independent
results led to 3 = [−3, 4] and a loss of accuracy of−0.36%. This
can get arbitrarily bad because the outcome of a combination of
the independent optimizations was unknown in advance.

To further study the behavior of the different optimization
methods, the random dataset Figure 1D was generated 10
times with different random seeds and the accuracy for each
optimization method was measured for the five classifiers given
in Table 1 with a stratified cross validation with 10 folds and 5
repetitions. The average of the accuracy is given in Table 3.

The Full optimization led consistently to the highest
improvement in accuracy. Both Spherical and Diagonal
optimization achieved an improvement for all classifiers.
Diagonal optimization was better or equal than Spherical
optimization for all classifiers except for the linear classifier.

TABLE 2 | Accuracy of five classifiers before and after applying Box-Cox

transformation using three optimization strategies.

Classifier Acc before

[%]

Acc after

[%]

Full (δ)

[%]

Spherical

(δ) [%]

Diagonal

(δ) [%]

Gaussian quantiles

Linear 49.0 54.1 6.1 5.2 5.2

KNN 96.2 96.6 0.4 0.1 0.3

Bayesian 96.8 96.9 0.1 0.0 0.1

SVC 98.8 99.2 0.5 0.1 0.2

NN 98.9 99.2 0.3 0.1 0.1

Interleaving half circles

Linear 83.5 84.8 1.3 0.4 −0.4

KNN 100.0 100.0 0.0 0.0 0.0

Bayesian 87.4 89.3 1.9 0.0 1.9

SVC 99.7 99.7 0.1 0.0 0.0

NN 99.9 100.0 0.0 0.0 0.0

Isotropic Gaussian blobs

Linear 68.1 70.5 2.4 1.9 −0.8

KNN 74.6 75.2 0.5 0.5 0.2

Bayesian 76.1 76.4 0.3 0.0 −1.0

SVC 75.7 76.1 0.4 0.4 0.1

NN 76.0 76.5 0.5 0.3 0.3

Random dataset

Linear 77.3 80.5 3.5 2.7 1.7

KNN 87.2 87.7 0.5 0.1 0.5

Bayesian 85.9 86.6 0.8 0.6 0.6

SVC 87.2 87.5 0.3 0.0 −0.2

NN 87.7 87.9 0.2 0.2 0.0

Column Acc after corresponded to full optimization, which was observed as the optimal

optimization. Spherical was able to get smaller but also consistent improvements.

Diagonal achieved some gains but sometimes decreased the accuracy.

TABLE 3 | Average accuracy of five classifiers before and after applying Box-Cox

transformation using three optimization strategies for 10 times regenerated

random dataset Figure 1D with different random seeds.

Classifier Acc before

[%]

Acc after

[%]

Full (δ)

[%]

Spherical

(δ) [%]

Diagonal

(δ) [%]

Linear 84.1 86.7 2.6 1.8 0.3

KNN 92.0 92.4 0.4 0.2 0.3

Bayesian 89.0 90.2 1.3 0.8 1.0

SVC 91.9 92.3 0.4 0.2 0.2

NN 92.3 92.6 0.3 0.1 0.1

Column Acc after corresponded to full optimization, which was observed as the optimal

optimization. Spherical was able to get smaller but also consistent improvements.

Diagonal achieved smaller gains.

MODEL AND OPTIMIZATION

The previous section showed that full optimization led to
the best improvements. It was also demonstrated that the
optimization was dependent on the classifier. Therefore, we
propose a procedure for classifier-dependent multi-dimensional
non-convex optimization. First, the general setup is described.
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Then, naive optimization is introduced. This was used as a
baseline but suffered from the curse of dimensionality. Next, an
iterative optimization is described that solved the dimensionality
problem. Subsequently, various techniques for improving the
iterative procedure are presented.

The general setup that was used with different optimization
techniques consisted of a training function and a predicting
function. It is shown in Algorithm 2. First, a model was trained
to find the optimal parameter,3, for the Box-Cox transformation
with a given classifier. Then the predicting function was used with
the optimized Box-Cox parameter, 3, to create predictions.

Algorithm 2 : Setup

Xtrain: training features
Ytrain: training class labels
Xtest : testing features
C: classifier/model to optimize for
M: min-max scaler
S: standard scaler

3, C, M, S← fit_model(Xtrain, Ytrain, C)
Ytest ← prediction(Xtest , 3, C, M, S)

The training procedure is given in Algorithm 3. It requires
the features, the corresponding class labels, a classifier, and an
optimization procedure for 3. Suitable optimization procedures
are given in Algorithm 5 (restricted to 2-dimensional data)
and Algorithm 6 with further improvements for the latter in
6.1, 6.2, and 6.3. It first scaled the data into the range [1, 2]
to ensure that the features were positive so that the Box-Cox
transformation could be applied, and to ensure that the features
did not explode at a larger 3. Then, an optimization procedure
was applied to find suitable values for 3. As described in the
previous section, this was dependent on the classifier itself. Next,
the Box-Cox transformation was applied to the features with
the optimized 3. Then, the data were standard scaled to help
classifiers that depended on a distance measure. Finally, the
classifier was trained.

The prediction procedure is presented in Algorithm 4. It
required the features, 3, which was optimized during training,
a fitted classifier, a fitted min-max scaler, and a fitted standard
scaler. First, the method min-max scaled the data, then applied
the Box-Cox transformation with the given 3, then used
standard scaling, and finally predicted the labels with the
given classifier.

To follow the previously introduced notation in this paper,
the optimization criteria L(·, ·) is defined as 1 − ACC, which
maximizes accuracy ACC by minimizing the 1− ACC optimizer.
The first optimization procedure that was used in the training
function was a grid search. This means that a set of possible
values for every λi was specified. Then, the optimization tried
all combinations. This was an exhaustive search and assuming
model fitting and predicting as constant, it runs in polynomial
time O(Lp) where L is the number of possible values and p
is the number of features. Therefore, the grid search suffered

Algorithm 3 : fit_model(X, Y , C)

1: X: features
2: Y : corresponding class labels
3: C: classifier to optimize for
4: Opt: optimization procedure for optimizing 3

5: M: min-max scaler into the range [1, 2]
6: S: standard scaler
7:

8: XM ← M.fit_transform(X) ⊲ fit min-max scaler and apply it
9: 3← Opt(XM , Y , C) ⊲ find optimized 3

10: ⊲ (e.g. Algorithm 6, 6.1, 6.2, 6.3, and 5 for 2D)
11: XB ← boxcox(XM , 3) ⊲ apply Box-Cox transformation
12: XS ← S.fit_transform(XB) ⊲ fit standard scaler and apply it
13: C.train (XS, Y) ⊲ train classifier
14:

15: return 3, C, M, S

Algorithm 4 : prediction(X, 3, C, M, S)

X: features
3: optimized parameters of Box-Cox transformation
C: trained classifier
M: fitted min-max scaler
S: fitted standard scaler

XM ← M.transform(X) ⊲ apply fitted min-max scaler
XB ← boxcox(XM , 3) ⊲ apply Box-Cox transformation
XS ← S.transform(XB) ⊲ apply fitted standard scaler
Y ← C.predict (XS) ⊲ predict labels with trained classifier

return Y

from the curse of dimensionality. For example, trying 10 values
for 10 features requires 10 billion evaluations. Therefore, this
became quite infeasible. Nevertheless, it was used as a reference
model for lower dimensional datasets. The pseudo-code for this
method for the 2-dimensional case was given inAlgorithm 5 and
was directly used as optimization for training in Algorithm 3 in
line 9.

To solve the dimensionality problem of a grid search, we
proposed an iterative optimization. First, an initial point, G ∈
R
p, for 3 was specified. Then, starting from this point, all

directions were fixed except for one. The not-fixed direction was
optimized with a 1−dimensional grid search. Therefore, a set of
candidate values for the search needed to be defined. Comparing
the possible values and selecting the one that gave the highest
improvement led to optimization in the first direction. Then, the
next direction was unfixed and all other directions were fixed.
Again, the best value was selected with a 1-dimensional grid
search. This procedure was repeated until all directions were
optimized once. This was referred to as one epoch. After that, the
same procedure restarted with the previously optimized solution
instead of the initial point G. The pseudocode for this iterative
optimization was given in Algorithm 6 and will be referred to
as Iterative grid search. It was directly used as an optimization
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Algorithm 5 : 2D grid search(X, Y , C)

X: features
Y : corresponding class labels
C: classifier to optimize for
S: standard scaler
3opt : optimized Box-Cox parameters
grid← {−5, −4, . . . , 4, 5} ⊲ candidate values for each
direction
A← 0 ⊲ best accuracy obtained during search

for each λ1 in grid do
for each λ2 in grid do

3tmp ← [λ1, λ2]
XB ← boxcox(X, 3tmp) ⊲ apply Box-Cox

transformation
XS ← S.fit_transform(XB) ⊲ fit standard scaler and

apply it
C.train (XS, Y) ⊲ train classifier
P← C.predict (XS) ⊲ evaluate classifier
Atmp ← accuracy(P, Y) ⊲ evaluate accuracy

if Atmp > A then ⊲ update 3opt if accuracy is
improved

A← Atmp

3opt ← 3tmp

end if

end for

end for

return 3opt

procedure for training inAlgorithm 3 in line 9. Assuming model
fitting and predicting as constant, the advantage of this method
is that it scaled linearly O(epochs · p · gridsize) in the number
of features p, where gridsize denotes the number of points used
for the 1-dimensional grid search. This procedure had three
hyperparameters that influenced the result (initial starting point
G, number of epochs, and the grid).

Figure 3A shows why multiple epochs were beneficial. From
the initial point G = [1, 1], first optimizing vertically in the
λ1 direction, and then horizontally in the λ2 direction, gave an
optimal value of 2 for 3 = [2, 2]. If another epoch, and thus
another optimization in both directions, was added, the global
optimal solution 3 at 3 = [3, 2] was obtained. Therefore,
multiple epochs helped to find better optimization results.

Another useful improvement was to restart the optimization
with another initial point. Figure 3B illustrates this. Starting at
G = [1, 1] and first optimizing vertically and then horizontally
resulted in 3opt = [2, 1]. This cannot be further optimized
with the given iterative method. Unfortunately, there was a better
solution at 3 = [1, 2]. If, for example, the optimization started
at G = [2, 2], the global optimal solution could be attained.
Therefore, it was beneficial to restart the optimization procedure
with multiple initial points. Corresponding modifications to the
Iterative grid search optimization are found in Algorithm 6.1.

Algorithm 6 : Iterative grid search(X, Y , C)

⊲ full optimization to get optimal 3 vector
1: X: features
2: Y : corresponding class labels
3: C: classifier to optimize for
4: p: number of features/directions
5: S: standard scaler
6: G: initial starting point
7: 3opt ← G ⊲ optimized Box-Cox parameter
8: grid← {−5, −4, . . . , 4, 5} ⊲ candidate values for each

direction
9: epochs← e ⊲ number of epochs
10: A← 0 ⊲ best accuracy obtained during search
11:

12: for epoch = 1 to epochs do
13: for dir = 1 to p do
14: 3tmp ← 3opt

15: for each λi in grid do
16: 3tmp[dir]← λi ⊲ change one direction
17: XB ← boxcox(X, 3tmp) ⊲ apply Box-Cox

transformation
18: XS ← S.fit_transform(XB) ⊲ fit standard scaler

and apply it
19: C.train (XS, Y) ⊲ train classifier
20: P← C.predict (XS) ⊲ evaluate classifier
21: Atmp ← accuracy(P, Y) ⊲ evaluate accuracy
22:

23: if Atmp > A then ⊲ update 3opt if accuracy is
improved

24: A← Atmp

25: 3opt ← 3tmp

26: end if

27:

28: end for

29: end for

30: end for

31: return 3opt

It introduced the shift_epoch as a new hyperparameter that
determined after how many epochs a new starting point G
was generated.

The previous problem could also be solved by changing the
order of the optimization directions. So far, the directions have
been optimized numerically; that is, first, λ1 was optimized, then
λ2 and so on. Starting (in Figure 3B) again at the initial point
G = [1, 1], instead of first optimizing in the vertical direction,
optimization was done first in the horizontal direction. This
directly found the global solution. Hence, shuffling the order of
directions for optimization was also helpful. The corresponding
changes to Iterative grid search are found in Algorithm 6.2.
Again, there was a new hyperparameter shuffle_epoch that
determined after how many epochs the optimization order
got shuffled.

Lastly, it might be possible to find a better solution if the grid
search is denser. Figure 3C demonstrates this. If the grid only
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FIGURE 3 | Motivations for improvements to the iterative method. Multiple epochs helped to further advance the optimization to the maximum. Multiple starting points

and shuffling were introduced for escaping or avoiding a local maximum, and a finer grid provided the ability to explore hidden details. (A) Multiple epochs, (B) Multiple

starting points and shuffling optimization order, and (C) Finer grid.

used integer values, then it was impossible to find one of the
global optimal solutions = 2. Hence, the grid should be refined
to 0.5 increments. Unfortunately, this doubled the computational
demand. Another refinement may further improve the result but
increase the computational demand even more. One solution
to circumvent the increasing computational costs, was to use
local refinement. This means that the grid became locally denser
and smaller. Iterative grid search uses the same global grid for
every 1-dimensional grid search (e.g. {−5, −4, . . . , 4, 5}). To
get a finer grid, but with the same number of points, the grid
needed to be attached locally to the current 3tmp. Since the
number of grid points ought to remain the same and the grid
became denser, it spanned a smaller range of values. For example,
starting with the grid {−5, −4, . . . , 4, 5} and then doubling
the resolution led to the following grid {−2.5, −2, . . . , 2, 2.5}.

Both have the same number of points. Instead of testing globally,
if any, λi ∈ {−5, −4, . . . , 4, 5} improved the result, the
current optimal solution in this direction was used, and then
the refined grid was attached to it. Therefore, it is tested, if any,
λi ∈ {λtmp,i − 2.5, λtmp,i − 2, . . . , λtmp,i + 2, λtmp,i + 2.5}
improved the accuracy. To take advantage of both global and
local optimization, a global search was used at the beginning of
the optimization to capture the full search domain. After some
epochs, a local refinement was used to obtain a finer search space.
With this modification, the computational cost remained the
same. Additionally, it allowed formore and finer candidate values
that could result in improvement. Incorporating this method into
Iterative grid search is shown in Algorithm 6.3. As before, an
additional hyperparameter finer_epoch was introduced to specify
after how many epochs the grid was refined.
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Algorithm 6.1 : Shift(X, Y , C)

⊲ iterative grid search with multiple start points

. . . ⊲ same as Algorithm 6 line 1− 10
shift_epoch← s ⊲ number of epochs until new starting point
shift← False ⊲ Boolean flag to indicate a new starting point

for epoch = 1 to epochs do

if epochmod shift_epoch == 0 then
G← generate_initial_point()
shift← True

end if

if shift then
3tmp ← G

else

3tmp ← 3opt

end if

for dir = 1 to p do
for each λi in grid do

. . . ⊲ same as Algorithm 6 line 16− 21
if Atmp > A then ⊲ update 3opt if accuracy is

improved
A← Atmp

3opt ← 3tmp

shift← False
end if

end for

end for

end for

return 3opt

Additionally, spherical and diagonal optimizations are given
in Algorithms 7, 8. This was used for comparison with the
proposed full optimization. These two methods were developed
on classification accuracy like full optimization, rather than
statistical evaluation (such as MLE or Fisher criterion) Bicego
and Baldo (2016). The reason behind this approach is that
the previous study showed that the Box-Cox parameter is
classifier dependent.

RESULTS

Following the proposed optimization procedure was applied to
different real-world datasets. The setup in Algorithm 2 was used
whichmeans thatAlgorithm 3was used to train themodel on the
training data with the iterative optimization from Algorithm 6

and the corresponding improvements 6.1, 6.2, and 6.3. Then
the performance was measured using the prediction function in
Algorithm 4. The examined classifiers are given in Table 1. All
results were measured with 10-fold stratified crossvalidation and
5 repetitions. To test the proposed method various settings for

Algorithm 6.2 : Shuffle(X, Y , C)

⊲ iterative grid search with changing order of the optimization
directions

. . . ⊲ same as Algorithm 6 line 1− 10
dir_order← [1, 2, . . . , p] ⊲ order of directions for
optimization
shuffle_epoch← h ⊲ number of epochs until the order

⊲ of direction gets shuffled

for epoch = 1 to epochs do

if epochmod shuffle_epoch == 0 then
shuffle(dir_order)

end if

for each dir in dir_order do
. . . ⊲ same as Algorithm 6 line 14− 28

end for

end for

return 3opt

Algorithm 6.3 : Finer(X, Y , C)

⊲ iterative grid search with a refined grid

. . . ⊲ same as Algorithm 6 line 1− 10
finer← 0.5 ⊲ refinement of grid
finer_epoch← f ⊲ number of epochs until the grid gets finer
global = 1 ⊲ use global grid search at the beginning

for epoch = 1 to epochs do

if epochmod finer_epoch == 0 then
global = 0
grid← finer ∗ grid ⊲ element-wise scale each element

in grid
end if

for dir = 1 to p do
3tmp ← 3opt

candidates← grid + (1− global) ∗3opt[dir]
for each λi in candidates do

. . . ⊲ same as Algorithm 6 line 16− 26
end for

end for

end for

return 3opt

the hyperparameters were used. The setup is given in Table 4.
Optimization in one direction was done evenly spaced over the
interval [−5, 5] and gridsize corresponded to the number of
grid points (e.g. gridsize of 11 gave the set {−5, −4, . . . , 4, 5}
as candidate values). The Iterative grid search was just iterative
optimization without any further improvements described in
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Algorithm 7 : Spherical grid search(X, Y , C)

⊲ full optimization to get optimal 3 vector
1: X: features
2: Y : corresponding class labels
3: C: classifier to optimize for
4: p: number of features/directions
5: S: standard scaler
6: 3opt ← 0 ⊲ optimized Box-Cox parameter
7: grid← {−5, −4, . . . , 4, 5} ⊲ candidate values
8: A← 0 ⊲ best accuracy obtained during search
9:

10: for each λi in grid do
11: 3tmp ← [λi, λi, . . . , λi]
12: XB ← boxcox(X, 3tmp) ⊲ apply Box-Cox

transformation
13: XS ← S.fit_transform(XB) ⊲ fit standard scaler and apply

it
14: C.train (XS, Y) ⊲ train classifier
15: P← C.predict (XS) ⊲ evaluate classifier
16: Atmp ← accuracy(P, Y) ⊲ evaluate accuracy
17:

18: if Atmp > A then ⊲ update 3opt if accuracy is improved
19: A← Atmp

20: 3opt ← 3tmp

21: end if

22:

23: end for

24: return 3opt

TABLE 4 | Hyperparameter settings to test the iterative optimization on real-world

data.

Name Gridsize Epochs Shift_epoch Shuffle_epoch Finer_epoch

Iterative grid search 11 4 4 4 4

Shift 11 8 4 8 8

Shuffle 11 8 8 2 8

Finer 11 8 8 8 4

Combined 1 11 16 8 2 4

Combined 2 21 16 8 2 4

Algorithm 6. Shift, Shuffle, and Finer exclusively showed the
influence of restarting the optimization with a new starting
point given in Algorithm 6.1, changing the order of directions
given in Algorithm 6.2, or refining the optimization grid given
in Algorithm 6.3. Combined 1 and Combined 2 demonstrated
how these improvements to the Iterative grid search optimization
behaved in combination. The initial starting point, G ∈ R

p, for
the iterative optimization was chosen in each direction as the
MLE. For comparison spherical and diagonal optimizations are
given in Algorithms 7, 8 was also evaluated. Further traditional
Box-Cox optimization of the log-likelihood function as in
Box and Cox (1964) was applied column-wise. This approach
maximized the Gaussianity of each column and is called MLE in
the following tables.

Algorithm 8 : Diagonal grid search(X, Y , C)

⊲ full optimization to get optimal 3 vector
1: X: features
2: Y : corresponding class labels
3: C: classifier to optimize for
4: p: number of features/directions
5: S: standard scaler
6: 3opt ← [1, 1, . . . , 1] ⊲ optimized Box-Cox parameter
7: grid← {−5, −4, . . . , 4, 5} ⊲ candidate values for each

direction
8: A← 0 ⊲ best accuracy obtained during search
9:

10: for dir = 1 to p do
11: 3tmp ← [1, 1, . . . , 1]
12: for each λi in grid do
13: 3tmp[dir]← λi ⊲ change one direction
14: XB ← boxcox(X, 3tmp) ⊲ apply Box-Cox

transformation
15: XS ← S.fit_transform(XB) ⊲ fit standard scaler and

apply it
16: C.train (XS, Y) ⊲ train classifier
17: P← C.predict (XS) ⊲ evaluate classifier
18: Atmp ← accuracy(P, Y) ⊲ evaluate accuracy
19:

20: if Atmp > A then ⊲ update 3opt if accuracy is
improved

21: A← Atmp

22: 3opt ← 3tmp

23: end if

24: end for

25: end for

26: return 3opt

TABLE 5 | Improvement δ in accuracy for different iterative optimization settings in

the sonar dataset.

Linear [%] KNN [%] Bayesian [%] SVC [%] NN [%]

Base accuracy 75.195 81.343 67.700 84.052 84.024

Diagonal 0.076 0.290 1.829 –0.395 –0.957

Spherical 0.586 0.095 6.067 –0.300 –1.910

MLE –0.167 0.000 6.443 1.810 –0.291

Iterative grid search (δ) 1.162 1.824 7.919 2.286 –0.386

Shift (δ) 0.976 1.919 7.919 2.381 –0.386

Shuffle (δ) 1.162 1.824 7.919 2.286 –0.386

Finer (δ) 0.876 1.824 7.919 2.286 –0.386

Combined 1 (δ) 0.600 1.838 7.157 2.190 –0.386

Combined 2 (δ) 2.795 3.267 8.100 2.010 –0.486

The proposed optimization achieved a consistent improvement except for the neural

network. The different hyperparameter settings had a varying influence on the classifiers

defined in Table 4. Combined 2 improved the linear, KNN, and Bayesian classifier,

whereas Shift already delivered the best performance for SVC. Additionally, the proposed

optimization achieved higher improvements than Diagonal, Spherical and MLE except for

the neural network.

Sonar Dataset
The sonar dataset had 207 samples and 60 features. The labels
were binary and indicated whether the sonar signal was reflected
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by a rock or metal. The measurements for the accuracy of
the repeated cross-validation are given in Table 5. Additional
measurements for the F1-score are given in the Appendix in
Table B1.

There was an improvement in accuracy for the proposed
optimization for all classifiers except for the neural network.
In particular, the Bayesian classifier improved on average by
7.8%. In contrast, the neural network decreased by −0.4% on
average. The influence of the changes to the basic iterative
optimization in Algorithm 6 with Shift, Shuffle, and Finer was
observed for the linear and KNN classifiers. Shift restarted the
optimization with a new initial point, and it seemed to decrease
the accuracy for the linear classifier but slightly increased it for
KNN. In contrast, shuffling the order of the directions during
optimization did not result in an advantage for the classifier.
Refining the grid after some epochs did not provide an increase

in accuracy compared to basic iterative optimization. Combining
these methods into one optimization sometimes decreased the
performance (SVC) and sometimes increased the performance
(KNN). Interestingly, the influence of the Combined 1 was
better for the SVC and the neural network when compared to
the Combined 2, which had a finer grid for 3. The opposite
was observed for the other classifiers. The Diagonal, Spherical,
and MLE optimization performed worse than the proposed
optimization except the MLE optimization lead to a smaller
decrease in accuracy for the neural network. This behavior was
also observed for the F1-score measurements given in Appendix

in Table B1.
A 2-dimensional feature study was also performed. Two 2-

dimensional datasets, Figures 4A,B, were created by extracting
two random features from the sonar dataset. With a chi-
square test, the ranks of the features were calculated. Then,

FIGURE 4 | 2-D datasets extracted from the sonar dataset to compare proposed iterative optimization with a grid search. (A) features 8 and 41, (B) features 2 and

48, (C) features 11 and 45, and (D) features 12 and 36.
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TABLE 6 | Improvement δ in accuracy for different iterative optimization settings

on 2-dimensional subsets of the sonar dataset.

Linear [%] KNN [%] Bayesian [%] SVC [%] NN [%]

Features 8 and 41

Base accuracy 53.576 54.090 57.390 62.224 63.267

Diagonal –2.952 0.729 2.276 –0.652 –0.100

Spherical 6.148 0.824 4.067 –0.471 0.005

MLE –0.310 0.643 4.267 0.857 0.014

2D grid search (δ) 7.081 –0.924 3.476 –1.138 –1.243

Iterative grid search (δ) 7.595 –1.195 3.481 –0.195 0.100

Shift (δ) 8.648 –1.005 3.681 –0.767 –0.567

Shuffle (δ) 7.595 –1.195 3.481 –0.195 0.100

Finer (δ) 8.657 –1.200 3.386 –0.386 –0.376

Combined 1 (δ) 8.843 –2.252 3.671 –0.276 –0.376

Combined 2 (δ) 6.743 –1.190 4.357 0.200 –0.671

Features 2 and 48

Base accuracy 55.948 64.862 62.590 66.538 66.719

Diagonal 3.686 0.267 4.943 0.886 –1.329

Spherical 11.276 –0.424 4.957 1.467 0.214

MLE –1.186 1.424 5.519 0.019 –0.852

2D grid search (δ) 11.562 0.090 5.224 1.271 –0.086

Iterative grid search (δ) 12.638 –0.014 4.633 0.305 0.105

Shift (δ) 12.343 0.186 4.633 0.305 0.300

Shuffle (δ) 12.638 –0.014 4.633 0.305 0.105

Finer (δ) 12.724 0.567 4.448 0.800 0.105

Combined 1 (δ) 12.052 0.476 4.543 0.510 0.200

Combined 2 (δ) 11.571 –0.100 4.543 0.705 -0.557

Features 11 and 45

Base accuracy 63.995 71.371 64.805 73.486 72.995

Diagonal 1.943 –0.176 8.310 –1.148 0.319

Spherical 8.433 –0.186 7.362 –0.186 –0.757

MLE 0.205 –2.124 5.910 –0.281 0.400

2D grid search (δ) 9.495 –0.186 8.886 –0.095 –1.162

Iterative grid search (δ) 8.838 –0.957 9.462 0.090 –1.257

Shift (δ) 9.029 –0.662 9.367 –0.004 –1.062

Shuffle (δ) 8.838 –0.957 9.462 0.090 –1.257

Finer (δ) 9.124 –0.567 9.562 0.190 –1.152

Combined 1 (δ) 8.838 –0.567 9.562 0.190 –1.252

Combined 2 (δ) 9.319 –0.752 9.948 0.190 –1.048

Features 12 and 36

Base accuracy 59.510 70.443 70.705 68.876 69.824

Diagonal 3.662 –1.271 -0.595 1.448 0.967

Spherical 10.286 –1.381 1.138 0.776 0.200

MLE 5.343 –1.281 –0.290 1.157 1.452

2D grid search (δ) 12.267 0.681 –0.695 1.833 0.386

Iterative grid search (δ) 12.133 1.733 –1.543 0.767 1.062

Shift (δ) 11.957 1.733 –1.543 0.867 0.776

Shuffle (δ) 12.133 1.733 –1.543 0.767 1.062

Finer (δ) 12.443 1.924 –1.929 0.771 0.686

Combined 1 (δ) 12.157 2.019 –2.024 1.157 1.462

Combined 2 (δ) 12.652 2.010 –1.914 0.676 1.552

In 16 out of the 20 feature classification cases (4 tests× 5 classifiers), an improvement was

achieved compared to the base accuracy. In 13 out of the 20 cases, iterative optimization

was better than a 2D grid search. Additionally, it was better than Diagonal optimization in

13 out of 20 cases and better than Spherical and MLE optimization in 14 out of 20 cases

for each. The influence of the hyperparameter settings is data and classifier dependent.

TABLE 7 | Improvement δ in accuracy for different iterative optimization settings

on the breast cancer dataset.

Linear [%] KNN [%] Bayesian [%] SVC [%] NN [%]

Base accuracy 96.487 96.838 93.289 97.539 98.103

Diagonal 0.317 –0.140 1.232 0.352 –0.246

Spherical 0.422 0.000 1.443 0.176 –1.230

MLE –0.177 0.279 1.477 0.246 –0.281

Iterative grid search (δ) 0.175 0.245 1.371 0.211 –0.598

Shift (δ) 0.175 0.069 1.229 0.105 –0.773

Shuffle (δ) 0.175 0.245 1.336 0.211 –0.598

Finer (δ) 0.316 0.245 1.371 0.211 –0.598

Combined 1 (δ) 0.069 0.315 1.336 0.211 –0.563

Combined 2 (δ) 0.239 0.140 1.442 0.211 –0.669

Every classifier benefited from the proposed optimization apart from the NN. Finer

improved the linear classifier the most, Combine 1 the KNN, Combined 2 the Bayesian.

Therefore, the best hyperparameter setting was dependent on the classifier. Diagonal

optimization was better than the proposed optimization for the linear classifier, SVC

and NN. Spherical optimization was better for the linear and Bayesian classifier. MLE

optimization was better for the Bayesian classifier, SVC and NN.

a dataset with the two highest ranking features, Figure 4C

and a dataset Figure 4D, with the third and fourth highest
ranking features, were built. The performance of a grid
search was measured and served as the baseline. This was
done by using the training function in Algorithm 3 with
2D grid search from Algorithm 5 as optimization procedure
and Algorithm 4 to create predictions. The grid search used
the grid {−5, −4, . . . , 4, 5} in every direction. The datasets
are shown in Figure 4, and the results for the accuracy
are given in Table 6 and for the F1-scores in Appendix in
Table B2.

The iterative method delivered an improvement of the base
accuracy in 16 out of the 20 cases for at least one hyperparameter
setting. Only the accuracy for the KNN classifier for features
[8, 41] and [11, 45], the Bayesian classifier for features [12, 36],
and the neural network for features [11, 45] could not be
improved. Using the hyperparameter setting that resulted in
the lowest loss for each case, the highest decrease in accuracy
was only −1.543% (Bayesian classifier for features [12, 36]).
In contrast, the best hyperparameter setting achieved a gain
of 12.724% (linear classifier for features [12, 36]). Comparing
the proposed iterative method to a grid search, the iterative
optimization achieved better results for all classifiers for features
[8, 41] for at least one hyperparameter setting except for the
KNN classifier. Further, it provided gains for the linear, KNN,
and neural network for features [2, 48], Bayesian, SVC, and
neural network for features [11, 47], and linear, KNN and
neural network for features [12, 36]. Hence, in 13 out of the
20 cases, iterative optimization resulted in better performance
than 2D grid search. The gain in accuracy for the linear classifier
was always positive. This also holds for the Bayesian classifier,
except for features [12, 36]. The KNN classifier fluctuated
around zero. Sometimes the iterative method cannot achieve
any improvement for all tested hyperparameters setting (features
[8, 41] and [11, 45]), and sometimes it was able to improve the
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result. For the SVC, there was always at least one hyperparameter
choice that led to an improvement. The same can be observed
for the neural network, except for features [11, 45]. Nevertheless,
it resulted in a smaller loss of accuracy than grid search for the
Shift, Finer, and Combined 2 cases. For all classifiers and datasets,
there was often a set of hyperparameters that improved the
result of the Iterative grid search optimization. Additionally, the
influence of Shift and Finer compared to Iterative grid search was
sometimes positive and sometimes negative. This varied between
classifiers applied to the same dataset, for example, for features
[8, 41] Finer increased the accuracy for the linear classifier
but decreased the accuracy for the KNN classifier. Further, it
varied between datasets for the same classifier, for example,
the performance of the linear classifier for Shift increased for
features [8, 41] but decreased for features [2, 48]. The same
observation can bemade forCombined 1 andCombined 2. Shuffle
did not influence accuracy compared to Iterative grid search.

The proposed method achieved better results than Diagonal
optimization in 13 out of 20 cases. For Spherical and MLE
optimization the results were better in 14 out of 20 cases for
both. The measurements for the F1-score are given in Table 6.
The proposed optimization achieved a better F1-score compared
to the base accuracy in 12 out of 20 cases, compared to 2D grid
search in 14 out of 20 cases, compared to Diagonal optimization
in 13 out of 20 cases, compared to Spherical in 16 out of
20 cases and compared to MLE optimization in 12 out of
20 cases.

Breast Cancer Dataset
This dataset consisted of 569 samples and 30 features. It was
a binary classification that distinguished between benign and
malignant fine needle aspirate (FNA) samples. The influence of
the iterativemethod on accuracy is given inTable 7. Additionally,

FIGURE 5 | 2-D datasets extracted from the breast cancer dataset to compare proposed iterative optimization with a grid search. (A) Features 2 and 6, (B) features 5

and 27, (C) features 4 and 24, and (D) features 14 and 23.
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measurements for the F1-score are given in the Appendix in
Table C3.

A similar observation to the sonar dataset was evident. There
was an improvement for all classifiers except for the neural
network. Again, the Bayesian classifier improved the most, and
the influence of the different hyperparameter settings on the
SVC was almost static. In comparison to Iterative grid search,
Shift decreased the performance for all classifiers. Extending
the Iterative grid search optimization with Shuffle had a small
negative effect on the Bayesian classifier but did not change
the accuracies of the other classifiers. Finer improved the
results for the linear classifier but did not affect it for the
other classifiers. Combined 1 improved the results of the KNN
and neural network classifier compared to the Iterative grid
search optimization. In contrast, Combined 2 only improved
the neural network. The proposed optimization achieved an
improvement of accuracy for the KNN and Bayesian classifier
compared to Diagonal optimization, for the KNN, SVC, and
NN compared to Spherical optimization, and for the linear
classifier and KNN compared to the MLE optimization. The
same was observed for the F1-scores in Appendix in Table
C3 except that the proposed optimization achieved additionally
an improvement for the linear classifier compared to the
Diagonal optimization.

Again, a 2-dimensional feature study was performed. Two 2-
dimensional datasets, Figures 5A,B, were created by randomly
selecting two features from the breast cancer dataset. In
addition, a dataset Figure 5C, with the two highest ranking
features and a dataset, Figure 5D with the third and fourth
highest ranking features were created by using the ranks
of a chi-square test. The datasets are shown in Figure 5.
The accuracy measurements are given in Table 8 and F1-
scores in the Appendix in Table C4. A grid search with
the grid {−5, −4, . . . , 4, 5} was also executed to obtain a
baseline. Therefore, Algorithm 5 was used as an optimization
procedure for the training method in Algorithms 3, 4 to
create predictions.

The iterative method resulted in an improvement of the base
accuracy in 13 out of the 20 cases for at least one hyperparameter
setting. The highest loss of the best hyperparameter setting was
−0.387%. This was realized by the neural network for features
[14, 23]. In contrast, the highest gain of 9.235% was achieved
by the linear classifier for features [5, 27]. Compared to a
grid search, the iterative method was able to achieve the same
or better performance in 13 out of 20 cases for at least one
hyperparameter setting. The linear classifier always benefited
from the proposed optimization. The Bayesian classifier also
achieved consistent improvements, except for features [4, 24].
The KNN classifier performance improved only in half of the
cases (features [2, 6] and [5, 27]), as did that of the neural
network (features [4, 24] and [2, 6]). As already observed in the
experiment with the sonar dataset, Shift, and Finer both increased
and decreased the performance compared to the Iterative grid
search optimization. The influence varied from classifier to
classifier and from dataset to dataset. For example, for features
[2, 6] the linear classifier did benefit from the Shift, but the
Bayesian classifier did not. In contrast, the linear classifier for

TABLE 8 | Improvement δ in accuracy for different optimization settings on

2-dimensional subsets of the breast cancer dataset.

Linear [%] KNN [%] Bayesian [%] SVC [%] NN [%]

Base accuracy 75.610 79.615 81.622 82.678 83.66

Diagonal 0.664 –0.177 0.843 0.456 0.283

Spherical 6.258 –0.105 1.161 0.456 –0.138

MLE 0.107 0.176 1.197 –0.211 –0.034

2D grid search (δ) 7.064 0.176 1.019 0.736 –0.175

Iterative grid search (δ) 6.153 0.034 0.951 0.490 –0.245

Shift (δ) 6.293 0.034 0.845 0.490 –0.175

Shuffle (δ) 6.187 0.034 0.635 0.455 –0.140

Finer (δ) 6.222 0.068 0.635 0.490 –0.105

Combined 1 (δ) 5.871 0.246 0.705 0.490 –0.070

Combined 2 (δ) 6.713 –0.037 0.739 0.597 0.001

Features 5 and 27

Base accuracy 76.007 84.538 84.677 85.736 86.754

Diagonal 2.421 –0.070 0.987 0.383 –0.352

Spherical 8.393 0.142 0.107 0.489 –0.175

MLE 3.261 –0.070 0.140 0.842 –1.266

2D grid search (δ) 8.566 0.072 –0.034 0.138 –0.175

Iterative grid search (δ) 8.919 0.071 –0.034 0.383 –0.317

Shift (δ) 8.568 0.071 –0.174 0.348 –0.598

Shuffle (δ) 8.919 0.071 –0.034 0.383 –0.317

Finer (δ) 9.200 0.036 –0.174 0.489 –0.457

Combined 1 (δ) 9.235 0.142 –0.315 0.419 –0.527

Combined 2 (δ) 9.060 0.177 0.177 0.419 –0.493

Features 4 and 24

Base accuracy 90.468 92.864 90.893 92.439 92.829

Diagonal 0.148 –0.106 –0.352 –0.281 0.142

Spherical 1.484 0.211 –0.246 –0.211 0.281

MLE –0.207 0.000 –2.494 –0.174 0.211

2D grid search (δ) 1.553 –0.211 0.140 –0.281 0.212

Iterative grid search (δ) 1.694 –0.140 –0.246 –0.175 0.177

Shift (δ) 1.694 –0.105 –0.387 –0.316 0.212

Shuffle (δ) 1.694 –0.140 –0.246 –0.175 0.177

Finer (δ) 1.519 –0.246 –0.246 –0.175 0.387

Combined 1 (δ) 1.519 –0.070 –0.246 –0.211 0.352

Combined 2 (δ) 1.729 –0.387 –0.106 –0.281 0.211

Features 14 and 23

Base accuracy 88.435 90.439 90.966 92.407 92.057

Diagonal 0.695 –0.247 0.632 –0.421 –0.702

Spherical 3.339 –0.316 –0.071 –0.035 –0.597

MLE –0.423 –0.037 0.738 –0.595 –0.352

2D grid search (δ) 3.620 –0.315 0.385 0.528 –0.773

Iterative grid search (δ) 3.409 –0.386 0.349 –0.350 –0.387

Shift (δ) 3.586 –0.316 0.384 –0.386 –0.492

Shuffle (δ) 3.409 –0.386 0.349 –0.350 –0.387

Finer (δ) 3.516 –0.352 0.384 –0.350 –0.387

Combined 1 (δ) 3.586 –0.422 0.419 –0.385 –0.598

Combined 2 (δ) 2.919 –0.387 0.385 –0.281 –0.457

The highest improvement was achieved by the linear classifier for features [5, 27] with

9.235%. In 13 out of the 20 feature classification cases (4 tests × 5 classifiers), the

iterative optimization improved the overall accuracy of the base classification models.

Moreover, they achieved higher accuracy compared to the 2D grid search in 12 out of

20 cases, 16 out of 20 cases compared to Diagonal optimization, 15 out of 20 cases

compared to Spherical optimization and 13 out of 20 cases compared to MLE. The best

hyperparameter choice was dependent on the data as well as the classifier.
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features [5, 27] experienced a decrease in accuracy. Shuffle did
not further influence the performance of the Iterative grid search
method. Combined 1 and Combined 2 had varying influences
depending on the classifier and the dataset. Compared to the
proposed optimization, Diagonal optimization was worse in 16
out of 20 cases, Spherical optimization in 15 out of 20 cases,
and MLE in 13 out of 20 cases. The F1-scores are given in the
Appendix in Table C4 and comparable results were measured.
The proposed optimization achieved a better score in 10 cases
compared to the base accuracy, in 12 cases compared to 2D grid
search, in 14 cases Diagonal optimization, in 15 cases compared
to Spherical optimization, and in 13 cases compared to theMLE.

DISCUSSION

With grid exploration, we have shown that the Box-Cox
transformation is able to consistently improve the accuracy.
This behavior was also observed by Bicego and Baldo (2016).
According to their results, we have also demonstrated that
optimization depends on the classifier. Further, we observed
that full optimization leads to higher improvements. Therefore,
suitable optimization is introduced. This method is further
improved to be able to handle different problems during
optimization. From two real-world datasets, we demonstrated
that the proposed procedure is able to achieve improvements
in accuracy and F1-score. Furthermore, we have shown that
this optimization is superior to grid searches, diagonal, spherical,
and MLE optimization in the majority of cases. We suspect that
the iterative procedure introduces some implicit regularization.
Grid search is likely to overfit the training data, whereas the
iterative method might not be able to find a global solution
on the training set and hence suffers less from overfitting.
The proposed optimization also scales linearly with the ability
to support finer grids. Real-world dataset studies have shown
that the hyperparameter setting is dependent on the data itself
and the classifier. Restarting the optimization with multiple
starting points and refining the grid influenced the results.
However, shuffling the optimization order did not have a
meaningful impact.

The Box-Cox transformation is data-dependent. Hence, the
optimal choice of λ varies, and we recommend using an

appropriate optimization method. We have demonstrated that
the optimization method should take the classifier into account.
However, non-classifier-dependent optimization methods like

MLE might also perform well. Therefore, the best approach to
obtain the best Box-Cox transformation is to evaluate different
optimization procedures and compare the results.

CONCLUSION

The impact of the Box-Cox transformation in classification
tasks was examined. We extended the optimization of
the parameters to a full dataset dependent problem
and showed that this generalization improved the
performance. An optimization procedure was proposed,
successfully tested, and improvements up to 12% could
be achieved.

In future work, an extensive application of the method
to various datasets should be used to test the ability of
the optimization. The influence of the hyperparameters
should also be analyzed. Furthermore, the optimization
could be improved by, for instance, replacing the 1-
dimensional grid search with another 1-dimensional
optimization. Although the Box-Cox transformation has
been shown to increase the accuracy of a base classifier,
it remains unclear whether it is also able to push the
results of a classifier beyond state-of-the-art performance.
Finally, the framework is designed with a general train-
predict functionality that is often used in machine learning.
Therefore, our method could also be applied to other tasks such
as regression.
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