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Despite the enormous success of artificial neural networks (ANNs) in many disciplines,

the characterization of their computations and the origin of key properties such as

generalization and robustness remain open questions. Recent literature suggests that

robust networks with good generalization properties tend to be biased toward processing

low frequencies in images. To explore the frequency bias hypothesis further, we develop

an algorithm that allows us to learn modulatory masks highlighting the essential input

frequencies needed for preserving a trained network’s performance. We achieve this by

imposing invariance in the loss with respect to such modulations in the input frequencies.

We first use our method to test the low-frequency preference hypothesis of adversarially

trained or data-augmented networks. Our results suggest that adversarially robust

networks indeed exhibit a low-frequency bias but we find this bias is also dependent

on directions in frequency space. However, this is not necessarily true for other types of

data augmentation. Our results also indicate that the essential frequencies in question

are effectively the ones used to achieve generalization in the first place. Surprisingly,

images seen through these modulatory masks are not recognizable and resemble

texture-like patterns.

Keywords: Fourier analysis, symmetry, robustness, generalization, neural networks, data augmentation

1. INTRODUCTION

Artificial neural networks (ANNs) have achieved impressive performance in a variety of tasks,
e.g., object recognition, function approximation, natural language processing, etc. (LeCun et al.,
2015). However, their computational capacity remains rather opaque. In particular, the operations
performed by ANNs are profoundly constrained by the choice of architecture, initialization,
optimization techniques, etc., and such constraints have a significant impact on key properties
such as generalization power and robustness. Studying adversarial robustness has been a very active
area of research, since it is closely related to how trustworthy and reliable neural networks can be
(Goodfellow et al., 2014). One of the most explored directions has been the analysis of adversarial
perturbations from a frequency standpoint. For example, the work of Yin et al. (2019) establishes
a relationship between the frequency domain of different noises (e.g Adversarial examples and
Common corruptions) and model performance. In particular, they show that deep neural networks
are more sensitive to high frequency adversarial attacks or common corruptions such as random

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.890016
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.890016&domain=pdf&date_stamp=2022-07-12
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Fabio.Anselmi@bcm.edu
https://doi.org/10.3389/frai.2022.890016
https://www.frontiersin.org/articles/10.3389/frai.2022.890016/full


Karantzas et al. Fourier Mask

noise, contrast change, and blurring. Additionally, adversarial
perturbations of commonly trained models tend to be higher
frequency than their adversarially trained counterparts.
Furthermore, (Wang et al., 2020) found that high frequency
features are necessary for good generalization performance
while the work of Sharma et al. (2019) shows that performance
improvements in white-box and black-box transfer settings can
be achieved only when low frequency components are preserved.

These results have led to various methodologies that help
us understand artificial neural networks through a frequency
lens. One such method is Neural Anisotropic Directions (NADs)
(Ortiz-Jimenez et al., 2020a,b). NADs are input directions for
which a network is able to linearly classify data. Furthermore,
Tsuzuku and Sato (2019) introduced a method to compute a
neural network’s sensitivity to input directions in the Fourier
domain. Moreover, Li et al. (2022) show that robust deep learning
object recognition models rely on low frequency information
in natural images. Finally, Abello et al. (2021) divides the
image frequency spectrum into disjoint disks and provides
evidence that mid or high-level frequencies are important
for ANN classification.

In this work we introduce a simple and easy-to-use method to
learn the input frequency features that a network deems essential
in order to achieve its classification performance. We visualize
the relevant frequencies by learning a modulatory mask on the
Fourier transform of the input data that defines a modulation-
invariant loss function obtained via a simple optimization
algorithm (Section 2.1). We compare such masks with their
adversarially trained or data augmented counterparts (Section 3).
In the case of adversarial training, the comparison is done at two
levels of analysis. At a global level, we learn a mask for the entire
test set. Our goal is to find the frequencies that allow for robust
generalization. At a single image level, we explore the frequencies
responsible for adversarial success/failure. Those comparisons
allow us to test the hypothesis that adversarially trained models
have a bias toward low frequency features and assess if the same
holds for other types of data augmentation.

In the case of adversarial augmentation, our results confirm
the low frequency bias hypothesis. However, they also highlight
that the important frequency redistribution due to the
augmentation is highly anisotropic. In the case of common
data augmentations instead, our results show how the frequency
reorganization depends on the type of augmentation, e.g.,

FIGURE 1 | Non-linear distortions in the frequency domain due to the application of (B) softplus, (C) tanh, (D) ReLU, and (E) hardtanh non-linear activations on

s(·) = sin(·) (A).

rotation- or scale-augmented models exhibit mid-high and low
frequency biases, respectively.

The single-image mask analysis reveals that only a few,
class-specific frequencies are crucial to determine a network’s
decision. Moreover, those frequencies are effectively the ones used
to achieve its performance. In fact, mask-filtered images do not
alter performance at all. However, surprisingly, they are not
recognizable. They are characterized by texture-like patterns.
This is in line with previous work by Geirhos et al. (2019),
which provided evidence that Convolutional Neural Networks
(CNNs) are biased toward textures rather than shapes in object
recognition. Our method differs from all previous ones in that
we explicitly learn the frequencies defining the features a model

is sensitive to.

2. METHODS

2.1. Approach
Artificial neural networks and their associated task-dependent

losses define highly non-linear functions of their input. In

terms of the frequency content found in a signal, the effect
of the application of a non-linear function can be understood
by considering the following simple one-dimensional example.
Suppose f (t) = cos(w1t) + cos(w2t) is a sound wave and let
σ (t) = t2. Then

(σ ◦ f )(t) =
1

2
[2+ cos(2w1t)+ cos(2w2t)+ 2 cos((w1 + w2)t)

+2 cos((w1 − w2)t)].

We see that one of the effects of σ on f is to generate the

new frequency components w1 − w2, w1 + w2, 2w1, 2w2. The
first two are due to a phenomenon called intermodulation, the
last are due to what is called harmonic distortion. Harmonic
distortion has been studied in the context of neural networks
with different activation functions by Christian et al. (2021),
where an empirical demonstration and theoretical arguments
are given to support the claim that the presence of non-
linear elements mainly causes a spread in the frequency content
of the loss function. Their reasoning is the following: let φ:
R → R be a non-linear function and Tφ denote its Taylor
expansion around the origin. For x ∈ R

d, using the convolution
theorem yields
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FIGURE 2 | A schematic of the preprocessing layer defined by the mask: the input x is transformed into the Fourier domain where it is filtered with a learnable mask

M8. M8 ⊙Fx is then remapped into the pixel domain through the inverse Fourier transform x̄ = F−1(M8 ⊙Fx).

FIGURE 3 | (A) Learned masks for the vanilla network MN, (B) Adversarially trained network MA, (C) scale-invariant network MS, (D) translation-invariant network MT ,

(E) rotation-invariant network MR and their differences.

FTφ(x) = F
∑

n

an x⊙ · · · ⊙ x
︸ ︷︷ ︸

n-times

=
∑

n

an x̂ ∗ · · · ∗ x̂︸ ︷︷ ︸

n-times

, (1)

where φ is acting pointwise on the components of x, Fx =

x̂, and the RHS is a weighted sum of self-convolutions.
Christian et al. (2021) show that repeated convolutions
broaden the frequency spectrum by adding higher frequency
components corresponding to large coefficients an, an effect
they call “blue shift”. A visual illustration of the blue-shift
effect is shown in Figure 1 where we considered a one
dimensional sinusoidal stimulus s filtered by softplus, tanh,
ReLU, and hardtanh non-linearities. Additional to the blue
shift effect (harmonic distortion), we also see the impact
of intermodulation.

Let us now consider a more complex non-linear function
such as a trained neural network. In this case, the non-
linear distortion induced by the network will be manifested
in its representation space and therefore in its decision
making.

As mentioned above, one of the purposes of this work is to
propose an algorithm to identify the essential input frequencies in
a trained ANN’s decisions. To this end, let us consider an image

TABLE 1 | Model performance (%) with and without the mask layer.

MN MA MS MT MR

Standard 89.56 79.62 86.62 85.86 68.47

Masked 89.20 78.97 86.72 85.35 68.17

All accuracies are reported on the non-augmented validation set.

dataset X = {(xi, yi)}
N
i=1, where xi ∈ R

d×d denotes the i-th input
image and yi ∈ ZC its associated label (C denotes the number of
classes). We splitX into a training setXT and a validation setXV .
We obtain the masks via the following optimization algorithm:
we first pre-train a network 8 on XT with the objective of
solving a classification task. We subsequently freeze the weights
of 8 and attach a pre-processing layer whose weights are the
entries mij of a mask matrix M8 ∈ R

d×d. This layer acts as
follows: for every x ∈ XV we modulate its Fourier transform
Fx by computing the product M8 ⊙ Fx, where ⊙ indicates
the Hadamard product. We next compute the inverse Fourier
transform x̄ = F

−1(M8 ⊙ Fx), which is then fed into the
network (see Figure 2). Finally, we learn the maskM8 by solving
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FIGURE 4 | (First row) Radial and angular partitions of the Fourier domain; Energy differences (B-A, C-A, D-A, E-A) in radial and angular directions for the

augmentations in Figures 3(B–E).
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FIGURE 5 | (Top) Randomly sampled single image masks divided by class. The first column corresponds to masks trained on all the images belonging to each class

separately. The colormap is the same as that of Figure 3. (Bottom) (A) Randomly sampled images; (B) filtered by their complementary masks Mc
N,x ; (C) the same

images filtered by their associated Fourier masks MN,x .

the optimization problem

M8(λ, p) = argminM8

∑

x∈XV

e[L(8(x̄),y)−L(8(x),y)]2 + λ‖M8‖p,

λ ∈ R+, (2)

where 8 denotes the pre-trained network, λ‖M8‖p is a
regularization term penalizing the p-norm of the learned mask,
and L is the loss function associated with the classification
task. The first term in Equation (2) enforces an invariance in
the loss with respect to the transformation x 7→ x̄ induced
by the mask. The latter is key because we are expecting the
desired frequencies to be revealed when there is no change in
the loss L and maximal change in the p-norm of the mask

M8. In other words, the mask is determined by a symmetry
operation in the Fourier space of the input with minimal p-norm.
A solution to Equation (2) is a maskM8 addressing the question:
which frequencies are essential in this trained ANN’s decision

making? Such masks, obtained for various data augmentation
choices reveal the frequencies associated with each particular

choice.

At this point, we note that the mask is learned on the

validation set XV and not on the training set XT . This is because

we are interested in exploring the minimal set of frequencies

preserving the generalization power of 8. Moreover, we tested

the stability of our mask generation algorithm across different
runs. This is crucial since it attests to the reliability of our

qualitative and quantitative analyses.We also note that masks can
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FIGURE 6 | (A) Correctly classified image x ∈ XV ; (B) Adversarial Image xA; (C) MN,x - learned mask from vanilla network; (D) MN,x - filtered image x; (E) MN,x - filtered

image xA; (F) M
c
N,x - binary complement of MN,x ; (G) Mc

N,x - filtered image x.

be obtained for single images, simply considering a single x ∈ XV

in Equation (2) instead of the full validation set or a subset of it
(e.g., class-specific masks, see Figure 5).

2.2. Dataset and Simulations
Our data consisted of 6, 644 image/label pairs from 5 classes of
ImageNet (Deng et al., 2009). Four thousand seven hundred and
ten of those pairs belong to our training setXT and the remaining
1, 934 pairs belong to our validation set XV . For simplicity, we
choose grayscale versions of our dataset images, though our
method can be applied for any number of input channels. Our
images were centered with respect to the mean and standard
deviation of XT .

We initially trained VGG11 (Simonyan and Zisserman,
2015) and ResNet18 (He et al., 2016) baseline models on
XT using the Pytorch framework. The performance of the
models on the task was comparable and the results produced
qualitatively similar. We therefore opted to present only the
results obtained for VGG11. However, the interested reader can
implement both models via the GitHub repository provided.
For each subsequent training run we varied the type of data
augmentation used for pre-processing (adversarial examples,
random scales (for scaling factors in the interval [0.5, 1.5]),

TABLE 2 | MN,x (x) and MN,x (xA) denote original images/adversarial images filtered

by masks trained for original images from the vanilla network.

Data x Adv. Data xA MN,x(x) MN,x(xA) Mc
N,x(x)

Model accuracy 100% 0% 100% 58.83% 54.4%

Mc
N,x (x) denotes the set of original images filtered by the complementary masks of MN,x .

random translations (max absolute fraction for horizontal and
vertical translations in [0.4, 0.4]), random rotations (for angles in
[0,π])).

Each of the 5 networks in total was trained using the Adam
optimizer (Kingma and Ba, 2015) and a maximum learning rate
of 10−3. The learning rate of each learnable parameter group was
scheduled according to the one-cycle learning rate policy with
a minimum value of 0 (Smith, 2017). We found that this set of
hyperparameter choices allowed us to achieve stable training for
all our models. We trained each model for a maximum of 50
epochs and eventually evaluated our models on the validation
set XV . We finally saved the weight-state of each model that
achieved the minimum Cross Entropy loss within the chosen
interval of epochs. For each of our pre-trained networks, we learn
its corresponding Fourier mask according to the algorithmic
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FIGURE 7 | Comparison of X -trained masks (MN,X ) obtained for the vanilla network and XA-trained masks (MA,XA
) obtained for an adversarially trained network: the

bars illustrate the percentage of masks for which the per-band energy [radial (A) and angular (B)] in in MA,XA
exceeds that of MN,X .

TABLE 3 | Training a linear classifier to separate single-image masks trained on

the test images of X.

MN,X MN,X

True labels Shuffled labels

(%) (%)

Training accuracy 93.22 19.50

Test accuracy 83.87 16.42

process presented in Section 2.1. We use ℓ1-regularization on
the norm of the mask to enforce sparsity. We train masks on
both the whole of XV but also for single images. Each scheme
required its own hyperparameter tuning, which by simple grid
search revealed the choices of λ = 0.2, 0.07 for masks on XV

and masks for single images, respectively. In the next section, we
present masks for every data augmentation scheme we chose as
well as their respective differences. For a given set of masks, we
center the mask differences around the origin. This helps with
the interpretation of the masks without altering the geometry of
the particular set.

3. RESULTS

Adversarial training can be seen as a type of data augmentation
where the inputs are augmented with adversarial examples
(Goodfellow et al., 2014) to increase robustness to adversarial
attacks. Here, we test the commonly accepted hypothesis that
adversarially trained models need low frequency features for
robustness. We do so by comparing the Fourier mask learned
for a vanilla network 8N with that of an adversarially trained
network 8A when the learning occurs over the whole validation
set. Specifically, we compare a naturally trained VGG11 with
an adversarially trained one using the torchattacks library (Kim,
2020) and a Projected Gradient Descent attack (PGD). Caro
et al. (2020) has shown the frequency structures of adversarial
attacks are similar across different adversarial attacks. Therefore,
although the set of potential choices one can explore is vast,

in this work we focus on PGD for simplicity. Besides the
mask difference we also compute the radial and angular energy
of each mask by considering radial and angular partitions of
the frequency domain (Figure 4). We then test if the same
low-frequency preference hypothesis holds true in the case of
common data augmentations. To gain some intuition, let us
consider a simple one-layer network whose representation is
given by 8(x) = σ 〈w, x〉, where σ :R → R is a non-
linear function, x,w ∈ R

d, and ℓ :R → R+ is a cost
function. We consider data augmentations generated by a group
of transformations G : = {gθ : θ ∈ R} ⊂ R

d×d. The augmented
loss can now be expressed as

L(w) =
1

N

N
∑

i=1

∫

ℓ
(

σ 〈w, gθxi〉; yi
)

dθ

=
1

N

N
∑

i=1

∫

ℓ
(

σ 〈g∗θw, xi〉; yi
)

dθ , (xi, yi) ∈ X ,

where the second equality holds because 〈w, gθxi〉 = 〈g∗θw, xi〉
and g∗ denotes the adjoint. We note that in this context the
loss function is invariant to G transformations of the weights,
i.e., L(gθw) = L(w) for any gθ ∈ G (the proof of this
statement relies on simple properties of group transformations,
see Chen et al., 2020). Here, we explore the impact such an
invariance of the loss function has on the learned Fourier
masks. The reasoning is as follows: updating the weights of
an ANN is achieved through gradient descent, i.e., 1wt =

−α∇wL(wt), where wt denotes the weights of the network at
iteration t and α ∈ R

+ is the learning rate. The frequency
content of the gradient of the loss at iteration t affects the
frequency content of the weights. In turn, the latter determine
the input frequencies the network is analyzing and thus will
determine the mask. In other words, the frequency content
of the loss, as well as how it is modified by different data
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FIGURE 8 | Clustering of the output of a linear classifier learned to separate single image Fourier masks. MN,X indicates the set of single image masks computed for

the correctly classified test images in X .

augmentations, will impact the frequency content observed in
the mask.

Let us consider a simple one dimensional example
(d = 1) and the translation operator. In this
case the loss L is invariant to translations of the
weights, i.e.,

L(Tt(w)) = L(w), ∀t ∈ R,

where Tt :R → R is the translation operator defined as
Tt(·) = · − t. For xi ∈ X and t ∈ R, let qi(·) : = ℓ

(

σ (Tt(·)xi); yi
)

.
Then the Fourier transform of L yields

F(L)(γ ) =
1

N

N
∑

i=1

∫ +∞

−∞

F(qi)(γ )e
−2π iγ tdt

=
1

N

N
∑

i=1

δ(γ )F(qi)(γ ) =
1

N

N
∑

i=1

F(qi)(0)

where we used the translation property of the Fourier transform
and δ denotes the Dirac delta. This simple example illustrates
the effect of the translation operator on the loss L, i.e., a shift
toward low frequencies (in this case a full shift of all frequencies
to the DC component, the only non-zero component in the
above equation). Note that an augmentation with all possible
translations is not realistic. However, even a finite range of
translations in the interval t ∈ [−a, a], for a sufficiently large a,
will produce a similar effect. Indeed, we have

F(L)(γ ) =
1

N

N
∑

i=1

∫ ∞

−∞

F(qi)(k)χ[−a,a](t)e
−2π iγ tdt

=
2a

N

N
∑

i=1

sinc(2πγ a)F(qi)(γ )

where χ denotes the characteristic function. Thus, the impact
of averaging over an interval of translations on L is to dampen
its frequencies with a sinc function profile, i.e., a frequency re-
weighting with a bias for low frequencies. However, we stress
that the above argument is developed with a 1-layer network in
mind. The effect of data-augmentation with respect to random
translations viewed through a deep network is expected to be
more intricate.

3.1. Masks Generated for the Whole
Dataset
We generatedmasks overXV for networks trained to be robust to
adversarial examples, random scales, translations, and rotations.
The masks in Figure 3 and their differences reveal how distinct
frequency biases depend on the type of data augmentation. We
also note how model performance is minimally altered by the
introduction of the mask layer Table 1.

In the case of adversarial augmentation there exists a net
bias toward low frequencies as shown by the difference between
the masks generated by the vanilla and adversarial trained
network in Figure 3B-A. This is further confirmed by the radial
energy difference in Figure 4(B-A)-radial, while the angular
energy difference in Figure 4(B-A)-angular shows that the
redistribution of the frequencies occurs anisotropically.

In the case of common augmentations our results exhibit
contrasting effects in the Fourier masks. While the redistribution
of the mask frequencies seems to be directionally-dependent
(Figure 4B(C-A),(D-A),(E-A)-angular), only robustness to
scales endows the net with a bias toward low frequencies
(Figure 4(C-A)-radial). For translations the mask implies a less
clear effect (Figure 4(D-A)-radial), where a mixed behavior is
present for mid and low frequencies. Interestingly, in the case
of rotational robustness, Figure 4(E-A)-radial shows a high
frequency bias.
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3.2. Masks Generated for Single Images
To further investigate the nature of adversarial robustness
and how it is related to a network’s generalization properties
in the frequency domain we generated Fourier masks MN,x

for each correctly-classified image x in the validation set XV .
Moreover, for each such image x we consider its adversarial
counterpart so that all adversarial examples are miss-classified.
Figure 5 (top) shows such masks randomly sampled for images
in all 5 data classes trained with respect to the vanilla
network 8N .

It is worth noting that the masks are very sparse, i.e., very
few frequencies are essential for preserving the prediction of the
pretrained network. Additionally, for every mask MN,x, we also
consider its complementary maskMc

N,x defined as

Mc
N,x(i, j) =

{

1, MN,x(i, j) < 10−8

0, otherwise.

Filtering an image with its complementary mask Mc
N,x does

not compromise our ability to recognize the filtered image
(Figure 5B, Bottom). On the contrary, filtering with the mask
MN,x renders the image unrecognizable (Figure 5C, Bottom).
Filtered images resemble texture-like patterns. Interestingly,
recent work byGeirhos et al. (2019) shows how ImageNet-trained
CNNs are strongly biased toward recognizing textures rather
than shapes. Figure 6 further confirms these results extending
them to the case of adversarial images showing the masks
learned from the vanilla and adversarially trained networks and
their corresponding filtered images. Surprisingly, performance
drops drastically (∼ 45% decrease) for images filtered by
complementary masks Mc

N,x. Additionally, filtering adversarial
examples using masks generated from original images reverses
the effect of the attack in approximately 60% of validation
samples. We unpack this information in Table 2 below.

We think this is an interesting result since

• The increase in performance when testing on MN,x(xA)
provides strong evidence that the attack mostly relies on
frequencies not present in the maskMN,x.

• The drop in performance when testing onMc
N,x(x) implies that

the frequencies learned by each individual mask are not only
sufficient but also necessary for the task.

Further confirming a low frequency bias in adversarially
trained networks, Figure 7 shows the percentage of perturbed
images for which the per-band energy (radial or angular) of their
corresponding masks MA,XA exceeds that of the masks MN,X

generated from the non-perturbed examples. Figure 7 confirms
that lower frequencies are preferred for a robust representation.

Finally, upon visual inspection of the learned single-image
masks we also suspected that such masks exhibit class-specificity.
We tested this hypothesis by learning a linear classifier on the a
uniformly balanced set of single image masks {MN,x|x ∈ XV}.
We considered 85% of the masks to be our training set for this
task and later tested the linear classifier on the remaining 15%
of single-image masks. Table 3 below confirms that the essential
frequencies for this network’s generalization performance are
class-specific. We also tested the robustness of this experiment by

randomly shuffling the labels of the learned masks and testing if
a linear classifier is still able to separate the masks based on their
new label assignment. Table 3 shows this is not the case and the
results suggest that linear separability of the masks is due to their
geometry and not the representation power of the linear classifier.

We visually illustrate these results by performing a manifold
analysis of the learned masks using UMAP (McInnes et al.,
2018) for dimension reduction and visualization. Interestingly,
we found that the masks are linearly separable and that the linear
network responses cluster (Figure 8).

4. DISCUSSION AND CONCLUSIONS

In this work, we proposed a simple yet powerful approach to
visualize the essential frequencies a trained network is using
to solve a task. Our strategy consists of learning a frequency
modulatory mask characterized by two critical properties:

• It defines a symmetry in the Cross Entropy loss, i.e., it does not
alter the pretrained model’s predictions.

• It has minimal ℓp-norm, which for p = 1 guarantees the
preservation of performance while promoting sparsity in the
mask.

Using our method we tested the common hypothesis that
adversarially trained networks prefer low frequency features to
achieve robustness. We also tested if this hypothesis holds true
for common data augmentations such as translations, scales, and
rotations.

In the case of adversarial augmentation, our results confirm
the low frequency bias hypothesis. However, they also highlight
that the frequency redistribution due to the augmentation is
highly anisotropic. In the case of common data augmentations
instead, our results show how the frequency reorganization
depends on the type of augmentation.

In the case of adversarial training we also run a single
image analysis to detect the frequencies useful for adversarial
robustness and those responsible for adversarial weakness. Here
too, masks learned on adversarially trained networks concentrate
more toward lower frequencies compared to those learned on
vanilla networks. Furthermore, the analysis showed that only
a sparse, class-specific set of frequencies is needed to classify
an image. Surprisingly, mask-filtered images in this case are
not recognizable and resemble texture-like patterns, supporting
the idea that ANNs use fundamentally different classification
strategies from humans to achieve robust generalization (Geirhos
et al., 2019).

To our knowledge the use of a learned mask to characterize a
network’s crucial property such as robust generalization has not
been proposed before. The interpretation of the masks provides
us with a detailed geometrical description of directional and
radial biases in the frequency domain as well as with quantifiable
differences between various training schemes.

Our analysis can be extended to other architectural or
optimization specifics, e.g., explicit regularizations, different
optimizers/initializations, etc. The same mask approach can
be employed to modulate the phase and modulus in the
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Fourier transform of the data. Our method effectively opens
up many directions in the investigation of a network’s
implicit frequency bias. Future research directions will also
include a natural generalization of our approach where the
image features are learned, rather then fixed to be of the
Fourier type.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/fastai/imagenette. Code is
available at https://github.com/nkarantzas/FourierMasks.

AUTHOR CONTRIBUTIONS

NK and FA conceived the conceptualized framework and wrote
the first draft. NK and EB trained and analyzed models. AP, JO,
AT, and XP provided the feedback along the way. AT, AP, and XP
provided the funding. All authors revised, edited and provided

comments on the final manuscript and contributed to the article
and approved the submitted version.

FUNDING

This research was supported by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of
Interior/Interior Business Center (DoI/IBC) contract
no. D16PC00003. The US Government is authorized to
reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. This work
is also supported by the Lifelong Learning Machines (L2M)
Program of the Defense Advanced Research Projects Agency
(DARPA) via contract number HR0011-18-2-0025 and R01
EY026927 to AT and by NSF NeuroNex grant 1707400.

ACKNOWLEDGMENTS

We also thank Shell Xu Hu, Kandan Ramakrishnan, and Zhe Li
for helpful discussions.

REFERENCES

Abello, A. A., Hirata, R., and Wang, Z. (2021). “Dissecting the high-

frequency bias in convolutional neural networks,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Workshops, Nashville, TN, 863–871. doi: 10.1109/CVPRW53098.2021.

00096

Caro, J. O., Ju, Y., Pyle, R., Dey, S., Brendel, W., Anselmi, F., et al. (2020).

Local convolutions cause an implicit bias towards high frequency adversarial

examples. arXiv preprint arXiv:2006.11440.

Chen, S., Dobriban, E., and Lee, J. (2020). “A group-theoretic framework for data

augmentation,” in Advances in Neural Information Processing Systems, Vol. 33,

eds H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Curran

Associates, Inc.), 21321–21333.

Christian, M.-G., David, H., and Michael, W. (2021). “Ringing relus: harmonic

distortion analysis of nonlinear feedforward networks,” in International

Conference on Learning Representations, Vienna.

Deng, J., Dong, W., Socher, R., Li, J., Kai, L., and Li, F. F. (2009). “ImageNet: a

large-scale hierarchical image database,” in 2009 IEEE Conference on Computer

Vision and Pattern Recognition, Miami, FL, 248–255. doi: 10.1109/CVPR.200

9.5206848

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., and Brendel,

W. (2019). “ImageNet-trained CNNs are biased towards texture; increasing

shape bias improves accuracy and robustness,” in International Conference on

Learning Representations, New Orleans.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing

adversarial examples. arXiv preprint arXiv:1412.6572. doi: 10.48550/arXiv.1412.

6572

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning

for image recognition,” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). doi: 10.1109/CVPR.20

16.90

Kim, H. (2020). Torchattacks: a Pytorch repository for adversarial

attacks. arXiv preprint arXiv:2010.01950. doi: 10.48550/arXiv.2010.

01950

Kingma, D. P., and Ba, J. (2015). “Adam: a method for stochastic optimization,”

in 3rd International Conference on Learning Representations, ICLR 2015, eds Y.

Bengio and Y. LeCun (San Diego, CA).

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

[preprint]. doi: 10.1038/nature14539

Li, Z., Caro, J. O., Rusak, E., Brendel, W., Bethge, M., Anselmi, F., et al.

(2022). Robust deep learning object recognition models rely on low

frequency information in natural images. bioRxiv. doi: 10.1101/2022.01.

31.478509

McInnes, L., Healy, J., and Melville, J. (2018). UMAP: uniform manifold

approximation and projection for dimension reduction. arxiv preprint

arxiv:1802.03426. doi: 10.21105/joss.00861

Ortiz-Jimenez, G., Modas, A., Moosavi-Dezfooli, S.-M., and Frossard, P.

(2020a). Hold me tight! influence of discriminative features on deep network

boundaries. arXiv preprint arXiv:2002.06349. doi: 10.48550/arXiv.2002.

06349

Ortiz-Jimenez, G., Modas, A., Moosavi-Dezfooli, S.-M., and Frossard, P.

(2020b). Neural anisotropy directions. arXiv preprint arXiv:2006.09717.

doi: 10.48550/arXiv.2006.09717

Sharma, Y., Ding, G. W., and Brubaker, M. A. (2019). “On the effectiveness

of low frequency perturbations,” in IJCAI. Macao. doi: 10.24963/ijcai.20

19/470

Simonyan, K., and Zisserman, A. (2015). Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556.

doi: 10.48550/arXiv.1409.1556

Smith, L. N. (2017). “Cyclical learning rates for training neural networks,”

in 2017 IEEE Winter Conference on Applications of Computer

Vision (WACV), Santa Rosa, CA, 464–472. doi: 10.1109/WACV.20

17.58

Tsuzuku, Y., and Sato, I. (2019). “On the structural sensitivity of deep

convolutional networks to the directions of fourier basis functions,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, Long Beach, CA, 51–60. doi: 10.1109/CVPR.2019.00014

Wang, Z., Yang, Y., Shrivastava, A., Rawal, V., and Ding, Z. (2020). Towards

frequency-based explanation for robust CNN. arXiv preprint arXiv:2005.

03141.

Yin, D., Gontijo Lopes, R., Shlens, J., Cubuk, E. D., and Gilmer, J. (2019). “A

Fourier perspective on model robustness in computer vision,” in Advances in

Neural Information Processing Systems 32, eds H. Wallach, H. Larochelle, A.

Beygelzimer, F. d Alché-Buc, E. Fox and R. Garnett (Curran Associates, Inc.),

32, 13276–13286.

Frontiers in Artificial Intelligence | www.frontiersin.org 10 July 2022 | Volume 5 | Article 890016

https://github.com/fastai/imagenette
https://github.com/nkarantzas/FourierMasks
https://doi.org/10.1109/CVPRW53098.2021.00096
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.2010.01950
https://doi.org/10.1038/nature14539
https://doi.org/10.1101/2022.01.31.478509
https://doi.org/10.21105/joss.00861
https://doi.org/10.48550/arXiv.2002.06349
https://doi.org/10.48550/arXiv.2006.09717
https://doi.org/10.24963/ijcai.2019/470
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1109/CVPR.2019.00014
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Karantzas et al. Fourier Mask

Author Disclaimer: The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily representing the official

policies or endorsements, either expressed or implied, of IARPA, DoI/IBC or the

US Government.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those

of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

Copyright © 2022 Karantzas, Besier, Ortega Caro, Pitkow, Tolias, Patel and

Anselmi. This is an open-access article distributed under the terms of the

Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 11 July 2022 | Volume 5 | Article 890016

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Understanding Robustness and Generalization of Artificial Neural Networks Through Fourier Masks
	1. Introduction
	2. Methods
	2.1. Approach
	2.2. Dataset and Simulations

	3. Results
	3.1. Masks Generated for the Whole Dataset
	3.2. Masks Generated for Single Images

	4. Discussion and Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


