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One of the most prominent methods for explaining the behavior of Deep Reinforcement

Learning (DRL) agents is the generation of saliency maps that show how much each

pixel attributed to the agents’ decision. However, there is no work that computationally

evaluates and compares the fidelity of different perturbation-based saliency map

approaches specifically for DRL agents. It is particularly challenging to computationally

evaluate saliency maps for DRL agents since their decisions are part of an overarching

policy, which includes long-term decision making. For instance, the output neurons of

value-based DRL algorithms encode both the value of the current state as well as the

expected future reward after doing each action in this state. This ambiguity should be

considered when evaluating saliency maps for such agents. In this paper, we compare

five popular perturbation-based approaches to create saliency maps for DRL agents

trained on four different Atari 2,600 games. The approaches are compared using two

computational metrics: dependence on the learned parameters of the underlying deep

Q-network of the agents (sanity checks) and fidelity to the agents’ reasoning (input

degradation). During the sanity checks, we found that a popular noise-based saliency

map approach for DRL agents shows little dependence on the parameters of the output

layer. We demonstrate that this can be fixed by tweaking the algorithm such that it

focuses on specific actions instead of the general entropy within the output values.

For fidelity, we identify two main factors that influence which saliency map approach

should be chosen in which situation. Particular to value-based DRL agents, we show

that analyzing the agents’ choice of action requires different saliency map approaches

than analyzing the agents’ state value estimation.

Keywords: explainable reinforcement learning, explainable artificial intelligence (XAI), interpretable machine

learning, deep reinforcement learning, feature attribution, saliency maps

1. INTRODUCTION

With the rapid development of machine learning methods, Deep Reinforcement Learning (DRL)
agents are making their way into increasingly high-risk applications, such as healthcare and
robotics. However, this comes with an increasing complexity of state spaces and algorithms, making
it hard if at all possible to comprehend the decisions of these agents (Heuillet et al., 2021). The
research areas of Explainable Artificial Intelligence (XAI) and Interpretable Machine Learning aim
to shed light on the decision-making process of such black-box models. In the case of DRL agents,
which utilize neural networks with visual inputs, the most common explanation approach is the
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generation of saliency maps that highlight the most relevant
input pixels for a given decision. In general, there are three
main ideas on how to create saliency maps. The first idea is to
use the gradient with respect to each input to see how much
small changes of this input influence the prediction (Simonyan
et al., 2014; Sundararajan et al., 2017; Selvaraju et al., 2020).
The second group of methods uses modified propagation rules
to calculate how relevant each neuron of the network was,
based on the intermediate results of the prediction. Examples
for this are Layer-wise Relevance Propagation (LRP) (Bach et al.,
2015) or PatternAttribution (Kindermans et al., 2018). Finally,
perturbation-based approaches perturb areas of the input and
measure how much this changes the output of the network
(Zeiler and Fergus, 2014; Ribeiro et al., 2016). Both gradient and
modified propagation saliency maps have been applied to DRL
agents (Zahavy et al., 2016; Huber et al., 2019). However, recent
years saw a trend toward perturbation-based saliency maps
(Greydanus et al., 2018; Puri et al., 2020). The major advantage of
perturbation-based approaches is their model agnosticism. This
means that they can be applied to any kind of reinforcement
learning agent since they only use the in- and outputs of
the agent.

If saliency maps are used to analyze DRL agents in high-risk
applications, it is crucial that we can rely on the information
provided by the saliency map. That is, the most relevant pixels
according to the saliency map should actually be the most
relevant pixels for the agent’s strategy. This is often called fidelity
of an explanation technique (Mohseni et al., 2021). The need for
evaluating the fidelity of saliency maps was further demonstrated
by Adebayo et al. (2018). They proposed sanity checks which
showed that for some saliency map approaches, there is no strong
dependence between the learned parameters of image classifiers
and the saliency maps that analyze their underlying neural
network. Surprisingly, there are no computational evaluations
that assess and compare the fidelity of different saliency maps
for DRL agents. This is despite the fact that DRL agents are
more challenging to analyze than classification models (Heuillet
et al., 2021). The decisions of a DRL agent are not isolated but
are part of an overarching policy and might be influenced by
delayed rewards, which may not be discernible in the current
state. This makes it even more challenging to verify whether
a saliency map matches the internal reasoning behind a DRL
agent’s action selection. In the prominent family of value-based
DRL algorithms, for example, the output values do not only
describe the the expected future reward after choosing each
action. They also encode the estimated value of the input state
for the current policy. This ambiguity is often ignored when
saliency maps are applied to analyze the decisions of value-based
DRL agents.

In this paper, we present, to the best of our knowledge,
the first computational fidelity evaluation of different saliency
maps for DRL agents. In particular, we make the following
contributions. By focusing on five perturbation-based saliency
map approaches, this work gives an overview of which
approaches should be used in what situation by practitioners
who do not have full access to their DRL agent’s model.

One drawback of perturbation-based saliency maps is that
they depend on a choice of parameters for the saliency
map approaches. To ensure that all of the algorithms tested
in this paper perform reasonably well, we present a novel
methodology to fine-tune the parameters of perturbation-based
saliency maps for DRL agents. Furthermore, we propose a
way to separately measure how well a saliency map captures
an agent’s respective action- and state-value estimation. We
demonstrate that the performance of saliency map approaches
differs considerably when measuring state-values compared
to action-values.

As test-bed for our evaluation, we use the Atari 2600
environment. As metrics, we use the sanity checks proposed by
Adebayo et al. (2018) and an insertion metric that measures if the
most relevant pixels, according to the saliencymap, actually affect
the agent’s decision. As far as we know, this is the first time that
sanity checks are done for different perturbation-based saliency
maps for any kind of model.

2. RELATED WORK

In general, evaluation metrics for XAI approaches can be
separated into two broad categories: human user studies and
computational measurements (Mohseni et al., 2021). So far, DRL
agents are mostly evaluated with user studies. Anderson et al.
(2019) and Huber et al. (2021) conduct user studies to evaluate
a single variant of modified propagation and perturbation-based
saliency maps, respectively, with regards to mental models, trust,
and user satisfaction. Puri et al. (2020) investigate whether
perturbation-based saliency maps can help participants with
chess puzzles, by highlighting which pieces were relevant for an
agent’s solution for these puzzles. Greydanus et al. (2018) test
whether participants can identify overfit policies with the help of
perturbation-based saliency maps. However, exclusively relying
on user studies might only measure how convincing the saliency
maps look but not how much they reflect the agent’s internal
reasoning. Therefore, it is important to additionally evaluate the
fidelity of saliency maps through computational measurements
(Mohseni et al., 2021). Such measurements also provide an easy
way to collect preliminary data before recruiting users for a
user study.

There is a growing body of work on computationally
evaluating the fidelity of saliency maps for image classification
models. The most common measurement is input degradation.
Here, the input of the model is gradually perturbed, starting with
the most relevant input features according to the saliency map.
For visual input, this is either done by perturbing individual
pixels per step (Ancona et al., 2018; Petsiuk et al., 2018) or
by perturbing patches of the image in each step (Samek et al.,
2017; Kindermans et al., 2018; Schulz et al., 2020). If the
saliency map matches the model’s reasoning, then the model’s
confidence should fall quickly. In addition to perturbing features,
some newer approaches also propose an insertion metric where
they start with fully perturbed inputs and gradually insert
relevant features (Ancona et al., 2018; Petsiuk et al., 2018;
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Schulz et al., 2020). Recently, Tomsett et al. (2020) demonstrated
that input degradation can be unreliable and is sensitive to
implementation details like the type of perturbation. They
conclude that researchers should employ several versions of this
metric and try to understand potential reasons for unreliability.

A different technique to computationally evaluate saliency
maps for classification models is to compare them with ground-
truth saliency maps on modified datasets (Yang and Kim, 2019;
Zhou et al., 2022). Here, a natural dataset is manipulated by
adding artificial features that a model has to focus on to perfectly
classify the dataset. Now, saliency maps for a perfect model on
the manipulated dataset can be evaluated based on how well they
localize the artificial features. However, it is not obvious how this
method could be applied to DRL agents. First, in a reinforcement
learning setting, there is no easily available dataset that can be
manipulated. Secondly, DRL agents do not directly classify which
objects or features are contained in an image. Therefore, it is
not clear how the long-term decision-making of DRL agents is
supposed to react to artificial features.

Another prominent computational measurement for saliency
maps for image classification models are the so-called sanity
checks proposed by Adebayo et al. (2018). These tests measure
whether the saliency maps are dependent on the learned
parameters of the model’s neural network. One method for this
is gradually randomizing the layers of the neural network and
measuring how much this changes the saliency maps. If the
saliency maps are faithful to what the network learned then they
should change considerably for each randomized layer. Adebayo
et al. did this for various gradient-based approaches and Sixt et al.
(2020) additionally tested modified propagation methods. Both
groups found that some approaches did not really depend on the
parameters of the network and therefore cannot faithfully reflect
the model’s internal reasoning. As far as we know, there is no
work that verified whether different types of perturbation-based
saliency maps depend on the network’s learned parameters for
any kind of model even though this is one of the most popular
saliency map approaches.

For DRL agents, there is very little work on computationally
evaluating the fidelity of saliencymaps. Puri et al. (2020) recorded
which chess pieces human experts identified as important in
a set of chess puzzles. This allows them to computationally
compare these pieces to the pieces that saliency maps identify
as relevant for an agent. However, this does not measure the
saliency maps’ fidelity to the agent’s reasoning, but whether
the saliency maps coincide with human reasoning. Huber et al.
(2021) calculate sanity checks for a single modified propagation
saliency map approach. Atrey et al. (2020) conduct experiments
to verify hypotheses that are generated from observing saliency
maps. However, both the formulation of hypotheses as well
as their verification rely on manual inspection of the saliency
maps. Therefore, this method requires extensive human effort.
Moreover, it is not certain whether an erroneous hypothesis has
been formulated because the saliency maps are faulty and do
not reflect the agent’s reasoning, or because the human observers
misinterpreted the saliency maps. In this sense, we see our paper
as the first computational evaluation to benchmark the fidelity of
different saliency map approaches for DRL agents.

3. METHODS

3.1. Test-Bed
The test-bed in our paper is the Atari Learning Environment
(Bellemare et al., 2013). Four DRL agents were trained on the
games MsPacman (simplified to Pac-Man in this work), Space
Invaders, Frostbite, and Breakout using the Deep Q-Network
(DQN) (Mnih et al., 2015) implementation of the OpenAI
Baselines Framework (Dhariwal et al., 2017). We chose the DQN
because it is the most basic DRL architecture which many other
DRL agents build upon. The games were selected because the
DQN performs very well on Breakout and Space Invaders but
performs badly on Frostbite and Pac-Man. The agent observes
the last 4 frames of the game and then chooses an action a from a
pool of possible actions A. Hereby, each frame is down-sampled
and greyscaled resulting in 84 × 84 × 4 input images. The
reward is given by the change in in-game score since the last
state, which we scaled such that the minimal possible reward
is 1. All experiments were done on the same machine with an
Nvidia GeForce GTX TITAN X GPU to ensure comparability of
the results. Our code is available online1.

3.2. Saliency Map Approaches
As saliency map approaches, we chose Occlusion Sensitivity
(Zeiler and Fergus, 2014) since it is the first and most basic
perturbation-based saliency map approach. Furthermore, we use
LIME (Ribeiro et al., 2016) and RISE (Petsiuk et al., 2018) which
are two of the most popular perturbation-based saliency maps in
general. Finally, we chose two approaches that were specifically
proposed for DRL: Noise Sensitivity (Greydanus et al., 2018) and
SARFA (Puri et al., 2020).

The basic saliencymap generation process is the same between
all five approaches compared in this work. Let π be the agent that
takes a visual input state I and maps it to a q-value q(I, a) for
each possible action. To ease notation we use q(I) to describe
the q-value of the action that should be analyzed. Most often
this is the action with the highest q-value for the unperturbed
input I, since this is the action that a fully trained agent would
choose for I. An input image I with height H and width W can
be defined as a mapping I :3I → R

c of each pixel λ ∈ 3I =

{1, ...,H} × {1, ...,W} to c channels (e.g., c = 4 for the Atari
environment which uses the channels to store the last 4 frames).
To determine the relevance of each pixel λ for the prediction
of the agent, all four approaches feed perturbed versions of I to
the agent and then compare the resulting output values with the
original results. However, the approaches widely differ in the way
the image is perturbed (Figure 1) and how the relevance per pixel
is computed:

Occlusion Sensitivity Zeiler and Fergus (2014): This
approach creates perturbed states I′ by shifting a n × n patch
across the original state I and occluding this patch by setting all
the pixels within to a certain color (e.g., black). The relevance S(λ)
of each pixel λ inside the patch is then computed based on the
agent’s confidence after the perturbation

S(λ) = 1− q(I′). (1)

1https://github.com/belimmer/PerturbationSaliencyEvaluation
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FIGURE 1 | An example of the different types of perturbation used by the saliency map approaches in our work. The parameters are chosen in such a way that the

idea of the perturbation can be easily identified. For Occlusion and Noise, the disturbed area is marked with a red circle.

Since the original source does not go into details about the
algorithm, we use the tf-explain implementation as reference2.
As long as the saliency maps are normalized this is equivalent to
q(I)− q(I′) since all values in the saliency map are shifted by the
same constant q(I)− 1.

Noise Sensitivity (Greydanus et al., 2018): Instead of
completely occluding patches of the state, this approach adds
noise to the state I by applying a Gaussian blur to a circle with
radius r around a pixel λ. The modified state I′(λ) is then used
to compute the relevance of the covered circle by comparing the
agent’s logit units π(I). For our DQN agents, π(I) is the vector of
all q-values q(I, a) for each possible action:

S(λ) =
1

2
||π(I)− π(I′(λ))||2 (2)

This is done for every rth pixel, resulting in a temporary saliency
map smaller than the input. For the final saliency map, the result
is up-sampled using bilinear interpolation.

RISE (Petsiuk et al., 2018): This approach uses a set of
N randomly generated masks {M1, ...,MN} for perturbation.
To this end, temporary n × n masks are created by setting
each element to 1 with a probability p and 0 otherwise. These
temporary masks are upsampled to the size of the input state
using bilinear interpolation. The states are perturbed by element-
wise multiplication with those masks I ⊙ Mi. The relevance of
each pixel λ is given by

S(λ) =
1

p · N

N
∑

i=1

q(I ⊙Mi) ·Mi(λ), (3)

whereMi(λ) denotes the value of the pixel λ in the ith mask.
LIME (Ribeiro et al., 2016): LIME uses image segmentation

algorithms, like SLIC, Quickshift and Felzenszwalb, to divide the
input state into superpixels (i.e., groups of pixels that share
similar visual properties such as color). Then a dataset of N
perturbed samples in the neighborhood of the input state is
created. For each of those samples, a different combination of
superpixels is “deleted” by setting all pixels within the superpixels
to a certain value (we used 0). Using this dataset, an interpretable
surrogate model is trained to predict the agent’s decision based

2Available under: https://github.com/sicara/tf-explain.

on the presence of superpixels. A common method for this
surrogate model is linear regression. During training, the samples
are weighted based on their proximity to the original input state.
Finally, analyzing the weights of the trained surrogate model
provides a relevance value for each superpixel.

SARFA (Puri et al., 2020): This approach does not use a
specific perturbation method. Puri et al. test noise perturbation
for Atari games and occlusion for other domains. Given a
perturbed state I′, SARFA measures the information specific to
the action a′, which should be analyzed, by utilizing a softmax

normalization P(I, a′) : = exp(q(I,a′))
∑

a∈A exp(q(I,a)) and calculating

1p = P(I, a′)− P(I′, a′). (4)

To onlymeasure relevant information, they additionally calculate

K =
1

1+ KL(Prem(I, a′), Prem(I′, a′))
, (5)

where KL is the Kullback-Leibler divergence and the vector

Prem(I, a′) : =
( exp(q(I,a′))

∑

a6=a′ exp(q(I,a))

)

∀a 6= a′ is the softmax over all

outputs except the chosen action a′. The final relevance for each
pixel that is perturbed in the state I′ is then given by:

S(λ) =
2K1p

K + 1p
(6)

3.3. Metrics
We evaluate the generated saliency maps using two different
computational metrics: Sanity checks and an insertion metric.

3.3.1. Sanity Checks
The sanity checks proposed by Adebayo et al. (2018) measure
the dependence between the saliency maps and the parameters
learned by the neural network of the agent. To this end, the
parameters of each layer in the network are randomized in a
cascading manner, starting with the output layer. Every time
a new layer is randomized, a saliency map for this version
of the agent is created. The resulting saliency maps are then
compared to the saliency map for the original network, using
three different similarity metrics [Spearman rank correlation,
Structural Similarity (SSIM), and Pearson correlation of the
Histogram of Oriented Gradients (HOGs)]. If the saliency maps
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depend on the learned parameters of the agent then the saliency
maps for the randomized models should vastly differ from the
ones of the original model. Following Sixt et al. (2020), we
account for saliency maps that differ only in sign by additionally
computing the similarity metrics between the original saliency
map and a version of each saliency map for the randomized
models that was multiplied by −1. For each randomized model,
we use themaximumof the similarity values with andwithout the
−1multiplication. For our tests, we calculate the sanity checks for
1, 000 states of each game.

Analogous to Adebayo et al. (2018), we calibrate the
similarity metrics (Spearman rank correlation, SSIM, and
Pearson correlation of the HOGs) such that high similarity values
actually indicate similar saliency maps. Following Adebayo et al.
(2018), we do this by calculating the similarity of 100 pairs
of randomly generated saliency maps (Uniform and Gaussian).
Since randomly sampled saliency maps should be very different
on average, the mean of these similarities should be low. Using
an SSIM window size of 7 and a HOG function with (3, 3) pixels
per cell, two randomly sampled saliency maps with uniform
distribution had mean similarity values (0.0087, 0.0136, 0.0096)
and two random saliency maps with Gaussian distribution had
mean similarity (0.0093, 0.0374, 0.0087).

3.3.2. Insertion Metric
If a saliency map is faithful to the agent, then the most relevant
pixels should have the highest impact on the agent’s decision. To
test this property, we use an insertion metric similar to Petsiuk
et al. (2018). We do not use a deletion metric, since we feel that it
is too similar to the way that perturbation-based saliency maps
are created. The insertion metric starts with a fully perturbed
state. How this perturbation is done will be discussed in Section
3.3.2.1. In each step, 84 perturbed pixels (approximately 1.2%
of the full state) are uncovered, starting with the most relevant
pixels according to the saliency map. For LIME, the superpixels
are sorted by their relevance but the order of pixels within
superpixels is randomized. The partly uncovered state is then
fed to the agent and its output for the action that the saliency
map analyzes is measured. If the saliencymap correctly highlights
the most important pixels for this action, then the agent’s output
corresponding to this action should increase quickly for each
partly uncovered image. Plotting the agent’s output in each step
of the insertion metric results in an insertion metric curve
(Figure 2). If the output increases quickly, then the area under
the insertion curve is high. Therefore, the Area Under the
insertion metric Curve (AUC) is used to represent the result of
the insertion metric for a single state.

Before we can apply the insertion metric to our DRL agents,
we have to decide how to perturb the input and which output
value we measure in each step.

3.3.2.1. How to Perturb the Input
Tomsett et al. (2020) found that the choice of perturbation during
the insertion metric has a high impact on the result of the metric.
To be more robust against this influence, we use two different
perturbations: black occlusion and uniform random perturbation
in the range [0, 1]. Black is similar to the background color

FIGURE 2 | A schematic representation of the insertion metric curve.

in most Atari games and therefore acts as “deleting” features
from the state. Uniform random perturbation performed well for
Tomsett et al. (2020).

3.3.2.2. Which Output to Measure
Next, we have to decide which output we want to measure during
the insertion metric. This comes with two further challenges.

First, the output q-values of value-based reinforcement
learning algorithms like the DQN do not directly describe
the agent’s confidence in particular actions. Instead, they
approximate the value of the current state in combination with
each action. To disentangle this ambiguity, we propose to use
two different sub-metrics. One measures how well the saliency
map identifies features relevant to the state-value, and the other
measures the same for the action value. For the state-value, we
suggest using the q-value q(I, a) of the action that the saliency
map is analyzing. For the action-value, we propose an estimation
of the advantage as used by Wang et al. (2016):

A(I, a) = q(I, a)−

∑

a∈A q(I, a)

|A|
(7)

The second challenge is that a reliable metric should not be
distorted by outliers. For our Pac-Man agent, for example, we
observed states with q-values around 1 and other states with q-
values around 50. To reduce the effect of outlier states, we tested
different methods of normalizing the agent’s output during the
insertion metric. The first normalization method we tested was
inspired by Sixt et al. (2020) and forces each insertion curve to
start at 0 and finish at 1. This is achieved by applying f (x) = x−b

t−b
to each insertion step result, where b is the output of the fully
perturbed state and t is the output of the original state. As the
secondmethod, we only divided each insertion step by the output
of the original state t. In this way, all insertion curves finish at the
value of 1.

To identify which normalization method works best, we used
28 different variants of Occlusion Sensitivity saliency maps.
The variants were obtained by varying the occlusion patch size
between 4 and 10, using gray or black occlusion, and using
the raw q-values or adding a softmax layer for the relevance
calculation (Equation 1)3. For each variant, we calculated
differently normalized insertion metrics over 1, 000 states of

3To see how these variants performed in our final insertion metric tests refer to
Section 3.4.3.
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TABLE 1 | The minimum and maximum SD when evaluating 28 different

parameter combinations of Occlusion Sensitivity saliency maps with an insertion

metric using different normalization functions.

Normalization function Minimum SD Maximum SD

Measuring Q-Values

No normalization 5.16 10.17

f (x) = x
t

1.14 2.06

f (x) = x−b
t−b

10.33 48.56

Measuring advantage

No normalization 0.84 1.42

f (x) = x
t

1.99 3.78

f (x) = x−b
t−b

9.45 165.20

the Pac-Man environment for each of our two insertion metric
perturbation methods. Tomsett et al. (2020) suggest using a low
Standard Deviation (SD) as an early indicator for reliable saliency
map metrics. Therefore, we chose the normalization method that
resulted in the lowest SD of the area under the insertion curve
across the 1, 000 states and both perturbation methods4. For each
normalization method, Table 1 shows the highest and lowest SD
among the 28 different Occlusion Sensitivity variants.

Interestingly, the full normalization to curves between 0 and
1 resulted in the highest SD. We think that this comes from the
fact that our agents sometimes assign higher values to the fully
perturbed state than to the original state. In these cases, t − b is
negative, and applying f (x) inverts the insertion curve.

For the advantage, we obtained the lowest SD if we did
not use any normalization. The q-values got the lowest SD
when we divided each insertion metric step by the result of the
original state.

3.3.2.3. Final Setting
For our final evaluation of the different saliency map methods,
we use 1, 000 states of each of the four Atari games. For each of
those states, we calculated the insertion metric in four different
variants: measuring the advantage of the chosen action with
random and black perturbation, and measuring the normalized
q-value with random and black perturbation.

3.4. Parameter Tuning
One of the biggest drawbacks of perturbation-based saliency map
approaches is that they depend on a choice of parameters as can
be seen in Section 3.2. Before we can run our final experiments we
have to find suitable parameters. Section 3.4.3 will list the specific
parameters that we tuned for each saliency map approach. This
tuning is often done by manually adjusting the parameters until
the resulting saliency maps look reasonable. However, tuning
the parameters in this way does not guarantee that the saliency
maps match the agent’s internal reasoning. To obtain a fidelity
benchmark for saliency maps, we computationally tune the
parameters to perform well in the insertion metric. We do not

4Let µ be the mean of the 2,000 resulting AUC values xi then the SD is given by
√

∑

i(xi−µ)2

2,000 .

tune the parameters for the sanity checks, since sanity checks do
notmeasure howwell a saliencymap approach performs. Instead,
they identify which approaches do not work at all. To tune the
parameters for our final tests we need to decide on two things:
how we combine the results from the four different insertion
metric variants and which states we test the parameters on.

3.4.1. Combining Insertion Metric Results
To combine the results of the random and black insertion
metric variants, we measure the mean of the area under the
insertion curve over both the black and the random perturbation
insertion metric. For our evaluation, we would also like to find
parameters that are able to analyze both the agent’s action-
value and state-value estimation. To this end, we standardize the
mean AUC results of the aforementioned tests for the advantage
and q-values measurements, respectively5. The sum of these
standardized values is then used as a single value that measures
the performance of the parameters. Parameters such as patch
size have a strong influence on the run-time of the saliency
map approaches. Therefore, to ensure comparability between
approaches and to run our final experiment in a reasonable time,
we did not select the top parameters. Instead, we use the best
parameters that took up to three seconds to compute a single
saliency map.

3.4.2. Choosing a Test Set
As a test set for our parameter tuning, it is not feasible to
use the full stream of 1, 000 states that we want to use in
our final evaluation of the different saliency maps. LIME and
RISE in particular have long computation times and a large
number of possible parameter combinations (We will provide
more information on the run-time of each saliencymap approach
in Section 4.3). This would make the run-time of the parameter
test explode. Therefore, we need to find a suitable subset of states
that represent as many states as possible. Since there are no test-
or validation-sets in reinforcement learning we have to choose
these subsets from the full stream of gameplay.

As potential candidates, we tested 22 different subsets
consisting of 10 states each. Ten of these subsets were randomly
selected and the other 12 subsets were selected by different
variants of the HIGHLIGHT-DIV algorithm. The HIGHLIGHT-
DIV algorithm selects a diverse set of states that give a good
overview of the agent’s policy (Amir and Amir, 2018). Hereby,
it utilizes a diversity threshold that makes sure that the selected
states are not too similar to each other. For this diversity
threshold, we tested the 10, 20, 25, 28, 30, 32, 33, 35, and 40
percentile of the similarity values of the full 1,000 states stream6.
To get even more diverse sets of states, we additionally tested two
novel variations of HIGHLIGHTS-DIV: one variant where we
used 5 of the most important and 5 of the least important states
for the agents’ strategy and one variant where we sorted all 1,000
states by importance and chose every 100th state to obtain states
of all importance levels.

5 Letµ and σ be the mean and standard deviation of the mean AUC results xi then
the standardized results zi are given by zi =

xi−µ

σ
.

6Here the n percentile is the value n
100 of the way from the minimum of the

similarity values to the maximum.
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To compare how well these subsets represent the full stream
of gameplay, we calculated the combined insertion metric results,
as described above, for the full 1, 000 states of Pac-Man using 28
different parameter combinations of Occlusion Sensitivity. The
particular parameters were chosen since they are fast to compute.
Based on these results we obtained a “ground truth” for how
those 28 parameters for Occlusion Sensitivity should be ranked.
Now, a subset of states is suited for searching parameters if the
parameter ranking obtained by the subset is similar to the ranking
obtained by the full 1, 000 states. To calculate the similarity
of different rankings we used both Spearman’s and Kendall
rank correlation coefficients. While this does not give conclusive
evidence it gives a good estimation of which states do and do
not work. The highest correlation to the ranking obtained by the
full streamwas achieved by the 30 percentile HIGHLIGHTS-DIV
variant. For the action-value, the Spearman’s rank correlation
was 0.96 and the Kendall rank correlation was 0.85. For the
state-value, the Spearman’s rank correlation was 0.95 and the
Kendall rank correlation was 0.81. The correlations for the
other subsets can be seen in our repository7. It is important to
note, that HIGHLIGHTS-DIV only performed well when the
diversity threshold was very high. When the threshold was low
the HIGHLIGHTS-DIV states performed worse than the random
ones. We got the best results when the threshold was so high
that increasing the threshold resulted in subsets with less than
10 states since the algorithm could not find any more states that
could be added to the subset.

3.4.3. Used Saliency Map Parameters
Using the combined insertion metric results and the test
set described above, we tested a total of 4, 918 parameter
combinations across all five saliency map methods. The full
results of our tests for each method can be viewed in
our repository8.

3.4.3.1. Occlusion Sensitivity
For Occlusion Sensitivity, we tested patches of size 1 to 10, black
and gray occlusion color, and whether applying a softmax layer
to the output q-values before creating the saliency map improves
results. The top 10 results are shown in Table 2.

3.4.3.2. Noise Sensitivity and SARFA
For Noise Sensitivity, we tested circles with a radius of 1 to 10.
The top ten parameters are shown in Table 3A. SARFA was not
introduced with a specific perturbation method. Analogous to
Puri et al., we test blurred circles of radius 1–10 as used in Noise
Sensitivity. Additionally, we also use circles that are occluded
with black color. The top ten results are shown in Table 3B.

3.4.3.3. RISE
For RISE we tested 500, 1, 000,...,3, 000 masks of size 4 to 24. The
probability p with which each pixel is occluded varied between
0.1 and 0.9 in steps of 0.1. Analogous to Occlusion Sensitivity, we
also investigated whether it makes sense to add a softmax layer

7https://github.com/belimmer/PerturbationSaliencyEvaluation
8https://github.com/belimmer/PerturbationSaliencyEvaluation

TABLE 2 | Best parameters for Occlusion Sensitivity.

AUC Patch size Color Softmax Time

6.76 1 Black No 10.94

3.44 1 Gray No 11.09

3.42 1 Black Yes 11.51

3.03 1 Gray Yes 11.50

2.33 2 Black No 2.80

0.93 2 Black Yes 2.88

0.32 3 Black No 1.26

0.26 2 Gray No 2.83

0,04 2 Gray Yes 2.87

−0.06 4 Black No 0.69

The final parameters are marked in bold.

TABLE 3 | Best parameters for Noise Sensitivity (A) and SARFA (B).

AUC Radius Time

(A)

3.08 2 5.79

2.21 1 22.84

0.94 3 2.62

0.68 9 0.38

0.48 10 0.31

−0.05 4 1.48

−0.49 8 0.44

−0.84 5 0.99

−2.07 6 0.68

−3.94 7 0.51

AUC Radius Perturbation Time

(B)

7.03 1 Black 12.05

1.46 2 Black 3.00

1.09 1 Blur 23.70

0.57 8 Blur 0.46

0.55 2 Blur 6.12

0.49 9 Blur 0.39

0.40 10 Blur 0.32

0.27 3 Black 1.40

0.08 3 Blur 2.77

0.01 5 Blur 1.06

The final parameters are marked in bold.

after the output during the saliency map creation. The top five
results are shown in Table 4.

3.4.3.4. LIME
For LIME we tested the three most common Segmentation
techniques SLIC, Quickshift and Felzenszwalb and varied the
number of samples on which the local interpretable model is
trained. For the number of samples, we took the default number
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TABLE 4 | Best parameters for RISE.

AUC p Mask size Masks Softmax Time

3.21 0.8 11 3,000 Yes 5.09

3.04 0.7 13 3,000 No 4.76

2.99 0.9 24 2,500 Yes 3.98

2.94 0.8 4 3,000 No 4.66

.

.

. Skipping 9 parameters that took more then 3 s.

2.66 0.5 8 1,000 No 1.54

The final parameters are marked in bold.

TABLE 5 | Best parameters for LIME with Felzenszwalb segmentation.

AUC Scale Sigma Minimum size Num samples Time

4.35 21 0.5 0 3,000 10.73

3.58 21 0.75 2 3,000 7.38

3.53 1 1.0 0 2,000 22,03

3.29 21 0.5 0 2,500 8.95

.

.

. Skipping 14 parameters that took more then 3 s.

2.55 21 0.5 4 1,000 1.71

The final parameters are marked in bold.

TABLE 6 | Best parameters for LIME with SLIC segmentation.

AUC Num segments Compactness Sigma Num samples Time

3.99 200 10.0 1.0 3,000 3.13

3.86 200 10.0 0.25 2,000 2.08

3.48 200 10.0 0.0 3,000 3.11

3.46 200 0.001 0.25 3,000 2.36

3.44 200 10.0 0.5 1,000 1.06

The final parameters are marked in bold.

of samples (1, 000) and increased it in steps of 500 up to 3, 000.
To determine which parameter ranges we should explore for
each segmentation algorithm, we performed preliminary tests
where we visually checked which parameters resulted in different
segmentation. For Felzenszwalb segmentation we used a scale
factor of 1,21,...,101, a minimum component size from 1 to 8
and Gaussian smoothing kernels with width σ of 0,0.25,...,1.
The top results are shown in Table 5. For SLIC we tested 40,60
to 240 segments, a compactness factor of 0.001,0.01,...,10 and
Gaussian smoothing kernels with width σ of 0,0.25,...,1. The top
five parameter combinations can be seen in Table 6. Finally, we
tested Quickshift with a color ratio of 0.0,0.33,0.66 and 0.99, a
kernel size from 1 to 6 and a max distance of kernelsize ∗ i, where
i goes from 1 to 4. The top results are shown in Table 7.

4. RESULTS

Figure 3 shows example saliency maps for all four games used
in our experiments. To prevent cherry-picking of particularly

TABLE 7 | Best parameters for LIME with Quickshift segmentation.

AUC Kernel size Max distance Ratio Num samples Time

6.24 1 1 0.0 3,000 11.38

4.97 1 1 0.0 2,500 9.57

4.80 1 2 0.0 2,500 4.46

4.50 1 2 0.0 3,000 5.39

4.23 1 2 0.0 1,500 2.75

The final parameters are marked in bold.

convincing states, the states are chosen by the HIGHLIGHTS-
DIV algorithm (Amir and Amir, 2018).

4.1. Sanity Checks
An example of the different saliency maps during a single run
of the sanity check can be seen in Figure 4. The combined
results of the sanity checks test are shown in Figure 5. The
results for each individual game can be seen in Figure 6. The
lower the scores the higher the dependence on the agents’
learned parameters. Notably, LIME has a very high Pearson
correlation of HOGs. Furthermore, the original Noise Sensitivity
has low dependence on the parameters of the output layer when
compared to Occlusion Sensitivity. Since those two approaches
are very similar in theory, we implemented two modifications
of Noise Sensitivity to investigate the reason for this difference
in parameter dependence. First, Noise Sensitivity Black occludes
the circles in the Noise Sensitivity approach with black color
instead of blurring them. Second, Noise Sensitivity Chosen Action
changes the way that the relevance of each pixel is calculated
from the original equation (Equation 2), which takes all actions
into account, to the one used by Occlusion Sensitivity (Equation
1), which focuses on the chosen action. We did not test
a combination of black circles and the Occlusion Sensitivity
relevance calculation since that would be equivalent to Occlusion
Sensitivity with circles instead of squares. While the black
occlusion did not really change the sanity check results, the
change of the relevance calculation immensely increased the
dependence on the learned parameters.

4.2. Insertion Metric
Table 8 reports the sample mean and SD of the insertion metric
results for 1,000 states of each game and each saliency map
approach9. To get a baseline performance, we also calculated
the insertion metric with uniformly sampled random saliency
maps. For some games and sub-metrics, the mean area under
the insertion curve is negative. This is due to the fact that some
agents assign high negative q-values and advantages to the fully
perturbed state. For most games, RISE has the best results for
measuring the raw q-values on random perturbation. However,
the results for measuring advantage with random perturbation
are poor for all approaches. For Frostbite and Space Invaders, and
measuring the advantage with random perturbation, the random

9For each game and metric the sample mean of the 1,000 insertion metric results

xi is calculated by µ =

∑

i xi
1,000 and the SD by

√

∑

i(xi−µ)2

1,000 .
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FIGURE 3 | Example saliency maps for games we tested. From top to bottom: Pac-Man, Breakout, Space Invaders, and Frostbite. For a better visibility, the saliency

maps are displayed in green color over a simplified version of the states. The higher the intensity of the green color, the higher the relevance of the corresponding pixel

for the agent’s decision.

saliency maps even performed better than all other approaches.
For the other two games, RISE has the highest values.When using
black color perturbation during the insertion metric, Occlusion
Sensitivity obtained very good results for measuring the state-
value, and SARFA worked best for the advantage. However,
their results for random perturbation were very poor. From our
parameter tuning, we knew that this depended on the color of
perturbation used during the saliencymap generation. Therefore,
we additionally tested Occlusion Sensitivity with gray color and
SARFA with noise perturbation as used by Noise Sensitivity. The
other parameters remained unchanged. Table 9 shows the results
of those additional tests. Notably, Occlusion Sensitivity got the
highest q-value random insertion results in Pac-Man, Frostbite,
and Space Invaders. SARFA got the best advantage results for
random insertion for Pac-Man and Frostbite only slightly losing
to Occlusion Sensitivity with gray color in Space Invaders.
The performance of both approaches on black perturbation
fell to a level similar to the random baseline. The exception
to most observations described above is Breakout. Here, the
LIME variants performed the best across most metrics. SLIC
segmentation in particular achieves at least the second-highest
score in each metric. It is worth noting, that this game also has
the highest SD values.

4.3. Run-Time Analysis
The run-time of an algorithm can be an important aspect when
choosing between different approaches. We computed the mean
time it took each algorithm to create a single saliency map using

the timeit python library. To get a feeling of how this is affected
by different parameters of the saliency map approaches, we
measured the time during our parameter tuning process where
each parameter combination was used on 10 different states (see
Section 3.4 for the full results).

The fastest approach was Occlusion Sensitivity which uses
simple color occlusions followed by the more complex blur
perturbation of SARFA and Noise Sensitivity. However, this was
strongly dependent on the size of the perturbation patches and
circles, respectively. Using a patch size or radius of 1, these
approaches were among the slowest with a mean run-time of
around 22s for the blur perturbation and approximately 11s for
the black occlusion variant. However, increasing the patch size
and radius to 2 already drastically reduced the run-time. For
RISE, the run-time mainly depends on the number of masks.
With 3, 000masks the run-timewas always close to 5s per saliency
map. However, compared to the aforementioned saliency map
approaches, this did only decrease slowly when decreasing the
number of masks. Thus, the average and the fastest run-time
were much slower for RISE than for SARFA, and Occlusion and
Noise Sensitivity. The slowest approach we tested was LIME.
However, this was strongly influenced by the number of segments
that the segmentation functions generated and the number of
learning steps for the locally interpretable classifier. For SLIC,
which creates relatively big segments, LIME was quite fast with
a maximum run-time of 3.87s with the slowest parameters.
In contrast, the run-time for Felzenswalb easily exploded and
reached a maximum of 33.64s per saliency map. Quickshift was
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FIGURE 4 | Example saliency maps for the parameter randomization sanity check. From top to bottom each row after the first is generated for agents with

cascadingly randomized layers starting with the output layer.

in the middle of those two approaches with a maximum run-time
of 12.50s which did not decrease as quickly as the run-time of
Occlusion and Noise Sensitivity, and SARFA.

5. DISCUSSION

5.1. Sanity Checks
The results of our sanity checks show that most of the
perturbation-based saliency map approaches tested in this
paper are dependent on the learned parameters of the agent’s
neural network. Their dependence on the learned parameters
is generally comparable to the best gradient-based approaches
tested by Adebayo et al. (2018) and the best modified propagation
approaches tested in Sixt et al. (2020). The only exceptions to this
are Noise Sensitivity and LIME.

Noise Sensitivity showed little dependence on the parameters
of the output layer (Figure 5). Since the output layer has the
highest impact on the actual decision of a network, it is crucial
that a faithful saliency map depends on the weights learned

in this layer. Our results empirically show that replacing the
original equation of Noise Sensitivity to calculate the relevance
of each pixel with the equation used by Occlusion Sensitivity
greatly increases the parameter dependence. We think that this
is due to the fact that the original equation takes all actions into
account and therefore measures a general increase in entropy
within the activations of the output layer. In contrast, Occlusion
Sensitivity only measures the action which is actually analyzed
and therefore captures a more specific change in the output
layer activation. Recently, Puri et al. (2020) also criticized that
the saliency maps by Greydanus et al. (2018) take all actions
into account. The results of our sanity checks provide the first
computational evidence for this critique.

LIME performed well in the sanity check measurements using
SSIM and Spearman correlation. Only the Pearson correlation of
the HOGs was very high between LIME saliency maps for the
trained and randomized agents. However, the reason for this is
not necessarily a low dependence on the agent’s learned weights.
More likely it is due to the fact that all LIME saliency maps
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FIGURE 5 | Results of the sanity checks for the different saliency map approaches (NS is noise Sensitivity). Measured for 1, 000 states of each of the 4 tested games.

Starting from the left, each mark represents an additional randomized layer starting with the output layer. The y-axis shows the average similarity values (Spearman

rank correlation, SSIM, Pearson correlation of the HOGs). High values indicate a low parameter dependence. The translucent error bands show the 99% CI but are

barely visible due to low variance in the results.

for a given state work with the same superpixels. Since every
pixel inside a superpixel has the same value there are hard edges
between the superpixels. These edges are captured by the HOGs
and result in high values of the Pearson correlation of the HOGs.

5.2. Insertion Metric
During our parameter tuning, we tried our best to find
parameters that result in saliency maps that work for both black
and random perturbation and capture both the agent’s action-
value as well as state-value estimation. Despite these efforts, no
saliency map approach performed well across all sub-metrics.
The best results for measuring the state-value were obtained
by Occlusion Sensitivity and the best results for the action-
value were obtained by SARFA. This distinction is illustrated
by the fact that no SARFA saliency map for Pac-Man, which
we looked at, identified the in-game score as relevant (e.g.,
Figure 3). The score is a good indicator for the value of the
current state and is frequently highlighted by all other approaches
we tested. However, based on the rules of the game, it is not
necessary to know the score to choose the correct action in a
given Pac-Man state.

Additionally, the saliency maps’ fidelity depended on the type
of perturbation. The area under the insertion curve with black
perturbation was the highest when the saliency map approaches
used black occlusion. To mitigate this effect some saliency
map approaches utilize blurring during their perturbation.
Surprisingly, this was also sensitive to the perturbation type
of the insertion metric in our tests. Similar to gray occlusion,
blurring performed best for the random perturbation insertion
metric and did not do well on black perturbation. The closest
thing to a saliency map approach that fits all sub-metrics was
RISE. However, the results here were considerably worse than
the results for Occlusion Sensitivity and SARFA with parameters

that fit the respective sub-metric, especially when analyzing the
action-value estimation.

These results do not necessarily mean that the evaluated
saliency map methods are not suited to explain DRL agents.
However, they demonstrate that none of the approaches answers
the general question: “What was the most relevant input region
for the agent’s decision?”. Instead, they answer more specific
questions depending on the type of perturbation and whether
the state or action value is analyzed. For example, SARFA with
black perturbation for Pac-Man is suited to answer the question:
“The presence of which objects was relevant for the agent’s choice
of action.” Since the black background color of Pac-Man acts as
deleting objects and SARFA measures the action advantage. In
contrast, Occlusion Sensitivity with black color would answer
the same question with regard to the agent’s evaluation of
the current state. Based on this, we advise future researchers
to clearly define what question they want to investigate.
Depending on that question, a fitting saliency map method can
be chosen.

Our parameter tuning experiments also showed that the fitting
saliency map method can strongly depend on single parameters
of the saliency map methods. Therefore, we encourage future
researchers to conduct systematic parameter searches fitting their
question similar to the one described in this paper. Manually
adjusting the parameters until the resulting saliency maps look
reasonable might lead to saliency maps that look convincing but
do not match the agent’s internal reasoning.

5.3. Limitations
We used four different variants of the insertion metric to get a
good estimate of saliency map approaches’ fidelity in different
situations. Between those variants, we already found distinct
differences. This fact reinforces the findings by Tomsett et al.
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FIGURE 6 | Results of the sanity checks for each individual game for the different saliency map approaches (NS is noise Sensitivity). Measured for 1, 000 states of

each of the 4 tested games. Starting from the left, each mark represents an additional randomized layer starting with the output layer. The y-axis shows the average

similarity values (Spearman rank correlation, SSIM, Pearson correlation of the HOGs). High values indicate a low parameter dependence. The translucent error bands

show the 99% CI.
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TABLE 8 | The sample mean and SD of the insertion metric curve for 1, 000 states of each game.

Metric Occlusion Noise SARFA RISE LIME Felz. LIME Quick. LIME SLIC Baseline

Pac-Man:

Q-val rand 0.54 ± 1.3 0.75 ± 0.7 0.76 ± 1.2 1.1 ± 2.0 0.46 ± 0.7 0.67 ± 1.1 0.62 ± 1.1 0.85 ± 1.5

Adv rand –0.52 ± 1.2 –0.03 ± 0.8 –0.74 ± 1.3 –0.01 ± 1.1 –0.43 ± 1.2 –0.44 ± 1.0 –0.36 ± 1.1 –0.22 ± 1.0

Q-val black 3.08 ± 3.2 0.66 ± 0.8 0.83 ± 1.8 1.01 ± 1.8 2.83 ± 5.3 2.49 ± 4.7 2.47 ± 4.4 0.53 ± 0.8

Adv black 1.23 ± 1.6 0.15 ± 0.3 1.7 ± 0.8 0.21 ± 0.4 0.64 ± 0.7 0.94 ± 0.5 0.67 ± 0.5 0.06 ± 0.3

Breakout:

Q-val rand –0.72 ± 2.5 –1.01 ± 3.0 –3.19 ± 3.9 –0.97 ± 2.7 –0.98 ± 2.7 –0.48 ± 4.1 –0.53 ± 3.2 –2.21 ± 2.9

Adv rand –0.42 ± 4.7 –1.52 ± 8.4 –0.92 ± 8.4 0.85 ± 6.1 –0.7 ± 6.5 –0.54 ± 5.4 –0.05 ± 4.8 –0.76 ± 5.8

Q-val black 3.16 ± 4.2 3.04 ± 4.2 1.97 ± 2.0 3.39 ± 4.2 7.48 ± 9.6 5.8 ± 8.7 6.12 ± 9.7 2.13 ± 3.1

Adv black 0.02 ± 0.5 0.19 ± 0.6 0.53 ± 1.1 0.29 ± 0.6 0.24 ± 0.6 0.24 ± 0.4 0.71 ± 1.4 0.07 ± 0.2

Frostbite:

Q-val rand 0.56 ± 1.0 0.83 ± 1.0 0.73 ± 1.0 0.92 ± 1.1 0.75 ± 0.9 0.37 ± 1.0 0.36 ± 1.0 0.88 ± 1.1

Adv rand 0.31 ± 1.1 0.38 ± 1.2 0.2 ± 1.2 0.35 ± 0.9 0.2 ± 0.9 0.24 ± 1.3 0.23 ± 1.3 0.4 ± 1.2

Q-val black 5.65 ± 3.1 0.58 ± 0.2 1.53 ± 1.6 2.4 ± 1.7 2.71 ± 2.4 5.12 ± 4.1 3.25 ± 2.5 0.51 ± 0.4

Adv black 0.59 ± 0.9 0.2 ± 0.2 1.22 ± 0.9 0.25 ± 0.3 0.26 ± 0.3 0.28 ± 0.4 0.26 ± 0.3 0.16 ± 0.2

Space Invaders:

Q-val rand –0.7 ± 0.6 –0.6 ± 0.6 –0.8 ± 0.6 –0.39 ± 0.4 –1.12 ± 0.9 –0.81 ± 0.7 –0.88 ± 0.7 –1.1 ± 0.8

Adv rand 0.76 ± 3.5 0.83 ± 3.4 0.79 ± 3.7 0.66 ± 2.8 0.87 ± 4.3 0.76 ± 3.7 0.87 ± 3.6 0.89 ± 4.2

Q-val black 1.01 ± 0.2 0.73 ± 0.1 0.74 ± 0.2 0.89 ± 0.1 1.02 ± 0.2 1.08 ± 0.2 1.11 ± 0.3 0.56 ± 0.1

Adv black 0.28 ± 0.4 0.26 ± 0.3 0.59 ± 0.4 0.21 ± 0.2 0.24 ± 0.2 0.25 ± 0.2 0.29 ± 0.2 0.13 ± 0.2

Q-val and Adv measure the change of the normalized q-value and advantage, respectively. Rand and black use random and black perturbation, respectively, during the insertion metric.

The highest values are marked in bold.

TABLE 9 | The sample mean and SD of the insertion metric curve for our

additional experiments with different perturbations for Occlusion Sensitivity and

SARFA.

Metric Occlusion gray SARFA blur

Pac-Man:

Q-val rand 2.98 ± 3.5 1.0 ± 2.2

Adv rand 0.44 ± 1.8 1.12 ± 1.0

Q-val black 0.32 ± 0.2 0.62 ± 1.3

Adv black –0.13 ± 0.3 0.23 ± 0.4

Breakout:

Q-val rand –0.83 ± 2.6 –0.8 ± 3.4

Adv rand 0.4 ± 5.3 –0.4 ± 5.8

Q-val black 1.99 ± 2.5 3.0 ± 3.9

Adv black 0.11 ± 0.5 0.21 ± 0.7

Frostbite:

Q-val rand 3.54 ± 2.3 1.13 ± 1.2

Adv rand 0.66 ± 1.1 0.73 ± 1.2

Q-val black 0.5 ± 0.5 0.58 ± 0.3

Adv black 0.16 ± 0.2 0.3 ± 0.3

Space Invaders:

Q-val rand 0.07 ± 0.7 –0.75 ± 0.7

Adv rand 1.04 ± 3.5 1.02 ± 3.7

Q-val black 0.48 ± 0.2 0.66 ± 0.2

Adv black 0.12 ± 0.3 0.44 ± 0.4

Q-val and Advmeasure the change of the normalized q-value and advantage, respectively.

Rand and black use random and black perturbation, respectively, during the insertion

metric. The bold values beat the highest values for the respective metric in our original

experiment.

(2020) that current fidelity metrics for saliency maps can be
very sensitive to specifics of their implementation. For value-
based RL in particular, we extend the results of Tomsett et al.
by demonstrating that there are also considerable differences
between metrics that measure the action-value and metrics that
measure the state-value. However, it can not be ruled out that
other fidelity metric variants might result in even more insights.
To ease future evaluations and parameter searches, a great
challenge for XAI research will be the development of more
general fidelity metrics for saliency maps.

Another potential limitation of our results is that recent
work indicates that simply displaying saliency maps to end-
users might not be suited as a final explanation (Danesh et al.,
2021; Huber et al., 2021). However, saliency maps are still often
used as primary components of more sophisticated explanation
frameworks (e.g., Danesh et al., 2021). We argue that it is even
more crucial to evaluate the fidelity of saliency maps in situations
where their information is used as an integral component of more
complex explanation mechanisms.

We only used DRL agents with visual input in our evaluation
since this is the most common application for saliency maps. It
is possible to apply saliency map methods to DRL agents with
other input domains as used in 3D locomotion tasks (Todorov
et al., 2012), queueing network controls (Dai and Gluzman,
2022), and recommendation systems (Zhao et al., 2021). In
this context, the saliency map methods are often referred to
as Feature Attribution methods. This raises the question of
whether our results extend to Feature Attribution methods in
non-visual domains. Since visual image manipulations (e.g.,
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image segmentation and Gaussian noise) do not make sense
in non-visual input domains, Feature Attribution methods use
different input perturbations in non-visual domains. Apart from
that, the saliency map methods discussed in this work can
be directly applied to any agent with discrete action space.
Continuous action spaces require further adjustments. Therefore,
our findings that are not related to the input perturbation should
still apply to DRL agents with discrete action spaces in non-
visual domains. This includes the difference between analyzing
the agent’s action-value and state-value estimation, as well as
the parameter independence of the relevance calculation of
Noise Sensitivity.

6. CONCLUSION

This paper compared five different perturbation-based saliency
map approaches measuring their dependence on the agent’s
parameters and their fidelity to the agent’s reasoning. Our main
findings are:

• Most of the approaches tested in this work do depend on the
agent’s learned parameters. Only Noise Sensitivity showed less
dependence on the learned parameters of the output layer.
We empirically show that this is due to Noise Sensitivity’s
original relevance calculation. Replacing this calculation with
a calculation that only takes the analyzed action into account,
drastically increases the dependence on the parameters of the
output layer.

• For value-based DRL agents, there are considerable differences
between analyzing the agent’s action-value and state-value
estimation. While this distinction is hidden within the agent’s
output q-values, future practitioners should be aware of which
of the two they want to analyze and choose their saliency maps
accordingly. To investigate how well saliency maps for value-
based DRL agents capture this distinction, we proposed an
adjustment to existing input degradation metrics for image
classifiers. In our tests, SARFA worked best to capture the

action-value while Occlusion Sensitivity and RISE were more
suited for the state-value.

• Depending on which perturbation method the approaches
use, the resulting saliency maps only analyze how sensitive
the agent is with regard to specific types of perturbation.
While this seems obvious, it was true even for perturbation
methods that utilized blurring specifically to reduce their
dependence on a choice of occlusion color. In contrast to the
action- and statue-value distinction, this is not an inherent
property of the DRL agents but might be seen as a flaw
of current perturbation-based saliency map approaches. Our
results demonstrate that there is still a need to further
develop perturbation-based saliency map approaches. For
now, researchers have to decide which types of perturbation
are meaningful and interesting for their application. Based on
this, they can choose an appropriate perturbation method. For
example, by performing a parameter search similar to the one
conducted in this work.
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