
ORIGINAL RESEARCH
published: 11 May 2022

doi: 10.3389/frai.2022.889981

Frontiers in Artificial Intelligence | www.frontiersin.org 1 May 2022 | Volume 5 | Article 889981

Edited by:

Dongpo Xu,

Northeast Normal University, China

Reviewed by:

Qinwei Fan,

Xi’an Polytechnic University, China

Francesco Caravelli,

Los Alamos National Laboratory

(DOE), United States

*Correspondence:

Ankit B. Patel

ankit.patel@rice.edu

†These authors share first authorship

Specialty section:

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

Received: 04 March 2022

Accepted: 04 April 2022

Published: 11 May 2022

Citation:

Sahs J, Pyle R, Damaraju A, Caro JO,

Tavaslioglu O, Lu A, Anselmi F and

Patel AB (2022) Shallow Univariate

ReLU Networks as Splines:

Initialization, Loss Surface, Hessian,

and Gradient Flow Dynamics.

Front. Artif. Intell. 5:889981.

doi: 10.3389/frai.2022.889981

Shallow Univariate ReLU Networks
as Splines: Initialization, Loss
Surface, Hessian, and Gradient Flow
Dynamics
Justin Sahs 1†, Ryan Pyle 1†, Aneel Damaraju 2, Josue Ortega Caro 1, Onur Tavaslioglu 3,

Andy Lu 2, Fabio Anselmi 1 and Ankit B. Patel 1,2*

1Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States, 2Department of Electrical

Engineering, Rice University, Houston, TX, United States, 3Department of Computational and Applied Mathematics, Rice

University, Houston, TX, United States

Understanding the learning dynamics and inductive bias of neural networks (NNs) is

hindered by the opacity of the relationship between NN parameters and the function

represented. Partially, this is due to symmetries inherent within the NN parameterization,

allowing multiple different parameter settings to result in an identical output function,

resulting in both an unclear relationship and redundant degrees of freedom. The NN

parameterization is invariant under two symmetries: permutation of the neurons and

a continuous family of transformations of the scale of weight and bias parameters.

We propose taking a quotient with respect to the second symmetry group and

reparametrizing ReLU NNs as continuous piecewise linear splines. Using this spline

lens, we study learning dynamics in shallow univariate ReLU NNs, finding unexpected

insights and explanations for several perplexing phenomena. We develop a surprisingly

simple and transparent view of the structure of the loss surface, including its critical

and fixed points, Hessian, and Hessian spectrum. We also show that standard

weight initializations yield very flat initial functions, and that this flatness, together with

overparametrization and the initial weight scale, is responsible for the strength and

type of implicit regularization, consistent with previous work. Our implicit regularization

results are complementary to recent work, showing that initialization scale critically

controls implicit regularization via a kernel-based argument. Overall, removing the weight

scale symmetry enables us to prove these results more simply and enables us to

prove new results and gain new insights while offering a far more transparent and

intuitive picture. Looking forward, our quotiented spline-based approach will extend

naturally to the multivariate and deep settings, and alongside the kernel-based view,

we believe it will play a foundational role in efforts to understand neural networks.

Videos of learning dynamics using a spline-based visualization are available at

http://shorturl.at/tFWZ2.

Keywords: neural networks, symmetry, implicit bias, splines, learning dynamics

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.889981
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.889981&domain=pdf&date_stamp=2022-05-11
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ankit.patel@rice.edu
https://doi.org/10.3389/frai.2022.889981
https://www.frontiersin.org/articles/10.3389/frai.2022.889981/full
http://shorturl.at/tFWZ2

Sahs et al. Shallow ReLU Networks as Splines

1. INTRODUCTION

Deep learning has revolutionized the field of machine learning
(ML), leading to state of the art performance in image
segmentation, medical imaging, machine translation, chess
playing, reinforcement learning, and more. Despite being
intensely studied and widely used, theoretical understanding of
some of its fundamental properties remains poor. One critical,
yet mysterious property of deep learning is the root cause
of the excellent generalization achieved by overparameterized
networks (Zhang et al., 2016).

In contrast to other machine learning techniques, continuing
to add parameters to a deep network (beyond zero training loss)
tends to improve generalization performance. This has even been
observed for networks that are massively overparameterized,
wherein, according to traditional ML theory, they should
(over)fit the training data (Neyshabur et al., 2015). This
overparameterization leads to a highly complicated loss surface,
with increasingly many local minima. How does training
networks with excess capacity lead to generalization? And how
can generalization error decrease with overparameterization?
How can gradient descent in a loss landscape riddled with
local minima so frequently converge to near-global minima?
One possible solution is a phenomenon known as implicit
regularization (or implicit bias). Empirical studies (Zhang et al.,
2016; Advani et al., 2020; Geiger et al., 2020) have shown
that overparametrized NNs behave as if they possess strong
regularization, even when trained from scratch with no explicit
regularization—instead possessing implicit regularization or bias
(IR or IB), since such regularization is not explicitly imposed by
the designer.

We approach these issues by considering symmetries
of the NN parameterization. Several recent works have
brought attention to the importance of symmetries to deep
learning (Badrinarayanan et al., 2015; Kunin et al., 2020; Tayal
et al., 2020). One important advance is building symmetry aware
architectures that automatically generalize, such as convolutional
layers granting translation-invariant representations, or many
other task-specific symmetries (Liu et al., 2016; Barbosa et al.,
2021; Bertoni et al., 2021; Liu and Okatani, 2021). Understanding
and exploiting symmetries may lead to similar improvements,
resulting in better performance or models that require less
training data due to implementation of expert-knowledge based
symmetry groups.

We consider a new spline-based reparamaterization of a
shallow ReLU NN, explicitly based on taking a quotient with
respect to an existing weight symmetry. In particular, we
focus on shallow fully connected univariate ReLU networks,
whose parameters will always result in a Continuous Piecewise
Linear (CPWL) output. We reparameterize the CPWL function
implemented by the network in terms of the locations of
the nonlinearities (breakpoints), the associated change in slope
(delta-slopes), and a parameter that identifies which side of
the breakpoint the associated neuron is active on (orientation).
This parameterization is defined formally in section 2.1, and
illustrated in Figure 2. We provide theoretical results for shallow
networks, with experiments confirming these results.

1.1. Main Contributions
The main contribution of this work are as follows:

- Initialization: Increasingly Flat with Width. In the spline
perspective, once the weight symmetry has been accounted
for, neural network parameters determine the locations
of breakpoints and their delta-slopes in the CPWL
reparametrization. We prove that, for common initializations,
these distributions are mean 0 with low standard deviation.
Notably, the delta-slope distribution becomes increasingly
concentrated near 0 as the width of the network increases,
leading to flatter initial approximations.

- A characterization of the Loss Surface, Critical Points and
Hessian, revealing that Flat Minima are due to degeneracy
of breakpoints. We fully characterize the Hessian of the loss
surface at critical points, revealing that the Hessian is positive
semi-definite, with 0 eigenvalues occurring when elements of
its Gram matrix set are linearly dependent. We show that
many of these 0 eigenvalues occur due to symmetry artifacts
of the standard NN parametrization. We characterize the ways
this can occur, including whenever multiple breakpoints share
the same active data—thus we expect that at any given critical
point in an overparametrized network, the loss surface will be
flat in many directions.

- Implicit Regularization is due to Flat Initialization in the
Overparametrized Regime.We find that implicit regularization
in overparametrized Fully Connected (FC) ReLU nets is
due to three factors: (i) the very flat initialization, (ii)
the curvature-based parametrization of the approximating
function (breakpoints and delta-slopes, made explicitly clear
by our symmetry-quotiented reparametrization) and (iii) the
role of gradient descent (GD) in preserving initialization
and providing regularization of curvature. In particular, each
neuron has an global, rather than local, impact as each
contributes an affine ReLU. Thus, backpropogation distributes
the “work” of fitting the training data over many units, leading
to regularized delta-slope and breakpoints. All else equal, these
non-local effects mean that more overparametrization leads
to each unit mattering less, thus typically resulting in better
generalization due to implicit regularization (Neyshabur et al.,
2015, 2018).

2. THEORETICAL RESULTS

2.1. Spline Parametrization and Notation
Consider a fully connected ReLU neural net f̂ (x; θ) with a single
hidden layer of width H, scalar input x ∈ R and scalar output
ŷ ∈ R, which we are attempting to match to a target function
f (x), from which we have N sample input/output data pairs
(xn, yn); the full vectors of inputs and outputs are denoted x and

y, respectively. f̂ (·; θ) is a continuous piecewise linear (CPWL)
function since the ReLU nonlinearity is CPWL.

f̂ (x; θNN) , b0 +
H
∑

i=1

vi(wix+ bi)+

Frontiers in Artificial Intelligence | www.frontiersin.org 2 May 2022 | Volume 5 | Article 889981

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

FIGURE 1 | The manifold generated by the scaling transformation of input

weight, input bias, output weight: (wi ,bi , vi) 7→ (αiwi ,αibi ,α
−1
i vi), which leaves

f̂ (x) invariant.

Here the NN parameters θNN , {b0} ∪ {(wi, bi, vi)}Hi=1 denote
the global bias plus the input weight, bias, and output weight,
respectively of neuron i, and (·)+ , max{0, ·} denotes the
ReLU function.

An important observation is that the ReLU NN

parametrization is redundant: for every function f̂
represented by Equation (1) there exists infinitely many
transformations of the parameters θ ′NN ≡ R(θNN) s.t. the

transformed function f̂ (x; θ ′NN) = f̂ (x; θNN). These invariant
transformations R consist of (i) permutations of the hidden
units and (ii) scalings of the weights and biases of the form
wi 7→ αiwi, bi 7→ αibi, vi 7→ α−1

i vi for αi ∈ R>0 (Rolnick
and Kording, 2019). The manifold of constant loss generated
by the α-scaling symmetry is shown in Figure 1. The set G of
such function-invariant transformations together with function
composition ◦ forms a group.

We want to understand the function implemented by this
neural net, and so we ask: How do the CPWL parameters relate to
the NN parameters? We answer this by taking the quotient with
respect to the above α-scaling symmetry, transforming from the
NN parametrization of weights and biases to the following CPWL
spline parametrization:

f̂ (x; θBDSO) , b0 +
H
∑

i=1

µi(x− βi)si , (1)

where

(x− βi)si , (x− βi) ·
{

[[x > βi]], if si = 1

[[x < βi]], if si = −1

and the Iversen bracket [[b]] is 1 when the condition b is
true, and 0 otherwise. The CPWL spline parametrization is the
Breakpoint, Delta-Slope, Orientation (BDSO) parametrization,

θBDSO , {b0} ∪ {(βi,µi, si)}Hi=1, where βi , − bi
wi

is (the x-
coordinate of) the breakpoint (or knot) induced by neuron i,

FIGURE 2 | Illustration of BDSO terminology of a CPWL function. Breakpoints

are where adjacent linear pieces meet, and the delta-slope determines the

difference in slope between the adjacent linear pieces. Orientations determine

on which side of a breakpoint the delta-slope is applied. In a shallow NN, each

neuron contributes exactly one breakpoint, with an associated facing si and

delta-slope µi – in the above example, neurons 1 and 2 are right-facing with

positive delta-slope (s1 = s2 = 1,µ1,µ2 > 0), and neuron 3 is left-facing with

negative delta-slope (s3 = −1,µ3 < 0).

µi , wivi is the delta-slope contribution of neuron i, and si ,
sgnwi ∈ {±1} is the orientation of βi (left for si = −1, right for
si = +1). This terminology is illustrated in Figure 2.

Considering the BDSO parametrization provides a new, useful
lens with which to analyze neural nets, enabling us to reasonmore
easily and transparently about the initialization, loss surface, and
training dynamics. The benefits of this approach derive from
taking the quotient with respect to the α-scaling symmetry,
leading to two useful properties: (1) the loss depends on the
NN parameters θNN only through the BDSO parameters (the
approximating function) θBDSO i.e., ℓ(θNN) = ℓ(θBDSO(θNN)),
analogous to the concept of a minimum sufficient statistic in
exponential family models; and (2) the BDSO parameters are
more intuitive, allowing us to reproduce known results (Williams
et al., 2019) more succinctly, and expand out to new results more
easily. Much recent related work has also moved in this direction,
analyzing function space (Balestriero and Baraniu, 2018; Hanin
and Rolnick, 2019).

The BDSO parametrization makes clear that, fundamentally,

f̂ (x; θNN) is represented in terms of its second derivative.
Examining

f̂ ′′(x; θBDSO) =
H
∑

i=1

µisiδ(x− βi) (2)

further illustrates the meaning of the BDSO parameters,
especially µi and βi: the second derivative is zero everywhere
except at x = βi for some i, where there is a Dirac delta of
magnitude µi.

We note that the BDSO parametrization of a ReLU NN is
closely related to but different than a traditional mth order

spline parametrization f̂spline(x) ,
∑K

i=1 µi(x − βi)
m
+ +

∑m
j=0 cjx

j (Reinsch, 1967). The BDSO parametrization (i) lacks

the base polynomial, and (ii) has two possible breakpoint

Frontiers in Artificial Intelligence | www.frontiersin.org 3 May 2022 | Volume 5 | Article 889981

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

orientations si ∈ {±1} whereas the spline is canonically all right-
facing. Additionally, adding in the base polynomial (for the linear
case m = 1) into the BDSO parametrization yields a ReLU
ResNet parametrization.

It is also useful to consider the set of sorted breakpoints,
{βp}H+1

p=0 , where −∞ , β0 < β1 < · · · < βp < · · · <
βH+1 , ∞, which induces two partitions: (i) a partition of the
domain X into intervals Xp , [βp,βp+1); and (ii) a partition of

the training data Dx , {xn}Nn=1 into pieces πp , Xp ∩ Dx, so

thatDx = ∪H+1
p=0 πp. Note that sorting the breakpoints (and hence

the neurons) removes the permutation symmetry present in the
standard NN parametrization.

Finally, we introduce some notation relevant to the training of
the network: let ǫ̂ ∈ R

N×1 denote the vector of residuals y−ŷ, i.e.,
ǫ̂n = f (xn) − f̂ (xn), let 1i ∈ R

N×1 denote the activation pattern
of neuron i over all N inputs, 1i,n = [[wixn + bi > 0]], and let
ǫ̂i , ǫ̂ ⊙ 1i ∈ R

N×1 and xi , x ⊙ 1i ∈ R
N×1 denote the relevant

residuals and inputs for neuron i, respectively. In words, relevant
residuals and inputs for neuron i are those which are not zeroed
out by the ReLU activation.

2.1.1. Basis Expansion, Infinite Width Limit
The expansion in Equation 2 can be further understood by
viewing it as a basis expansion. Specifically, we can view the

BDSO framework as a basis expansion of f̂ ′′ in a basis of Dirac

delta functions, or, from Equation 1 as a basis expansion of f̂ in
a basis of functions (x − βi)si . The form of these basis functions
is fixed as the ReLU activation—analogous to the mother basis
function in wavelets (Rao, 2002)—but can be translated via
changes in βi, reflected by si, or re-weighted via changes in µi.

Also, note that if the breakpoints βi are fixed, and only the
delta-slope parameters µi are optimized, then we effectively have
a (kernel) linear regression model. Thus, the power of neural
network learning lies in the ability to translate/orient these basis
functions in order to better model the data. Intuitively, in a good
fit, the breakpoints βi will tend to congregate near areas of high
curvature in the ground truth function, i.e., |f ′′(x)| ≫ 0, so that

the sum-of-Diracs f̂ ′′(x; θBDSO) better approximates f ′′(x).1

Consider the infinite width limit H→∞, rewriting Equation
2 as

f̂ ′′(x; θBDSO) =
∫

c(β)δ(x− β) dβ (3)

=
∫

pβ (β)
c(β)

pβ (β)
δ(x− β) dβ

= Eβ

[
c(β)

pβ (β)
δ(x− β)

]

.

Using the Law of Large Numbers, Eβ [
c(β)
pβ (β)

δ(x − β)] =
1
H

∑

i
c(βi)
pβ (βi)

δ(x − βi) + O(1/H) and so we may write µisi ,

1Although a “breakpoints near curvature” fit will be a good fit, that does not

mean that Gradient Descent from a random initialization can find such a fit;

see section 2.3.

c(βi)/Hpβ (βi). Then, from Equation 3, we can expand this as

µisi = f̂ ′′(βi; θBDSO)/Hpβ (βi).

2.2. Random Initialization in Function
Space
We now study the random initializations commonly used in
deep learning in function space. These include the independent
Gaussian initialization, with bi ∼ N (0, σb), wi ∼ N (0, σw),
vi ∼ N (0, σv), and independent uniform initialization, with bi ∼
U[−ab, ab], wi ∼ U[−aw, aw], vi ∼ U[−av, av]. We find that
common initializations result in flat functions, becoming flatter
with increasing width.

Theorem 1. Consider a fully connected ReLU neural net with
scalar input and output, and a single hidden layer of width H.
Let the weights and biases be initialized randomly according to a
zero-mean Gaussian or Uniform distribution. Then the induced
distributions of the function space parameters (breakpoints β,
delta-slopes µ) are as follows:

(a) Under an independent Gaussian initialization,

pβ ,µ(βi,µi)=
1

2πσv

√

σ 2
b
+σ 2

wβ
2
i

exp

−
|µi|

√

σ 2
b
+σ 2

wβ
2
i

σbσvσw

(b) Under an independent Uniform initialization,

pβ ,µ(βi,µi) =
[[|µi| ≤ min{ abav|βi| , aw, av}]]

4abawav
(

min{ ab|βi|
, aw} −

|µi|
av

)

Using this result, we can immediately derive marginal and
conditional distributions for the breakpoints and delta-slopes.

Corollary 1. Consider the same setting as Theorem 1.

(a) In the case of an independent Gaussian initialization,

pβ (βi) = Cauchy

(

βi; 0,
σb

σw

)

pµ(µi) =
G2,0
0,2

(

µ2
i

4σ 2v σ
2
w

∣
∣
∣
∣0, 0

)

2πσvσw
=

K0

(
|µi|
σvσw

)

πσvσw

pµ|β (µi|βi) = Laplace

µi; 0,
σbσvσw

√

σ 2
b
+ σ 2

wβ
2
i

where Gnm
pq (·|·) is the Meijer G-function and Kν(·) is the

modified Bessel function of the second kind.
(b) In the case of an independent Uniform initialization,

pβ (βi) =
1

4abaw

(

min

{
ab

|βi|
, aw

})2

pµ(µi) =
[[−awav ≤ µi ≤ awav]]

2awav
log

awav

|µi|
pµ|β (µi|βi) = Tri(µi; av min{ab/|βi|, aw})

Frontiers in Artificial Intelligence | www.frontiersin.org 4 May 2022 | Volume 5 | Article 889981

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

where Tri(·; a) is the symmetric triangular distribution with
base [−a, a] and mode 0.

2.2.1. Implications
Corollary 1 implies that the breakpoint density drops quickly
away from the origin for common initializations. As breakpoints
are necessary to fit curvature, if the ground truth function
f (x) has significant curvature far from the origin, then it may
be far more difficult to fit. We show that this is indeed the
case by training a shallow ReLU NN with an initialization
that does not match the underlying curvature, with training
becoming easier if the initial breakpoint distribution better
matches the function curvature. This suggests that a data-
dependent initialization, with more breakpoints near areas of
high curvature, could potentially be faster and easier to train.
Note that this simple curvature-based interpretation is made
possible by our symmetry-quotiented reparametrization.

Next, we consider the typical Gaussian He (He et al., 2015)
or Glorot (Glorot and Bengio, 2010) initializations. In the He
initialization, we have σw =

√
2, σv = √

2/H. In the Glorot
initialization, we have σw = σv =

√

2/(H + 1). We wish to
consider their effect on the smoothness of the initial function
approximation. From here on, we measure the smoothness using

the roughness of f̂ , ρ ,
∫

|f̂ ′′(x; θBDSO)|2 dx =
∑

i µ
2
i = ‖µ‖22,

where lower roughness indicates a smoother approximation.

Theorem 2. Consider the initial roughness ρ0 under a Gaussian
initialization. In the He initialization, we have that the tail
probability is given by

P[ρ0 − E[ρ0] ≥ λ] ≤ 1

1+ λ2H
128

,

where E[ρ0] = 4. In the Glorot initialization, we have that the tail
probability is given by

P[ρ0 − E[ρ0] ≥ λ] ≤ 1

1+ λ2(H+1)4

128H

,

where E[ρ0] = 4H
(H+1)2

= O
(
1
H

)

.

Thus, as the width H increases, the distribution of the roughness

of the initial function f̂0 gets tighter around its mean. In the
case of the He initialization, this mean is constant; in the Glorot
initialization, it decreases with H. In either case, for reasonable
widths, the initial roughness is small with high probability,
corresponding to small initial delta-slopes. This smoothness
has implications for the implicit regularization phenomenon
observed in recent work (Neyshabur et al., 2018), and studied
later in section 2.6, in particular, Theorem 7.

Related Work. Several recent works analyze the random
initialization in deep networks. However, there are two main
differences; first, they focus on the infinite width case (Neal,
1994; Lee et al., 2017; Jacot et al., 2018; Savarese et al., 2019)
and can thus use the Central Limit Theorem (CLT), whereas we
focus on finite width case and cannot use the CLT, thus requiring
nontrivial mathematical machinery (see Supplement for detailed

proofs). Second, they focus on the activations as a function
of input whereas we also compute the joint densities of the
BDSO parameters i.e., breakpoints and delta-slopes. The latter
is particularly important for understanding the non-uniform
density of breakpoints away from the origin as noted above. The
most closely related work is Steinwart (2019), which considers
only the breakpoints, and suggests a new initialization with
uniform breakpoint distribution.

2.3. Loss Surface in the Spline
Parametrization
We now consider the squared loss 1

2

∑N
n=1(f̂ (xn; θ) − yn)

2

as a function of either the NN parameters ℓ(θNN) or the
BDSO parameters ℓ̃(θBDSO). We begin with the symmetry-
quotiented case:

Theorem 3. The loss function ℓ̃(θBDSO = (β,µ, s)) is a
continuous piecewise quadratic (CPWQ) spline. Furthermore,
consider the evolution of the loss as we vary βi along the x axis;
this 1-dimensional slice ℓ̃(βi; β−i,µ, s) is also a CPWQ spline in
βi with knots at datapoints {xn}Nn=1. Let p1(βi) (resp. p2(βi)) be

the quadratic function equal to ℓ̃(βi; β−i,µ, s) for βi ∈ [xn−1, xn]

(resp. [xn, xn+1]), which both have positive curvature, and let mj ,

argmin pj(βi). Then, with measure 1, the knots xn fall into one of
three types as shown in Figure 3:

- (Type I, Passthrough) m1,m2 < xn, or xn < m1,m2,
- (Type II, Repeller) m1 < xn < m2

- (Type III, Attractor) m2 < xn < m1.

We call Type I knots Passthrough knots because gradient flow
starting from the higher side will simply pass through the knot.
Similarly, we call Type II knots Repellers and Type III knots
Attractors because βi will be repelled by or attracted to the knot
during gradient flow.

We now return to the loss ℓ(θNN) under the NN
parametrization, and consider varying (wi, vi, bi) such that
the corresponding βi changes but µi and si stay the same.
Due to the α-scaling symmetry, this can be implemented
in two distinct ways: (i) (wi, vi, bi) 7→ (wi, vi, bi + δ) or
(ii) (wi, vi, bi) 7→ ((1 + δ)wi, vi/(1 + δ), bi). Version (ii)
can be implemented by applying version (i) followed by
the transformation (wi, vi, bi) 7→ (αwi, vi/α,αbi) for the
appropriate α, which leaves the loss invariant. In fact, there
is a continuum of transformations which could be achieved
by version (i) followed by an arbitrary α-transformation.
Thus, consider the 1-dimensional slice ℓ(bi;w, v, b−i), which is
equal to ℓ̃(−bi/wi; β−i,µ, s), i.e., a horizontally reflected and

scaled version of ℓ̃(βi; β−i;µ, s). The 1-dimensional “slice”
corresponding to version (ii) will similarly be a stretched version
of ℓ̃(βi; β−i;µ, s), with the caveat that this “slice” is along a
hyperbola in the (vi,wi)-plane. Noting that any changes in
(wi, vi, bi) that implement the same change in βi change the loss
in the same way, let ℓ(βi; θNN \βi) denote the equivalence class of
1-dimensional slices of ℓ(θNN). This gives the following corollary:

Frontiers in Artificial Intelligence | www.frontiersin.org 5 May 2022 | Volume 5 | Article 889981

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

FIGURE 3 | Classification of critical points: p1(βi) shown in blue, p2(βi) shown in green; solid lines represent the 1 dimensional loss slice ℓ̃(βi; β−i ,µ, s), dotted lines

represent the extension of pk (βi) past xn.

Corollary 2. The 1-dimensional slices ℓ(βi; θNN \ βi) of ℓ(θNN)
that implement a change only in βi are CPWQ with knots as in
Theorem 3.

2.3.1. Critical Points of the Loss Surface
In addition to the fixed points associated with attractor
datapoints, there are also critical points that lie in the quadratic
regions, i.e., local (and global) minima which correspond to the
minima of some parabolic piece for each neuron.We characterize
these critical points here.

Theorem 4. Consider some arbitrary θ∗NN such that there exists
at least one neuron that is active on all data. Then, θ∗NN is a

critical point of ℓ̃(·) if and only if for all domain partitions Xp,

the restriction f̂ (·; θ∗NN)|Xp is an Ordinary Least Squares (OLS) fit
of the training data contained in πp.

Hℓ(θ)=

. . .

〈vjxj, vixi〉 〈vjxj,wixi + bi1i〉 〈vjxj, vi1i〉 · · · 〈vjxj, 1〉
〈wjxj + bj1j, vixi〉 〈wjxj + bj1j,wixi + bi1i〉 〈wjxj + bj1j, vi1i〉 · · · 〈wjxj + bj1j, 1〉

〈vj1j, vixi〉 〈vj1j,wixi + bi1i〉 〈vj1j, vi1i〉 · · · 〈vj1j, 1〉
...

. . .
...

〈1, vixi〉 〈1,wixi + bi1i〉 〈1, vi1i〉 · · · 〈1, 1〉

(4)

An open question is how many such critical points exist. A
starting point is to consider that there are C(N + H,H) ,

(N + H)!/N!H! possible partitions of the data. Not every
such partition will admit a piecewise-OLS solution which is
also continuous, and it is difficult to analytically characterize
such solutions.

Using Theorem 4, we can characterize growth of global
minima in the overparametrized case. Call a partition5 lonely if
each piece πp ∈ 5 contains at most one datapoint (see Figure 4).
Then, we can prove the following results:

Lemma 1. For any lonely partition 5, there are infinitely many
parameter settings θBDSO that induce 5 and are global minima
with ℓ̃(θBDSO) = 0. Furthermore, in the overparametrized regime

H ≥ cN for some constant c ≥ 1, the total number of lonely
partitions, and thus a lower bound on the total number of global
minima of ℓ̃ is

(H+1
N

)

= O(NcN).

Remark 1. Suppose that the H breakpoints are uniformly spaced
and that the N datapoints are uniformly distributed within the
region of breakpoints. Then in the overparametrized regime H ≥
dN2 for some constant d ≥ 1, the induced partition 5 is lonely

with high probability 1− e−N2/(H+1) = 1− e−1/d.

Thus, with only O(N2) hidden units, we can almost guarantee
a lonely partition at initialization. This makes optimization

easier but is not sufficient to guarantee that learning will

converge to a global minimum, as breakpoint dynamics could

change the partition to crowded (see section 2.5). Note how

simple and transparent the spline-based explanation is for why
overparametrization makes optimization easier. For brevity, we

include experiments testing our theory of loneliness in Figure 14
in Appendix.

2.4. The Gradient and Hessian of the Loss
ℓ(θNN)
Previous works has revealed many key insights into the Hessian
of the loss surface of neural networks. It has long been empirically
known that GD tends to work surprisingly well, and that
most or all local minima are actually near-optimal (Nguyen
and Hein, 2017), although this is known to depend on the
overparametrization ratio and the data distribution (Pennington
and Bahri, 2017; Granziol et al., 2019). Flatter local minima have
been shown to be connected to better generalization (Sankar

Frontiers in Artificial Intelligence | www.frontiersin.org 6 May 2022 | Volume 5 | Article 889981

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

FIGURE 4 | Breakpoints (blue bars) vs. datapoints (red points). A lonely

partition is when every datapoint is isolated—overparametrization makes this

increasingly likely.

et al., 2020), but the areas around critical points may be unusually
flat, with the bulk of Hessian eigenvalues near 0, and only a few
larger outliers (Ghorbani et al., 2019), meaning that many local
minima are actually connected within a single basin of attraction
(Sagun et al., 2017). Our theory can shed new light on many of
these phenomena:

The gradient of ℓ(θNN) can be expressed as

∂ℓ
∂b0

= −〈ǫ̂, 1〉 ∂ℓ
∂wi

= −〈ǫ̂i, vixi〉
∂ℓ
∂vi

= −〈ǫ̂i,wixi + bi1i〉 ∂ℓ
∂bi

= −〈ǫ̂i, vi1i〉
(5)

From this, we can derive expressions for the Hessian of the loss
ℓ(θNN) at any parameter θNN.

Theorem 5. Let θ∗ be a critical point of ℓ(·) such that β∗i (θ
∗) 6=

xn for all i ∈ [H] and for all n ∈ [N]. Then the Hessian Hℓ(θ
∗) is

the positive semi-definite Gram matrix of the set of 3H + 1 vectors

B , {vixi,wixi + bi1i, vi1i}Hi=1 ∪ {1},

as shown in eq. (4). Thus, Hℓ(θ
∗) is positive definite iff the vectors

of this set are linearly independent.

Remark 2. The zero eigenvalues of Hℓ(θ
∗) correspond to

1. α-scaling: For each neuron i, the scaling transformation
(wi, bi, vi) 7→ (αiwi,αibi,α

−1
i vi) leaves the approximating

function f̂ (x) (and thus the training loss) invariant, thus
generating a 1-dimensional hyperbolic manifold of constant
loss; thus, the tangent vector of this manifold will be in the null
space of Hℓ(θ) for all θ . This manifold is depicted in Figure 1.

2. 0 singularities: For each neuron i, if either of wi or vi are 0:

- if vi = 0, thenµi = 0, so that changes to the value of βi (via

either bi or wi) do not change f̂ (x), thus contributing two 0
eigenvalues

- if wi = 0, then µi = 0 and βi = ±∞, so any changes to bi

or vi do not change f̂ (x), thus contributing two 0 eigenvalues

3. Functional changes: Any functional change that does not

change the value of f̂ (x) at the training data will leave the
loss unchanged. In the sufficiently overparametrized regime,
there are many ways to make such changes. Some examples
are shown in Figure 5.

The first two types are artifacts of the NN parametrization, caused
by invariance to the α-scaling symmetry.

Additionally, we note that these are all also zero eigenvalues
for non-critical points, but that there are other zero eigenvalues
for non-critical points. While Hℓ(θ∗) does not depend on ǫ at
the above critical points, at other points, ǫ terms can “cancel
out” the corresponding term in eq. (4), yielding additional zero
eigenvalues (as well as negative eigenvalues).

From this, we note that for any critical point θ∗, there is a large
connected sub-manifold of parameter space of constant loss.
Moving along this manifold consists of continuously deforming

f̂ (x; θ∗NN) such that the output values at datapoints are left
invariant or moving along the α-scaling manifolds which leave

f̂ (x; θ∗NN) invariant. The 0 singularities lie at the intersection
of every α-scaling manifold for neuron i, corresponding to the
α = 0 and α = ∞ limits.

Consider the µ-only Hessian under the BDSO

parametrization, d2ℓ
dµ2 , and rewrite our network as ŷ = 8(x; β)µ,

where 8 is the N × H feature matrix of activations (or basis
functions) (xn − βi)si , which is constant with respect to µ.

Then, we have d2ℓ
dµ2 = 8

⊤
8. Applying an SVD decomposition

8 = USV⊤, then 8
⊤
8 = VS2V⊤, such that the eigenvalues

of the Hessian will be the singular values of 8 squared. Thus,
we can decompose the vector of delta-slopes µ = µr + µn

where µr is in the range of 8 while µn is in the nullspace. Thus,
ŷ = 8(x; β)µr + 8(x; β)µn = 8(x; β)µr , and the gradient with
respect to µ is always constrained to the linear subspace µr .

Figure 6A shows a 2-dimensional representation of the loss
surface, which is quadratic along µr , and constant along µn.
Figure 6B illustrates the effect of varying β, which changes
8(x; β) and hence µr and µn.

2.4.1. The Flatness of the Hessian
An important question is: How does overparametrization impact
(the spectrum of) the Hessian? The symmetry-quotiented spline
parametrization enables us to lower bound the number of zero
eigenvalues of the Hessian [e.g., the “flatness” (Li et al., 2018)]
as follows.

Corollary 3. Let θ∗ be a critical point of ℓ(·) such that its data
partition is lonely, and either at least one neuron is active on all
data or there is at least one pair of oppositely-faced neurons in
the same data gap, so that x ∈ span(B). Then, ℓ(θ∗) = 0 and
Hℓ(θ

∗) has exactly N non-zero eigenvalues, and thus 3H + 1− N
zero eigenvalues.

Intuitively, as overparametrization H/N increases, the number
of neurons with shared activation patterns increases, which in
turn means many redundant breakpoints between each pair
of datapoints, which increases the number of flat directions

Frontiers in Artificial Intelligence | www.frontiersin.org 7 May 2022 | Volume 5 | Article 889981

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

FIGURE 5 | Examples of functional changes that leave the loss invariant: (A) when there are multiple breakpoints with the same facing in the interval (xn, xn+1), they

can change in ways that cancel out, leaving the function unchanged on the data; (B) if two breakpoints on either side of a datapoint (with no other data in between)

have the same facing, they may “rotate” the portion of the function between them around xn; (C) any neuron outside of the data range and facing away (which

therefore has no active data) is completely unconstrained by the loss until βi enters the data range.

FIGURE 6 | 2-dimensional representation of the loss surface as a function of µ, broken down into a loss-sensitive range and loss-independent nullspace (A) Example

for fixed β (B) Same system as before, except β was varied, resulting in modified µ range and nullspace.

(zero eigenvalues) of the Hessian. Additionally, each neuron is
guaranteed one degree of freedom in the form of the α-scaling
symmetry, leading toH intrinsic zero eigenvalues of the Hessian.

2.5. Gradient Flow Dynamics for Spline
Parameters
Theorem 6. For a one hidden layer univariate ReLU network
trained with gradient descent with respect to the neural network
parameters θNN = {(wi, bi, vi)}Hi=1, the gradient flow dynamics of
the function space parameters θBDSO = {(βi,µi)}Hi=1 are governed
by the following laws:

β̇i =
vi(t)

wi(t)

[〈

ǫ̂i(t), 1
〉

︸ ︷︷ ︸

net relevant residual

+βi(t)
〈

ǫ̂i(t), x
〉

︸ ︷︷ ︸

correlation

]

(6)

µ̇i = w2
i (t)

[

−
(

1+
(
vi(t)

wi(t)

)2
)

〈

ǫ̂i(t), x
〉

+ βi(t)
〈

ǫ̂i(t), 1
〉

]

(7)

Here i ∈ [H] indexes all hidden neurons and the initial
conditions βi(0),µi(0)∀i ∈ [H] must be specified by the
initialization used (see Appendix B.8 for derivation).

2.5.1. Impact of Init Scale α

As mentioned previously, the standard NN parametrization has

symmetries such that the function f̂ and the loss is invariant to
α-scaling transformations of the NN parameters (section 2.1).
However, such scalings do have a large effect on the initial NN
gradients; specifically, applying the α-scaling transformation in
eqs. (6) and (7), the initial learning rate for βi scales as 1/α

2
i , while

that ofµi scales approximately as α2i . Changing α at initialization
has a large impact on the final learned solution. In Section 2.6 we
will show how α determines the kind of (implicit) regularization
seen in NN training (Woodworth et al., 2020).

2.5.2. Breakpoint Dynamics
Next, we wish to build some intuition of the conditions that
lead to the different knot types and the effect the types have on

Frontiers in Artificial Intelligence | www.frontiersin.org 8 May 2022 | Volume 5 | Article 889981

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

training dynamics and implicit regularization. First, we rewrite
eq. (6) as

β̇i =
vi(t)

wi(t)

〈

ǫ̂i(t), 1i + βi(t)xi
〉

,

and note that the dot product is a cumulative sum of weighted
residuals (summing from the furthest datapoint on the active side
of neuron i and moving toward βi). Next, let Ai = {n|1i,n = 1}
denote the set of data indices which are active for neuron i, and
Xi be the active half-space of neuron i [i.e., (−∞,βi) or (βi,∞)].
If we view ǫ̂i(t) as ǫ̂(βi, t) ,

∑

n∈Ai
ǫ̂nδ(βi − xn), we can rewrite

the dot product as an integral and write β̇i as a function ̺i(β , t):

̺i(β , t) =
vi(t)

wi(t)

∫

Xi

ǫ̂(x, t)(1+ βx) dx

,
vi(t)

wi(t)
ψsi (β , t)

Finally, note that ψ+(β , t) = ψ−(∞, t)−ψ−(β , t), i.e., ψ+(·, ·) is
justψ−(·, ·) reflected across the (finite) total integral; accordingly,
we drop the subscript and refer to ψ(·, ·) from now on.

Then, to identify Repeller and Attractor knots, we are
interested in the datapoints βi = xn where β̇i changes sign, i.e.,
we are interested in the zero-crossings of ψ(·, t). Very roughly,
at earlier stages of learning, large regions of the input space have
high residual, so that many neurons get large, similar updates,

leading to broad, smooth changes to f̂ (x; θNN) and hence broad,
smooth changes to ǫ̂(x, t) and ψ(β , t). Applying such a change
to ψ(β , t) will have the effect of “centering” ψ(β , t) such that it
has an average value of 0 over large regions. Because the changes
are broad at first, the steeper regions of ψ(β , t) will retain most
of their steepness. Together with the “centering,” this leads to

the conclusion that the local extrema of ∂ψ(β ,t)
∂β

will be near

zero-crossings of ψ(β , t).

∂ψ(β , t)

∂β
= ǫ̂(β , t)(1+ β2)+

∫ β

−∞
ǫ̂(x, t)x dx

Due to the broad centering effect, the second term≈ 0,

≈ ǫ̂(β , t)(1+ β2)

Therefore, the local extrema of ǫ̂(β , t) will be local extrema of
∂ψ(β ,t)
∂β

and hence near zero-crossings of ψ(β , t).

Note that the above analysis shows that β̇i and hence the
classification of each datapoint is determined by the sameψ(β , t),
plus a scaling factor vi(t)/wi(t) and possibly a reflection based on
sgn(wi), i.e., groups of neurons with the same signs of vi and wi

will yield the same datapoint classification. If datapoint persists
in being an Attractor knot for a group of nearby neurons for a
long enough time, and is surrounded by Passthrough knots, then
those nearby neurons will converge on the datapoint and form
a cluster. This leaves the question: what conditions lead to local
extrema of ǫ̂(β , t) that persist long enough for this behavior?

Empirically, we find concentrations of breakpoints forming
near regions of high curvature or discontinuities in the training
data, leading to a final fit that was close to a linear spline

interpolation of the data. In particular, breakpoints migrate
toward nearby curvature which is being underfit and whose
inflection is the same as that breakpoint’s delta-slope. These
clusters can remain fixed for some time, before suddenly shifting
(all breakpoints in a cluster move together away from the shared
attractor xn) or splitting (two groups of β form two new sub-
clusters that move away from xn in each direction). These
new movements can cause “smearing,” when the cluster loses
coherence. Sometimes, this “smearing” effect is caused by the
need to fit smooth curvature near a cluster: once the residual
at the cluster falls below the residual of nearby curvature being
underfit by the linear fit provided between clusters, the tendency
is for the cluster to spread out; see Figure 7E.

As an illustrative example to explore this question, consider
fitting a data set such as that shown in Figure 7. At initialization

(Figure 7A), f̂ (x; θNN) is much flatter than f (x). After a short

time of training (Figure 7B), f̂ (x; θNN) has matched the average
value of f (x), but is still much flatter, leading to relatively broad
regions where ǫ̂(β , t) is large and of the same sign, with zero
crossings of ψ(β , t) near the first two inflection points. After a
little more training (Figure 7C), we see that all three inflection
points correspond to zero crossings inψ(β , t), and that these zero
crossings have persisted long enough that clusters of breakpoints
have started to form, although the leftmost inflection point is
already fit well enough that ψ(β , t) (and hence β̇i is quite low
in the region, so that those breakpoints are unlikely to make
it “all the way” to a cluster before the data is well fit. Later
(Figure 7D), the right two inflection points have nearby tight

clusters. However, once f̂ (x; θNN) reaches f (x) at these clusters,
the local maxima of ǫ̂(β , t) move away from the clusters, and the
clusters “spread out,” as shown in the converged fit Figure 7E.

2.5.3. Videos of Gradient Descent/Flow Dynamics
We have developed a BDSO spline parametrization-based
visualization. For many of the experiments in this paper,
the corresponding videos showing the learning dynamics are
available at http://shorturl.at/tFWZ2.

2.6. Implicit Regularization
One of the most useful and perplexing properties of deep
neural networks has been that, in contrast to other high
capacity function approximators, overparametrizing a neural
network does not tend to lead to excessive overfitting (Savarese
et al., 2019). Where does this generalization power come from?
What is the mechanism? One promising idea is that implicit
regularization (IR) plays a role. IR acts as if a extra regularization
term had been applied to the optimizer, despite no such
regularization term being explicitly added by a designer. Instead,
IR is added implicitly, brought about by some combination
of architecture, initialization scheme, or optimization. Much
recent work (Neyshabur et al., 2015, 2018) has argued that
this IR is due to the optimization algorithm itself (i.e., SGD).
Our symmetry-quotiented spline perspective makes the role
of α-scaling symmetry apparent: IR depends critically on
breakpoint and delta-slope learning dynamics and initialization.
These results follow from section 2.5 , showing that changes
to the initialization scale result in dramatic changes to the

Frontiers in Artificial Intelligence | www.frontiersin.org 9 May 2022 | Volume 5 | Article 889981

http://shorturl.at/tFWZ2
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

FIGURE 7 | Illustration of breakpoint dynamics, showing how f̂ (x; θNN) and the breakpoint dynamics factor ψ (β, t) evolve over time. For

t = 0, 1, 000, 4, 000, 10, 000, 100, 000. (A) t = 0, (B) t = 1,000, (C) t = 4,000, (D) t = 10,000, and (E) t = 100,000.

relative speeds of learning dynamics for different parameters.
In particular, in the kernel regime α → ∞, breakpoints move
very little whereas delta-slopes move a lot, resulting in diffuse
populations of breakpoints that distribute curvature. In stark
contrast, in the adaptive regime α → 0 breakpoints move a lot
whereas delta-slopes move very little, resulting in tight clusters of
breakpoints that concentrate curvature.

2.6.1. Kernel Regime
We first analyze the so-called kernel regime, inspired by Chizat
et al. (2019) where it is referred to as “lazy training.” In this
section, we omit the overall bias b0.

Lemma 2. Consider the dynamics of gradient flow on ℓ(·) started
from θNN,α , (αw0,αb0, v0 = 0), where wi 6= 0∀i ∈ [H]. In the
limit α → ∞, β(t) does not change, i.e., each breakpoint location
and orientation is fixed. In this case, the θNN model reduces to a
(kernel) linear regression:

ŷ = 8(x; β)µ (8)

where µ ∈ R
H are the regression weights and 8(x; β) ∈ R

N×H

are the nonlinear features φni , (xn − βi)si .

Using this, we can then adapt a well known result about linear
regression (see e.g., Zhang et al., 2016):

Theorem 7. Let µ∗ be the converged µ parameter after gradient
flow on the BDSO model eq. (8) starting from some µ0, with
β held constant. Furthermore, suppose that the model perfectly
interpolates the training data ℓ̃(θBDSO) = 0. Then,

µ∗ = argmin
µ

‖µ − µ0‖22 s.t. y = 8(x; β)µ.

Thus, the case where breakpoint locations and orientations are
fixed, and µ0 = 0 reduces to ℓ2-regularized linear regression on
the delta-slope parameters µ. A geometric representation of this
process is shown in Figure 8. Recalling that ‖µ‖22 is the roughness

FIGURE 8 | View of the loss surface as in Figure 6. GD starting from the

origin (green dashed line) monotonically increases ‖µ‖2 (shown as concentric

circles). GD starting from some other initialization (red dashed line) minimizes

‖µ − µ0‖2 instead (shown as concentric arcs).

of f̂ (x; θBDSO), this result demonstrates the importance of the
initialization, and in particular the initial roughness (Theorem 2):
with a high-roughness initialization minimizing ‖µ − µ0‖22 will
yield a high-roughness final fit.

In the overparametrized regime with an initialization that
yields a lonely partition, the model will reach ℓ̃(θBDSO) = 0. If
we consider the infinite-width limit, we get the following result,
which is a specialization of Theorem 5 of Williams et al. (2019):

Corollary 4. Consider the setting of Theorem 7, with the
additional assumptions that µ0 = 0 and the breakpoints are
uniformly spaced, and let H → ∞. Then the learned function

f̂∞(x;µ∗, β∗) is the global minimizer of

inf
f

∫ ∞

−∞
f ′′(x)2 dx s.t. yn = f (xn) ∀n ∈ [N], (9)

Frontiers in Artificial Intelligence | www.frontiersin.org 10 May 2022 | Volume 5 | Article 889981

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

As such, f̂∞(x;µ∗, β∗) is a natural cubic smoothing spline with N
degrees of freedom (Ahlberg et al., 1967).

Theorem 5 of Williams et al. (2019), is a generalization of
Corollary 4 to the non-uniform case which replaces Equation (9)
with

inf
f

∫ ∞

−∞

f ′′(x)2

pβ (x)
dx s.t. yn = f (xn) ∀n ∈ [N],

where pβ (β) is the initial density of breakpoints induced by the
specific initialization used.2 Deriving this result using the BDSO
framework allows us to see that the initialization has the impact
of weighting the curvature of certain locations more than others.

2.6.2. Kernel Regime Dynamics as PDE
Assume a flat (µi(0) = 0 ∀i ∈ [H]) kernel regime
initialization. Specializing our spline parameterization dynamics
results (Theorem 6), we have

µ̇i(t) = −〈ǫ̂i(t), x〉 + 〈ǫ̂i(t), 1〉βi
, r1,i(t)+ rx,i(t)βi.

Note that the terms r1,i(t) and rx,i(t) only depend on the index
i through the mask 1i; in other words, they are the same for
all breakpoints with the same activation pattern. This pattern is
entirely determined by the orientation si and the data interval
(xn, xn+1) that βi falls into.

Thus, the possible activation patterns can be indexed by data
point index n and orientation s. Letting ςn,s denote the set of
breakpoints with the activation pattern corresponding to (n, s),
we have

µ̇i(t) = r1,n,s(t)+ rx,n,s(t)βi i ∈ ςn,s

Let r1,n,s(t) and rx,n,s(t) be vectors containing |ςn,s| copies of
r1,n,s(t) (resp. rx,n,s(t)), and let r1(t) and rx(t) be the concatenation
of these over all n and s. This allows us to write

µ̇(t) = r1(t)+ rx(t)⊙ β,

whereµ and β are the vectors ofµi (resp. βi) values for all i. Then,
µ(t) can be viewed as a functionµ :[H]×{+,−}×R → R, which
is isomorphic to the function µ :R× {+,−} × R → R given by
µ(x, s, t) ,

∑H
i=1 µi(t)δ(x− βi), yielding the PDE

µ̇(x, s, t) = r1(x, s, t)+ rx(x, s, t)x, (10)

where r1(x, s, t) and rx(x, s, t) are piecewise constant functions
of x with discontinuities at datapoints. Because r1(x, s, t) is
piecewise constant in x for all t,

∫ t
0 r1(x, s, τ) dτ will also be

piecewise constant, and likewise for rx(x, s, t). Thus, µ(x, s, t) will
be (discontinuous) piecewise linear in x for all t. Stepping back,
we see that a finite-width ReLU network trained by gradient
descent is a discretization (in both space and time) of this
underlying continuous PDE.

2In the original formulation (Williams et al., 2019), the pβ (x) term is defined much

more opaquely as ν(x) ,
∫

|w|p(b = ax|w) dp(w).

TABLE 1 | Test loss for standard vs. uniform breakpoint initialization, on sine and

quadratic x2

2 .

Init Sine Quadratic

Standard 4.096 ± 2.25 0.1032 ± 0404

Uniform 2.280 ± 0.457 0.1118 ± 0.0248

Thus, f̂ ”∞(x; t) = µ(x,+, t) + µ(x,−, t), and as µ(x, s, t) is

(discontinuous) piecewise linear, this implies that f̂∞(x; t) will
be continuous piecewise cubic in x for all t, consistent with
Corollary 4.

2.6.3. Adaptive Regime
Previous work (Arora et al., 2019a) has shown that the kernel
regression regime is insufficient to explain the generalization
achieved by modern DL. Instead, the non-convexity of the
optimization (i.e., the adaptive regime, α → 0, called the “rich
regime” in Woodworth et al., 2020) must be responsible. The
spline parametrization clearly separates the two, with all adaptive
regime effects due to breakpoint dynamics βi(t): as α → 0,
breakpoints become more mobile, and the breakpoint dynamics
described in section 2.5 becomes more and more dominant.
As shown in section 2.3, high breakpoint mobility can lead to
clusters of breakpoints forming at certain specific data points.
For low enough α, this clustering of breakpoints yielding a fit
that is more linear spline than cubic spline; intermediate values
of α interpolates these two extremes, giving a fit that has higher
curvature in some areas than others.

Intriguingly, this suggests an explanation for why the kernel
regime is insufficient: the adaptive regime enables breakpoint
mobility, allowing the NN to adjust the initial breakpoint
distribution (and thus, basis of activation patterns). This suggests
that data-dependent breakpoint initializations may be quite
useful (see Table 1 for a simple experiment in this vein).

Spline theory traditionally places a knot at each datapoint for
smoothing splines (James et al., 2013). However, in circumstances
where this is not feasible, either computationally or due to using a
different spline, a variety of methods exist (MLE, at set quantiles
of the regression variable, greedy algorithms, and more) (Park,
2001; Ruppert, 2002; Walker et al., 2005). More recent work
has started to develop adaptive splines, where knots are placed
to minimize roughness, length, or a similar metric, and knot
locations are found via Monte Carlo methods or evolutionary
algorithms (Miyata and Shen, 2005; Goepp et al., 2018). This
adaptivity allows the spline to better model the function by
moving knots to areas of higher curvature – remarkably similar
to the behavior of a low-α NN.

In general, an individual breakpoint does not have a large
impact on the overall function (O(1/H) on average); it is only
through the cooperation of many breakpoints that large changes
to the function are made. Another way of formulating this
distinction is that the function (and hence the loss) depend on the
breakpoints only through the empirical joint density p̂H(β ,µ, s).
Similarly, training dynamics depend on the θNN joint density
p̂H(w, v, b). This formulation is explored in Mei et al. (2018),

Frontiers in Artificial Intelligence | www.frontiersin.org 11 May 2022 | Volume 5 | Article 889981

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

where they derive a dynamics equation for the joint density (in
θNN). Adapting this work to explore the dynamics of the θBDSO
joint density is ongoing work.

2.6.4. Comparison With Concurrent Work
Independent of and concurrent with previous versions (Sahs
et al., 2020a,b) of this work, Williams et al. (2019) has implicit
regularization results in the kernel and adaptive regimes
which parallel our results in this section rather closely. Despite
the similarities, we take a significantly different approach.
Comparing our results to those in Williams et al. (2019), the
key differences are: (1) our BDSO parametrization has a clear
geometric/functional interpretation whereas Williams et al.’s
canonical parameters are opaque. (2) BDSO generalizes
straightforwardly to high dimensions in a conceptually clean
manner: oriented breakpoints become oriented breakplanes
(see section 2.7); it is not clear what the multivariate analog of
the canonical parameters would be. (3) Lemma 2 of Williams
et al. (2019) and the surrounding text discuss the existence of
what we call Attractor/Repulsor knot datapoints, but only gives
an algebraic expression for their formation in terms of residuals
and are unable to distinguish between the types, whereas we
relate the persistence of such Attractors to the curvature of
the ground truth function, particularly when breakpoints cross
datapoints. (4) Our proof techniques are quite different from
theirs, with different intuitions and intermediate results, and are
also conceptually simpler. (5) Theorem 5 ofWilliams et al. (2019)
is slightly more general form of our Corollary 4, extending to
the case of non-uniform breakpoints. (6) Finally, we have many
novel results regarding initialization, loss surface properties,
Hessian and dynamics (everything outside of section 2.6). All
in all, we believe our results are quite complementary to those
of Williams et al., particularly as we extend our results to novel
areas using our Hessian and loss surface analysis.

2.7. Extending to Multivariate Inputs
Throughout this work we chose to focus on the univariate case
in order to build intuition and enable simpler theoretical results.
However, in practice most networks have multivariate inputs;
fortunately, our BDSO parametrization can be easily extended to
multivariate inputs. For D-dimensional inputs, write

f̂ (x; θNN) =
H
∑

i=1

vi
(

〈wi, x〉 + bi
)

+ + b0,

where the input weights are represented as D-dimensional
vectors wi. Using the reparametrization ηi , vi‖wi‖2, ξi , wi

‖wi‖2 ,

γi ,
−bi
‖wi‖2 , the representation becomes

f̂ (x; θBDSO) =
H
∑

i=1

ηi
(

〈ξi, x〉 − γi
)

+ + b0,

where ηi is a “delta-slope” parameter,3 and (ξi, γi) parametrize
the orientation and signed distance from the origin of a

3For D = 1, we have ηi = vi|wi|, differing from the delta-slope µi = viwi used in

this paper by the sign of wi.

FIGURE 9 | Training loss vs. number of pieces (∝ number of parameters) for

various algorithms fitting a piece-wise linear (PWL) function to a quadratic. We

observe a strict ordering of optimization quality with for the stochastic gradient

descent based algorithms, with Adam (an optimizer with momentum)

outperforming BatchNorm SGD outperforming Vanilla SGD.

D − 1-dimensional “oriented breakplane” (generalizing the 0-
dimensional left-or-right oriented breakpoint represented by
(si,βi) in the 1-dimensional case). Generalizing our results to this
parametrization is ongoing work.

3. EXPERIMENTS

3.1. Suboptimality of Gradient Descent
Focusing on univariate networks allows us to directly compare
against existing (near-) optimal algorithms for fitting Piecewise
Linear (PWL) functions, including the Dynamic Programming
algorithm (DP, Bai and Perron, 1998), and a very fast greedy
approximation known as Greedy Merge (GM, Acharya et al.,
2016) (Figure 9). Given a fixed budget of pieces (∝ to number
of parameters e.g., network width), how well do these algorithms
compare to SGD variants in fitting a quadratic (high curvature)
function? DP and GM both quickly reduce training error to
near 0 with order 100 pieces, with GM requiring slightly more
pieces for similar performance. All the GD variants require far
more pieces to reduce error below any target threshold, and may
not even monotonically decrease with number of pieces. These
results show how inefficient GD is w.r.t parameters, requiring
orders of magnitude more for similar performance compared
with PWL fitting algorithms.

3.2. Effect of Initial Breakpoint Distribution
We first ask whether the standard initializations will experience
difficulty fitting functions that have significant curvature away
from the origin (e.g., learning the energy function of a protein
molecule). We train ReLU networks to fit a periodic function
(sin(x)), which has high curvature both at and far from the
origin. We find that the standard initializations do quite poorly
away from the origin (Table 1, first row), consistent with our
theory that breakpoints are essential for modeling curvature.
Probing further, we observe empirically that breakpoints cannot

Frontiers in Artificial Intelligence | www.frontiersin.org 12 May 2022 | Volume 5 | Article 889981

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

FIGURE 10 | Top: “Spiky” (orange) and standard initialization (blue), compared before (left) and after (right) training. Note both cases reached similar, very low training

set error. Bottom: Roughness vs. Width (left) and the variance of the initialization (right) for both data gap cases shown in Figure 11. Each datapoint is the result of

averaging over 4 trials trained to convergence.

migrate very far from their initial location, even if there are
plenty of breakpoints overall, leading to highly suboptimal fits.
In order to prove that it is indeed the breakpoint density that
is causally responsible, we attempt to rescue the poor fitting
by using a simple data-dependent initialization that samples
breakpoints uniformly over the training data range [xmin, xmax],
achieved by exploiting eq. (1). We train shallow ReLU networks
on training data sampled from a sine and a quadratic function,
two extremes on the spectrum of curvature. The data shows that
uniform breakpoint density (Table 1, second row) rescues bad
fits in cases with significant curvature far from the origin, with
less effect on other cases, confirming the theory. We note that
this could be a potentially useful data-dependent initialization
strategy, one that can scale to high dimensions, but we leave this
for future work.

3.3. Generalization: Implicit Regularization
Emerges From Flat Init and
Curvature-Based Parametrization
Our theory predicts that IR depends critically upon flatness of
the initialization (Theorem 7 and corollary 4). Here, we test this
theory for the case of shallow and deep univariate ReLU nets.
We compare training with the standard flat initialization to a
“spiky” initialization, and find that both fit the training data
near perfectly, but that the “spiky” initialization has much worse
generalization error (Figure 10 Top and Table 3 in Appendix).

It appears that generalization performance is not
automatically guaranteed by GD, but is instead due in part
to the flat initializations which are then preserved by GD. Our
theoretical explanation is simple: integrating the dynamics in
Equation (7) yields µi(t) = µi(0)+ · · · and so the initialization’s
impact remains.

3.4. Impact of Width and Init Variance
Next, we examine how smoothness (roughness) depends on the
widthH, focusing on settings with large gaps in the training data.
We use two discontinuous target functions (shown in Figure 11),
leading to a gap in the data, and test how increasing H (with

α unchanged) affects the smoothness of f̂ . We test this on a
“smooth” data gap that is easily fit, as well as a “sharp” gap,
where the fit will require a sharper turn.We trained shallow ReLU
networks with varying width H and initial weight variance σw
until convergence, and measured the total roughness of resulting
CPWL approximation in the data gaps.

Figure 10 Bottom shows that roughness in the data gaps
decreases with width and increases with initial weight variance,
confirming our theory. A higher weight variance, and thus
rougher initialization, acts in a similar fashion to the “spiky”
initialization, and leads to increased roughness at convergence.
In contrast, higher width distributes the curvature “work” over
more units, leading to lower overall roughness.

Frontiers in Artificial Intelligence | www.frontiersin.org 13 May 2022 | Volume 5 | Article 889981

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

FIGURE 11 | Training data sampled from two ground truth functions, one smoothly (left) and the other sharply (right) discontinuous, each with a data gap at [−0.5, 0.5].

3.5. Impact of Init Scale α

Finally, we explore how changing α impacts IR. Empirically, as
α increases from 0 to ∞ we see three qualitative regimes: (i)
an underfitting linear spline, (ii) an interpolating linear spline,
and (iii) a roughness-minimizing natural cubic spline. This
is quantified in Table 2, where we compare the NN fit to a
linear interpolation and a natural cubic spline fit, for varying
α. We first test in the special case that the initial function
approximation is perfectly flat; we find excellent agreement with
the linear interpolation and cubic spline fits for α = 3, 100
(Uniform initialization) and α = 10, 100 (He initialization).
The impact of α on IR can be more easily visualized in our
Supplementary Videos. In order to gauge the impact of the
initialization breakpoint distribution, we also test with a standard
He initialization (Cauchy distributed breakpoints, Corollary 1).
In this case, we find that generalization error is uniformly higher
for all α. More strikingly, the α regime (ii) above disappears, as a
result of breakpoints being more concentrated around the origin
and the initialization roughness being significantly nonzero. This
supports the idea that the initial parameter settings, in particular
the breakpoint distribution, has a critical impact on the final fit
and its IR.

Taken together, our experiments strongly support that a
smooth, flat initialization and overparametrization are both
responsible for the phenomenon and strength of IR, while the
initialization weight scale α critically determines the type of IR.

4. DISCUSSION

We show that removing the α-scaling symmetry and examining
neural networks in spline space enabled us to glean new
theoretical and practical insights. The spline view highlights
the importance of initialization: a smooth initial approximation
is required for a smooth final solution. Fortunately, existing
initializations used in deep learning practice approximate this
property. In spline space, we also achieve a surprisingly simple

TABLE 2 | Comparison of neural network trained to near 0 training loss on

random data against linear interpolation and natural cubic splines for varying α,

with uniform initialization (top) and standard He (bottom).

α MAE vs. Linear RMSE vs. Linear MAE vs. Cubic RMSE vs. Cubic

0.1 0.251 ± 0.077 0.370 ± 0.11 0.326 ± 0.12 0.442 ± 0.16

1 0.137 ± 0.060 0.228 ± 0.074 0.199 ± 0.084 0.282 ± 0.12

3 0.0296 ± 0.0083 0.0749 ± 0.018 0.117 ± 0.034 0.158 ± 0.048

10 0.122 ± 0.027 0.157 ± 0.029 0.0341 ± 0.012 0.0481 ± 0.019

100 0.159 ± 0.042 0.210 ± 0.055 0.0299 ± 0.011 0.0501 ± 0.024

0.1 0.202 ± 0.079 0.320 ± 0.13 0.293 ± 0.11 0.418 ± 0.16

1 0.134 ± 0.064 0.233 ± 0.11 0.211 ± 0.10 0.308 ± 0.15

3 0.132 ± 0.065 0.239 ± 0.12 0.209 ± 0.089 0.329 ± 0.15

10 0.115 ± 0.046 0.163 ± 0.061 0.0884 ± 0.052 0.149 ± 0.11

100 0.161 ± 0.048 0.212 ± 0.055 0.0556 ± 0.015 0.0828 ± 0.021

Mean ± s.d. over 5 random seeds.

and transparent view of the loss surface, its critical points,
its Hessian, and the phenomenon of overparametrization. It
clarifies how increasing width relative to data size leads with high
probability to lonely data partitions, which in turn are more likely
to reach global minima. The spline view also allows us to explain
the phenomenon of implicit regularization, and how it arises due
to overparametrization and the initialization scale α.

4.1. Related Work
Our approach is related to previous work (Frankle and Carbin,
2018; Arora et al., 2019b; Savarese et al., 2019) in that we
wish to characterize parameterization and generalization. We
differ from these other works by focusing on small width
networks, rather than massively overparametrized or infinite
width networks, and by using a spline parameterization to
study properties such as smoothness of the approximated
function. Previous work (Advani and Saxe, 2017) has hinted
at the importance of low norm initializations, but the

Frontiers in Artificial Intelligence | www.frontiersin.org 14 May 2022 | Volume 5 | Article 889981

https://www.youtube.com/channel/UC8YSReXPQ1utA-_v4ciXMhA
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

spline perspective allows us to prove implicit regularization
properties in shallow networks. Finally, Williams et al. (2019)
is closely related and is discussed in detail at the end
of section 2.6.

4.2. Explanation for Correlation Between
Flatness of Minima and Generalization
Error
A key unexplained empirical observation has been that flatter
local minima tend to generalize better (Li et al., 2018; Wei and
Schwab, 2019). Our results above provide an explanation: as
overparametrization O = H/N increases, the flatness of the
local minima (as measured by the number of zero eigenvalues)
increases (Corollary 3) and the smoothness of the implicitly

regularized function (as measured by inverse roughness ρ(f̂H) ≥
ρ(f̂∞)) also increases. As previously shown (Wu et al., 2017),
flatter and simpler local minima imply better generalization.
Our work provides a parsimonious explanation for this: as
we increase overparametrization, partitions become increasingly
lonely, allowing for an increased redundancy in number of ways
to exactly fit the training data (thus increasing the number of zero
eigenvalues), while the inductive bias of gradient descent spreads
the “work” (e.g., curvature changes due to delta-slopes) among
many units, ensuring that each unit has a lesser effect andmaking
the loss surface increasingly flat.

4.3. Future Work
Looking forward, there are still many questions to answer from
the spline perspective: How does depth affect the expressive
power, learnability, and IR? What kinds of regularization are
induced in the adaptive regime and how do modern deep nets
take advantage of them? How can data-dependent initializations

of the breakpoints help rescue/improve the performance of GD?
Can we design new global learning algorithms inspired based on
breakpoint (re)allocation? We believe the BDSO perspective can
help answer these questions.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

JS led effort on theory section, with help from RP and AP. RP led
effort on experiments, with help from all other authors. JS and
RP were responsible for manuscript. All authors contributed to
the article and approved the submitted version.

FUNDING

RP and AP were supported by Intelligence Advanced Research
Projects Activity (IARPA) via Department of Interior/Interior
Business Center (DoI/IBC) contract number D16PC00003. JS
and AP were supported by NIH grant no. 1UF1NS111692-01. RP
and AP were supported by funding from NSF NeuroNex grant
no. 1707400.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frai.2022.
889981/full#supplementary-material

REFERENCES

Acharya, J., Diakonikolas, I., Li, J., and Schmidt, L. (2016). Fast

algorithms for segmented regression. arXiv [Preprint]. arXiv:1607.03990.

doi: 10.48550/arXiv.1607.03990

Advani, M. S., and Saxe, A. M. (2017). High-dimensional dynamics of

generalization error in neural networks. arXiv [preprint]. arXiv:1710.03667.

doi: 10.48550/arXiv.1710.03667

Advani, M. S., Saxe, A. M., and Sompolinsky, H. (2020). High-dimensional

dynamics of generalization error in neural networks. Neural Netw. 132, 428–

446.

Ahlberg, J. H., Nilson, E. N., andWalsh, J. L. (1967). The theory of splines and their

applications.Math. Sci. Eng. 38, 1–276.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and Wang,

R. (2019a). On exact computation with an infinitely wide neural

net. arXiv [preprint]. arXiv:1904.11955. doi: 10.48550/arXiv.1904.

11955

Arora, S., Du, S. S., Hu, W., Li, Z., and Wang, R. (2019b). Fine-grained

analysis of optimization and generalization for overparameterized two-layer

neural networks. arXiv [preprint]. arXiv:1901.08584. doi: 10.48550/arXiv.1901.

08584

Badrinarayanan, V., Mishra, B., and Cipolla, R. (2015). Symmetry-invariant

optimization in deep networks. arXiv [preprint]. arXiv:1511.01754.

doi: 10.48550/arXiv.1511.01754

Bai, J., and Perron, P. (1998). Estimating and testing linear models with

multiple structural changes. Econometrica 66, 47–78. doi: 10.2307/29

98540

Balestriero, R., and Baraniu, R. G. (2018). “A spline theory of deep

networks,” in International Conference on Machine Learning,

(Stockholm, Sweden) 383–392.

Barbosa, W. A., Griffith, A., Rowlands, G. E., Govia, L. C., Ribeill, G. J., Nguyen,

M.-H., et al. (2021). Symmetry-aware reservoir computing. Phys. Rev. E 104,

045307. doi: 10.1103/PhysRevE.104.045307

Bertoni, F., Montobbio, N., Sarti, A., and Citti, G. (2021). Emergence of lie

symmetries in functional architectures learned by cnns. Front. Comput.

Neurosci. 15, 694505 doi: 10.3389/fncom.2021.694505

Chizat, L., Oyallon, E., and Bach, F. (2019). “On lazy training in differentiable

programming,” in Advances in Neural Information Processing Systems

(Vancouver, Canada), 2933–2943.

Frankle, J., and Carbin, M. (2018). The lottery ticket hypothesis: Finding

sparse, trainable neural networks. arXiv [preprint]. arXiv:1803.03635.

doi: 10.48550/arXiv.1803.03635

Geiger, M., Jacot, A., Spigler, S., Gabriel, F., Sagun, L., d’Ascoli, S., et al. (2020).

Scaling description of generalization with number of parameters in deep

learning. J. Stat. Mech. 2020, 023401.

Ghorbani, B., Krishnan, S., and Xiao, Y. (2019). An investigation into neural net

optimization via hessian eigenvalue density. arXiv [preprint]. arXiv:1901.10159.

doi: 10.48550/arXiv.1901.10159

Frontiers in Artificial Intelligence | www.frontiersin.org 15 May 2022 | Volume 5 | Article 889981

https://www.frontiersin.org/articles/10.3389/frai.2022.889981/full#supplementary-material
https://doi.org/10.48550/arXiv.1607.03990
https://doi.org/10.48550/arXiv.1710.03667
https://doi.org/10.48550/arXiv.1904.11955
https://doi.org/10.48550/arXiv.1901.08584
https://doi.org/10.48550/arXiv.1511.01754
https://doi.org/10.2307/2998540
https://doi.org/10.1103/PhysRevE.104.045307
https://doi.org/10.3389/fncom.2021.694505
https://doi.org/10.48550/arXiv.1803.03635
https://doi.org/10.48550/arXiv.1901.10159
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Sahs et al. Shallow ReLU Networks as Splines

Glorot, X., and Bengio, Y. (2010). “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics (Sardinia, Italy), 249–256.

Goepp, V., Bouaziz, O., and Nuel, G. (2018). Spline regression with automatic knot

selection. arXiv [preprint]. arXiv:1808.01770. doi: 10.48550/arXiv.1808.01770

Granziol, D., Garipov, T., Vetrov, D., Zohren, S., Roberts, S., and Wilson, A. G.

(2019). Towards Understanding the True Loss Surface of Deep Neural Networks

Using Random Matrix Theory and Iterative Spectral Methods. Available online

at: https://openreview.net/forum?id=H1gza2NtwH.

Hanin, B., and Rolnick, D. (2019). Deep relu networks have

surprisingly few activation patterns. arXiv [preprint]. arXiv:1906.00904.

doi: 10.48550/arXiv.1906.00904

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification,” in

Proceedings of the IEEE International Conference on Computer Vision

(Santiago: IEEE), 1026–1034.

Jacot, A., Gabriel, F., and Hongler, C. (2018). “Neural tangent kernel: Convergence

and generalization in neural networks,” in Advances in Neural Information

Processing Systems (Montreal, Canada), 8571–8580.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to

Statistical Learning, Vol. 112. Springer.

Kunin, D., Sagastuy-Brena, J., Ganguli, S., Yamins, D. L., and Tanaka, H. (2020).

Neural mechanics: Symmetry and broken conservation laws in deep learning

dynamics. arXiv [preprint]. arXiv:2012.04728. doi: 10.48550/arXiv.2012.04728

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J., and Sohl-Dickstein,

J. (2017). Deep neural networks as gaussian processes. arXiv [preprint].

arXiv:1711.00165. doi: 10.48550/arXiv.1711.00165

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018). “Visualizing the loss

landscape of neural nets,” in Advances in Neural Information Processing Systems

(Montreal, Canada), 6389–6399.

Liu, G., Yang, C., Li, Z., Ceylan, D., and Huang, Q. (2016). Symmetry-aware depth

estimation using deep neural networks. arXiv [preprint]. arXiv:1604.06079.

doi: 10.48550/arXiv.1604.06079

Liu, S., and Okatani, T. (2021). Symmetry-aware neural architecture

for embodied visual navigation. arXiv [preprint]. arXiv:2112.09515.

doi: 10.48550/arXiv.2112.09515

Mei, S., Montanari, A., and Nguyen, P.-M. (2018). A mean field view of the

landscape of two-layer neural networks. Proc. Natl. Acad. Sci. U.S.A. 115,

E7665–7671. doi: 10.1073/pnas.1806579115

Miyata, S., and Shen, X. (2005). Free-knot splines and adaptive knot selection. J.

Jpn. Stat. Soc. 35, 303–324. doi: 10.14490/jjss.35.303

Neal, R. M. (1994). Priors for Infinite Networks. Technical report.

Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., and Srebro, N. (2018). “The role

of over-parametrization in generalization of neural networks,” in International

Conference on Learning Representations (New Orleans, USA).

Neyshabur, B., Salakhutdinov, R. R., and Srebro, N. (2015). “Path-sgd: Path-

normalized optimization in deep neural networks,” in Advances in Neural

Information Processing Systems (Montreal, Canada), 2422–2430.

Nguyen, Q., and Hein, M. (2017). The loss surface of deep and wide neural

networks. arXiv [preprint]. arXiv:1704.08045. doi: 10.48550/arXiv.1704.08045

Park, H. (2001). Choosing nodes and knots in closed b-spline curve

interpolation to point data. Comput. Aided Design 33, 967–974.

doi: 10.1016/S0010-4485(00)00133-0

Pennington, J., and Bahri, Y. (2017). “Geometry of neural network loss surfaces

via random matrix theory,” in International Conference on Machine Learning

(Sydney, Australia), 2798–2806.

Rao, R. (2002). “Wavelet transforms and multirate filtering,” in

Multirate Systems: Design and Applications (IGI Global), 86–104.

doi: 10.4018/978-1-930708-30-3.ch003

Reinsch, C. H. (1967). Smoothing by spline functions. Numer. Math. 10, 177–183.

doi: 10.1007/BF02162161

Rolnick, D., and Kording, K. P. (2019). Identifying weights and architectures of

unknown relu networks. arXiv[Preprint]. arXiv:1910.00744.

Ruppert, D. (2002). Selecting the number of knots for penalized splines. J. Comput.

Graph. Stat. 11, 735–757. doi: 10.1198/106186002853

Sagun, L., Evci, U., Guney, V. U., Dauphin, Y., and Bottou, L. (2017). Empirical

analysis of the hessian of over-parametrized neural networks. arXiv [preprint].

arXiv:1706.04454. doi: 10.48550/arXiv.1706.04454

Sahs, J., Damaraju, A., Pyle, R., Tavaslioglu, O., Caro, J. O., Lu, H. Y., et al. (2020a).

A functional characterization of randomly initialized gradient descent in deep

relu networks. ICLR 2020. Available online at: https://openreview.net/pdf?id=

BJl9PRVKDS

Sahs, J., Pyle, R., Damaraju, A., Caro, J. O., Tavaslioglu, O., Lu, A., et al.

(2020b). Shallow univariate relu networks as splines: Initialization, loss surface,

hessian, and gradient flow dynamics. arXiv [preprint]. arXiv:2008.01772.

doi: 10.48550/arXiv.2008.01772

Sankar, A. R., Khasbage, Y., Vigneswaran, R., and Balasubramanian, V. N.

(2020). A deeper look at the hessian eigenspectrum of deep neural networks

and its applications to regularization. arXiv [preprint]. arXiv:2012.03801.

doi: 10.48550/arXiv.2012.03801

Savarese, P., Evron, I., Soudry, D., and Srebro, N. (2019). How do infinite

width bounded norm networks look in function space? arXiv [preprint].

arXiv:1902.05040. doi: 10.48550/arXiv.1902.05040

Steinwart, I. (2019). A sober look at neural network initializations. arXiv [preprint].

arXiv:1903.11482. doi: 10.48550/arXiv.1903.11482

Tayal, K., Lai, C.-H., Kumar, V., and Sun, J. (2020). Inverse problems,

deep learning, and symmetry breaking. arXiv [preprint]. arXiv:2003.09077.

doi: 10.48550/arXiv.2003.09077

Walker, C., O’Sullivan, M., and Gordon, M. (2005). “Determining knot location

for regression splines using optimisation,” in 40th Annual Conference (Citeseer)

(Wellington, New Zealand), 225.

Wei, M., and Schwab, D. J. (2019). How noise affects the hessian spectrum

in overparameterized neural networks. arXiv [preprint]. arXiv:1910.00195.

doi: 10.48550/arXiv.1910.00195

Williams, F., Trager, M., Panozzo, D., Silva, C., Zorin, D., and Bruna, J. (2019).

“Gradient dynamics of shallow univariate relu networks,” inAdvances in Neural

Information Processing Systems (Vancouver, Canada), 8376–8385.

Woodworth, B., Gunasekar, S., Lee, J. D., Moroshko, E., Savarese, P., Golan, I., et

al. (2020). “Kernel and rich regimes in overparametrizedmodels,” inConference

on Learning Theory (PMLR), 3635–3673.

Wu, L., Zhu, Z., and Weinan, E. (2017). Towards understanding generalization

of deep learning: perspective of loss landscapes. arXiv [preprint].

arXiv:1706.10239. doi: 10.48550/arXiv.1706.10239

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016).

Understanding deep learning requires rethinking generalization.

arXiv [preprint]. arXiv:1611.03530. doi: 10.48550/arXiv.1611.0

3530

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Sahs, Pyle, Damaraju, Caro, Tavaslioglu, Lu, Anselmi and Patel.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 16 May 2022 | Volume 5 | Article 889981

https://doi.org/10.48550/arXiv.1808.01770
https://openreview.net/forum?id=H1gza2NtwH
https://doi.org/10.48550/arXiv.1906.00904
https://doi.org/10.48550/arXiv.2012.04728
https://doi.org/10.48550/arXiv.1711.00165
https://doi.org/10.48550/arXiv.1604.06079
https://doi.org/10.48550/arXiv.2112.09515
https://doi.org/10.1073/pnas.1806579115
https://doi.org/10.14490/jjss.35.303
https://doi.org/10.48550/arXiv.1704.08045
https://doi.org/10.1016/S0010-4485(00)00133-0
https://doi.org/10.4018/978-1-930708-30-3.ch003
https://doi.org/10.1007/BF02162161
https://doi.org/10.1198/106186002853
https://doi.org/10.48550/arXiv.1706.04454
https://openreview.net/pdf?id=BJl9PRVKDS
https://openreview.net/pdf?id=BJl9PRVKDS
https://doi.org/10.48550/arXiv.2008.01772
https://doi.org/10.48550/arXiv.2012.03801
https://doi.org/10.48550/arXiv.1902.05040
https://doi.org/10.48550/arXiv.1903.11482
https://doi.org/10.48550/arXiv.2003.09077
https://doi.org/10.48550/arXiv.1910.00195
https://doi.org/10.48550/arXiv.1706.10239
https://doi.org/10.48550/arXiv.1611.03530
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Shallow Univariate ReLU Networks as Splines: Initialization, Loss Surface, Hessian, and Gradient Flow Dynamics
	1. Introduction
	1.1. Main Contributions

	2. Theoretical Results
	2.1. Spline Parametrization and Notation
	2.1.1. Basis Expansion, Infinite Width Limit

	2.2. Random Initialization in Function Space
	2.2.1. Implications

	2.3. Loss Surface in the Spline Parametrization
	2.3.1. Critical Points of the Loss Surface

	2.4. The Gradient and Hessian of the NN Loss
	2.4.1. The Flatness of the Hessian

	2.5. Gradient Flow Dynamics for Spline Parameters
	2.5.1. Impact of Init Scale α
	2.5.2. Breakpoint Dynamics
	2.5.3. Videos of Gradient Descent/Flow Dynamics

	2.6. Implicit Regularization
	2.6.1. Kernel Regime
	2.6.2. Kernel Regime Dynamics as PDE
	2.6.3. Adaptive Regime
	2.6.4. Comparison With Concurrent Work

	2.7. Extending to Multivariate Inputs

	3. Experiments
	3.1. Suboptimality of Gradient Descent
	3.2. Effect of Initial Breakpoint Distribution
	3.3. Generalization: Implicit Regularization Emerges From Flat Init and Curvature-Based Parametrization
	3.4. Impact of Width and Init Variance
	3.5. Impact of Init Scale α

	4. Discussion
	4.1. Related Work
	4.2. Explanation for Correlation Between Flatness of Minima and Generalization Error
	4.3. Future Work

	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

