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Distributed cognition for
collaboration between human
drivers and self-driving cars

Alice Plebe*, Gastone Pietro Rosati Papini,

Antonello Cherubini and Mauro Da Lio

Department of Industrial Engineering, University of Trento, Trento, Italy

This paper focuses on the collaboration between human drivers and intelligent

vehicles. We propose a collaboration mechanism grounded on the concept

of distributed cognition. With distributed cognition, intelligence does not

lie just in the single entity but also in the interaction with the other

cognitive components in a system. We apply this idea to vehicle intelligence,

proposing a system distributed into two cognitive entities—the human and

the autonomous agent—that together contribute to drive the vehicle. This

account of vehicle intelligence di�ers from the mainstream research e�ort

on highly autonomous cars. The proposed mechanism follows one of the

paradigm derived from distributed cognition, the rider-horse metaphor: just

like the rider communicates their intention to the horse through the reins, the

human influences the agent using the pedals and the steering wheel. We use

a driving simulator to demonstrate the collaboration in action, showing how

the human can communicate and interact with the agent in various ways with

safe outcomes.

KEYWORDS

autonomous driving, distributed cognition, human-vehicle collaboration, human-

robot interaction, emergent behavior, artificial intelligence

1. Introduction

Recent developments in autonomous driving are leading to a transitional period,

where human drivers and intelligent vehicles coexist. Nowadays, more and more

commercial vehicles feature intermediate levels of automation. The presence of partially

autonomous vehicles on the streets is starting to affect the traditional driver-vehicle

interaction patterns. In fact, the addition of automation leads to a significant behavioral

change in the way humans drive; interacting with partially automated systems disrupts

the classic traffic dynamics, and it can cause unsafe interactions difficult to predict

(Flemisch et al., 2017). Hence, the research community must place at the top of its agenda

the issue of cognitive interaction between the driver and the automated system.

To date, research on vehicle intelligence has mainly addressed fully autonomous

cars. They are far from the idea of human-vehicle collaboration, because the greater

the automation, the less the human is involved in the driving task. In fact, the ideal

self-driving vehicle would dispense with the human and any form of collaboration
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with them. The account of vehicle intelligence completely

separated from the human driver has developed considerably,

also because of the ongoing evolution of deep learning.

However, the research is still far from achieving totally

driverless vehicles, and it often overlooks the importance

of mutual dependence between the human driver and

the vehicle.

We argue that new forms of collaboration between humans

and artificial agents can arise from the theoretical framework of

distributed cognition, i.e., the idea to achieve a task through the

emergent interaction of more intelligent entities. In the effort

to achieve artificial driving agents with increasingly cognitive

abilities, we see a promising direction in the idea of a distributed

cognitive system: two cognitive entities—the human and the

agent—collaborate to achieve the task of driving the vehicle.

As we will show, this framework promotes new interesting

ways to approach human-agent collaboration, leading to the

formulation of a number of “metaphores” suggesting ideal styles

of interaction.

We present a collaboration paradigm showing the

advantages of having a system with more than a single

cognitive entity. The system follows the rider-horse metaphor

to implement distributed cognition. As the horse can “read”

human’s intentions and, reciprocally, the rider can understand

animal’s intentions, we argue that autonomous vehicles might

benefit from a similar ability: the user experience would improve

if the driver could give hints to the car and feel as if the car

could “understand” their intentions. While the rider-horse

system communicates with the reins, the human communicates

with the agent using the pedals and the steering wheel. We

show the collaboration system in action on a driving simulator.

The results illustrate how the human can influence the agent’s

decision-making to obtain, for example, a lane change or an

overtake whenever possible and safe; on the other hand, the

agent can dismiss the human’s suggestion if they are dangerous

or not significant.

The following Section briefly introduces the different

accounts of cognition proposed through the years, focusing

especially on the distributed nature of cognition. Section 3

presents the main research direction pursued in autonomous

driving, which sets aside the idea of collaboration with

the human and focuses on vehicle intelligence as single

cognition. Section 4 dives into the distributed account

of vehicle intelligence and analyzes various collaboration

paradigms between humans and autonomous agents.

Section 5 presents the interaction mechanism we propose

between a human and an autonomous agent previously

developed. The section describes how the agent works

(in brief) and how the interaction mechanism is realized.

Section 6 demonstrates the system in action using a driving

simulator. Lastly, Section 7 draws the conclusion and discusses

future work.

2. Accounts of cognition

It already exists a form of intelligence capable of driving

vehicles—humans. Thus, it is reasonable to design other forms

of “vehicle intelligence” by taking inspiration from human

intelligence and cognition. Human cognition is the focus of a

vast area of research with a long-stand history. It is useful here

to briefly sketch the different accounts of cognition proposed

through the years, with special attention to the distributed

nature of cognition.

One of the core ideas of cognitive science, at the time of

its birth in 1956, is that minds and computers are exemplars of

the same class, the physical symbol system (Gardner, 1985). A

fundamental corollary of this theory is that what is possible for a

human mind—for example, driving—is possible for a computer

as well. This idea works in principle, but there is still no clear

understanding on what kind of computations the human brain

runs when, again for example, the person is driving a car.

Cognition has been characterized with a distributed

structure since the early period of physical symbol. Newell

and Simon (1972) proposed an abstract structure divided

into perceptual modules, a central information processing

system, and motor activation modules. Fodor (1983) postulated

that the mind is a collection of autonomous modules, with

independent information, communicating by input/output.

Moreover, Minsky (1986) proposed that the mind is like a

society, in which each inhabitant has their own job and

cooperates with the rest toward common goals. Rumelhart and

McClelland (1986) highlighted how cognition is distributed

over a large number of interconnected units. The “distributed”

account of cognition mentioned so far considers only a single

cognitive entity, composed of several sub-parts. However, there

is cognition beyond the individual intelligence.

The idea of distributed cognition became popular with the

work of Hutchins (1995b,a). This current of though stresses how

the highest cognitive functions imply a strong social relation

and cannot be studied in isolation (Cole and Engeström, 1993).

Hutchins founded the concept of distributed cognition on his

extended cognitive ethnography of ship navigation (Hutchins,

1995a): a ship requires a complex system made by both a

team of people and an array of technologies, all working

together. The team is organized, with precise roles for each

crew member, and the cognitive work is offloaded thanks to

aids such as instruments and charts. Hutchins further extended

his study of distributed cognition from ship navigation to

aviation—a domain closer to the focus of this paper than sea

navigation (Hutchins, 1995b). The case analyzed by Hutchins

is the management of the airplane’s speed during landing.

Speed is the most crucial factor for a safe landing. The process

involves coordination within the crew as well as interaction

with the instrumentation. Hutchins’ account of cognition has

been accepted as the best way to describe the dynamics
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and complexity of various human organizations, including

classrooms, office work, company organization, and air traveling

(Dror and Harnad, 2008).

Despite the innovation of Hutchins’ work, cognitive science

of that time was dominated by another school of though,

called 4E Cognition (Newen et al., 2018). The “4E” approach

characterizes cognition with four features: embodied, embedded,

enacted, and extended. Embodied cognition analyzes not just the

role of the mind, but also the role the body has in cognition.

Embedded cognition focuses on the integration of the cognitive

agent into an environment. Enacted cognition assumes that

knowledge is closely related to the notion of action (for example,

perception is not just something propaedeutic to an action, it is

a sort of action itself). We will not go in detail of these accounts

of cognition as they are not the focus of the discussion; it is the

last “E,” in fact, the most relevant in our context.

Extended cognition (Clark and Chalmers, 1998; Clark, 2008)

presents an even more radical account of cognition than the

one proposed by Hutchins. Extended cognition accepts as active

components of cognition all kinds of things that can help

humans think. Clark’s famous example is the notebook used

by a person suffering from memory loss. The person uses the

notebook to take note of everything they need to know. For

the person’s cognition, the notebook plays a role as crucial

and constitutive as their biological memory. Unlike Hutchins’s,

Clark’s proposal spurred a huge debate within cognitive science

(Menary, 2010), and it has become a key theoretical framework

for topics such as the Internet enhancement of cognition (Smart,

2017). However, in the context of vehicle intelligence, Clark’s

notion of extended cognition is not so apt. According to him,

the cognitive system gives equal partnership to the human mind

and the external component. This aspect is questionable when

the external part is trivially poor from the cognitive point of

view—like the notebook example—or when the external part is

a knowledge-packed resource like Wikipedia or Google.

The cooperative relation between humans and their

extended cognitive counterpart is well-represented in the

framework proposed by Poirier and Chicoisne (2008). They

present a two-dimensional conceptual space (see Figure 1) to

classify the cooperation between two entities in a cognitive

system. One axis represents the degree of cognition of the

entities, ranging from cognitive to non-cognitive. For example,

a pencil is totally non-cognitive, while humans have maximum

degree of cognition. The other axis represents the outcome

of the cooperation, which ranges from aggregate to emergent.

Aggregate means there are no cooperative or inhibitory

interactions among the parts of the system, and the task can

be achieved even when parts of the system are removed.

Emergent represents the opposite, when the parts of the system

collaborate actively to achieve a shared task. For example,

two researchers write a scientific a paper, and they agree to

split the work in half; each person writes only a specific

section of the paper without reading the rest. Only at the

FIGURE 1

Conceptual space proposed by Poirier and Chicoisne (2008) to

classify the relation between two entities in a cognitive system.

end, they merge the sections together. In this way, there is no

cognitive advantage from the cooperation, because it is a simple

aggregation of individual cognitive loads. Although the entities

have high degree of cognition, the collaboration is aggregate.

Any approach exploiting the concept of distributed cognition

should fall in quadrant 2 of this conceptual space.

In the following sections, we will analyze current approaches

to vehicle intelligence and how they relate to distributed

cognition.

3. Vehicle intelligence with
single cognition

The main research direction in autonomous driving focuses

on developing high levels of driving automation—the higher

the level, the less the human is involved in the driving task.

The Society of Automotive Engineers (SAE) defines six levels of

driving automation (SAE, 2021), summarized in Figure 2. Level

0 stands for no automation at all, i.e., traditional automobiles.

Level 1 introduces basic forms of driver assistance, such as

emergency braking. Level 2, also called partial automation, is

the form of automation currently available on recent vehicles,

and it includes systems like adaptive cruise control and lane

following. However, the human is still responsible of driving

the car and must constantly supervise the system. Level 3,

also called conditional automation, introduces a drastic shift

from the previous level. Here, the system is responsible for

driving the car and supervising the scene, while the human

is allowed to engage in other activities. These systems operate

in limited operational design domains, usually highways. Still,

emergency situations might occur where the system is not able

to proceed safely: in these cases, the system disengages from

the driving task and requires the human to resume control

of the vehicle with short time. Level 4 does not need human

supervision. The system can work even without a person

inside the vehicle. However, it still operates in limited domains.
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FIGURE 2

SAE levels of automation SAE (2021).

The operational domains usually consist of highway scenarios,

which are easier to manage with respect to urban scenarios.

Driving in urban areas presents a bigger challenge because of

multiple traffic directions, intersections, parked vehicles, traffic

lights, sidewalks, and numerous classes of vulnerable road users.

Lastly, Level 5 represents full automation—ideally, a car without

steering wheel and pedals. Here, the human driver is completely

replaced by the system, which is able to operate in any conditions

without limitations.

Most of the research effort is now put into developing

Levels 4 and 5. This research direction overlooks the idea of

collaboration between human and driving agent. The vehicle

intelligence, in this account, aims to gradually assume the role of

the driver and make the human simply a passenger not involved

in the driving task. In fact, the higher the level of autonomy,

the more the human driver is replaced by the artificial agent.

This approach to autonomous vehicles is far from distributed

cognition—there are two cognitive entities in the system, but

there is no collaboration between them. Either the agent or

the human is in charge of controlling the vehicle, and when

necessary the control passes to one another. Disengagements,

i.e., where the human must resume control of the vehicle

because the agent stops working safely, are one of the most

critical aspects of autonomous driving systems. The problem of

disengagements affects Levels 3 and 4 themost, precisely because

the collaboration between the cognitive entities in the system is

missing. In fact, the more automation is added to the system

(and the more reliable and robust the autonomy is), the human

is less likely to predict the automation failure dues to the lack

of cognitive engagement (Endsley, 2017). For this reason, Levels

3 and 4 are paradoxically less reliable than Level 2, where the

human should be constantly supervising the system (however

human beings tend to misuse Level 2 not supervising as they

should).

Level 5 of autonomy can be the solution to the conundrum

of disengagements, since the system would never require the

person to take over driving. Completely replacing human

drivers with artificial drivers is indeed desirable, but still

a challenging task. Production-level deployment of full self-

driving vehicles remains a distant future (Jain et al., 2021). On

the one hand, state-of-the-art driving agents surpass humans

in computation, responsiveness, and multitasking. On the other

hand, humans exceed automation in the capacity of detection,

context understanding, induction, and improvisation (Xing

et al., 2021). For this reason, researchers are looking at new

directions to develop Level 5 systems focusing on cognitive-

inspired approaches. To achieve an AI capable of handling

any possible (or unseen) traffic scenario, it appears more and

more necessary to develop high-level cognitive abilities similar

to humans (Wang et al., 2021). Implementing human-like

cognitive behaviors is far from easy. As discussed in Section 2,

there are countless theories trying to progress the understanding

of the mind and the brain. The current understanding of how

the brain executes complex behaviors such as driving is vague,

often controversial, and short of detail.

Given the challenges linked to Level 5 systems, a parallel

research direction looks at the concept of distributed cognition

applied to vehicle intelligence. The idea is to design systems

where the collaboration between human and agent is at the core

of the driving mechanism. This approach takes the best of both

worlds, leveraging the potential of human intelligence and the

computational power of machine intelligence.

4. Vehicle intelligence with
distributed cognition

Asmentioned in the Section 1, vehicle automation will cause

significant behavioral changes in human driving. The behavioral

change depends on the way vehicle intelligence is designed. In

the “single cognition” account reviewed in Section 3, humans

are gradually removed from the driving task. However, the
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transition from Levels 2–3 to Levels 4–5 is proceeding slowly,

forcing human drivers to interact with partially automated

systems—often without being aware that other vehicles are

controlled by artificial agents. These interactions disrupt the

classic traffic dynamics and can produce unsafe scenarios (e.g.,

disengagements) that are difficult to predict (Flemisch et al.,

2017).

The “distributed cognition” account of vehicle intelligence

approaches the problem of driver-vehicle interaction patterns

differently. Cooperative vehicle intelligence is grounded on the

idea that, in a system, knowledge does not lie solely within the

individual but rather within all entities involved in the system

(Banks and Stanton, 2017). This follows Hutchins’ account of

distributed cognition, described in Section 2. Applying this

idea to intelligent vehicles means that humans and driving

agents must collaborate actively. The driving task is achieved

only through the interaction of the two entities, because each

contributes with a different (if not complementary) set of

cognitive skills.

It is not straightforward to determine how the skills of

drivers and automated vehicles can be combined for optimal

cooperation. Researchers have proposed metaphors to extract

design concepts for ideal human-agent interaction. Marcano

et al. (2020) pinpoint four metaphors used as “blueprint” for

distributed driving systems. The first is the rider-horsemetaphor,

also called H-Metaphor (Flemisch et al., 2003). It compares the

human-agent interaction to a human riding a horse. When

riding, the human controls the horse through the reins. This

haptic interface allows the horse and the rider to “understand”

each other’s intentions. In addition, the rider can take the horse

under tight reins to exert more direct control or can use loose

reins to provide the horse with a higher degree of autonomy. The

second metaphor is the aviator instructor-student (Holzmann

et al., 2006). It describes the interaction occurring in a flying

training session between a student and an experienced aviation

pilot. The expert aviator assists the beginner either actively (by

exerting forces on the control system) to help with the execution

of maneuvers, or passively (by holding the steering control with

different forces) to approve or disapprove the student’s action.

The next metaphor is the joint-carrying of an object (Flemisch

et al., 2016). It emphasizes the collaboration between two agents

that share the same task and interact physically on the same

object. The interesting aspect is that the agents have different

perception capabilities—in the specific example, one is walking

forward and the other backwards. Yet, the information perceived

by an agent complements each other, and both are needed to

complete the task. Lastly, the parent-childmetaphor illustrates a

parent teaching a child to ride a bike (Flemisch et al., 2012). In

this metaphor, the child has control of the bike, and the parent

does not interfere while the child is performing well. If the child

starts wobbling, the parent intervenes in proportion to the risk—

the intervention should be gentle in any case, to avoid rejection

of the assistance.

All metaphors are relevant to the case proposed here, but

with various degrees. The least relevant metaphor is the parent-

child, while it is certainly true that the autonomous system

should avoid to overwhelm drivers while they are performing

well, and gently intervene if the driver leads the vehicle to an

unsafe condition. The joint-carrying metaphor describes well

one specific aspect: the different and complementary perceptions

of the scene by the driver and the system. However, it goes no

further in indicating how these differences should be reconciled.

The aviator instructor-student metaphor brings us back into

the domain of aviation, which has certain affinities with

autonomous driving, as commented in Section 2. Aeronautics

has a long history of automated procedures and human-

computer interactions. However, there are obvious differences

with respect to autonomous driving. For example, in the context

of airplanes, distributed cognition implies a distribution of roles

within the crew, while this is irrelevant in an autonomous car.

Moreover, a vehicle continuously interacts with the environment

and the other road users at close range. On the other hand, there

are lessons that can be taken from the field of aviation. As the

role of the driver becomes gradually closer to that of an airplane

pilot, a new class of errors can lead to incidents. In aviation, a

classification error occurs when the pilot assumes that the system

is working in a way that is different from the actual state of the

system. This form of error seems likely to occur within driving

automation as well—this is discussed inmore detail in Banks and

Stanton (2017, p. 15–16). It is, however, the rider-horsemetaphor

that captures in the best and most complete way the current

proposal, as we will explain in Section 5.

Reviews on driver-vehicle collaboration can be found in

Xing et al. (2021), Marcano et al. (2020), Bengler et al. (2014),

and Michalke and Kastner (2011). Works focus on key factors

like human trust and situation awareness, which influence the

design of the system. Moreover, the form of interaction defines

the control mechanism—we can distinguish between shared

control and take-over control. The type of control mechanism

determines also how to implement the steering/pedal system,

either with a coupled or uncoupled control framework.

However, not all attempts at driver-vehicle collaboration can

be considered forms of distributed cognition. Recalling the

diagram of Figure 1 proposed by Poirier and Chicoisne (2008),

there are approaches that fall outside quadrant 2, which is the

only quadrant identifying distributed cognition. Consider, for

example, low-level ADAS systems such as emergency brake

or lane departure warning: they have very low degree of

cognition. Hence, it is not possible to talk about distributed

cognition—they belong to quadrant 4. On the other hand, more

advance (cognitive) systems like overtaking assistance tends to

generate aggregate outcomes, as opposite of emergent outcomes

according to the classification of Poirier andChicoisne (2008). In

these systems, there is no overt cooperative interactions between

the human and the assistant: the assistant is either on or off,

and there is no mean of communication between the parts.
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Moreover, when the assistant is off, the human can still achieve

the driving task. Therefore, the systems are not emergent and fall

in quadrant 1.

In the next section, we will describe our implementation of

distributed cognition in an autonomous driving system.

5. Methodology

We present a collaboration paradigm between a self-

driving agent and a human driver based on the H-metaphor.

In the proposed system, just like the rider influences the

horse’s behavior using the reins, the human driver steers the

decision-making of the autonomous agent using the pedals

and the steering wheel. The system uses an uncoupled control

framework and is an example of distributed cognition applied

to vehicle intelligence. The two entities in the system are both

intelligent, both interpreting the world, and working jointly to

achieve the same task. The self-driving agent has high degree

of cognition and collaborates with the human in an emergent

way. Therefore, the proposed systems falls in quadrant 2 of the

classification space of Poirier and Chicoisne, in Figure 1.

The autonomous agent considered here has been developed

within the European H2020 project Dreams4Cars1. The agent

has the cognitive capabilities necessary to drive a vehicle

autonomously, in controlled situations, and it can be regarded

as Level 4 in the SAE definition. Note that this work focuses

on the interaction paradigm between the agent and the human,

rather than how the autonomous agent works. Here, we include

only a brief explanation of the agent to better understand the

collaboration mechanism; a detailed description of the agent

architecture is in Da Lio et al. (2020).

The sensorimotor system of the agent is designed to be

compatible with the human system. Specifically, the agent

must be capable of seeing the action possibilities latent in

the environment—dubbed affordances by Gibson (1986)—and

it has to generate the corresponding action plans in a way

similar to a human driver. An example of affordance, taken

from Gibson’s original work, is the vision of a stair; it elicits

the action of stepping, up or down, relative to the size of

the person’s legs. Another example—very close to the problem

under consideration here—is the following: “The progress of

locomotion is guided by the perception of barriers and obstacles,

that is, by the act of steering into the openings and away from

the surfaces that afford injury” (Gibson, 1986, p. 132). For a

self-driving agent, the affordances are the physically traversable

space constrained by traffic rules and space-time restrictions

from moving obstacles. The rider-horse collaboration has the

same scheme, since the horse sees the same affordable paths of

the rider, and the rider can infer the horse’s intentions.

1 https://www.dreams4cars.eu

The agent works in two phases: action priming and action

selection. During action priming, the agent detects the set of

affordances D in the navigable space and maps them onto

estimates of their salience. The salience measures how good the

corresponding action is. The actions that the agent can produce

are the set of trajectories U (i.e., time-space locations of the

vehicle) that originate from the current configuration. Since

a vehicle has two controllable degrees of freedom, the whole

space of possible actions is spanned by the specification of the

longitudinal and lateral controls. In our implementation, the

longitudinal control is the jerk j, and the lateral control is the

steering rate r (i.e., the time derivative of the steering angle).

For an instantaneous action u = 〈j, r〉, ν(u, d) represents how

good or desirable the action is in relation to the affordance d.

ν(u, d) evaluates two factors: the probability of remaining in the

specified spatial domain of the affordance d for a sufficient time;

the travel time subject to speed limits and comfort criteria. The

salience to express how good the choice of the current control

〈j, r〉 for the affordance d is the following:

sd
(

j, r
)

= sup
u∈U

{

ν(u, d)
}

. (1)

This means that the salience of the instantaneous choice 〈j, r〉

for the affordance d is the value ν(ũ, d) of the optimal action

ũ among all actions beginning with 〈j, r〉. The global salience

function can be defined as follows, where weights wd serve to

prioritize sets of affordances:

s(j, r) = max
d∈D

{

wd sd(j, r)
}

. (2)

During the second phase of action selection, the agent chooses

the motor control 〈j, r〉 corresponding to the maximum salience

and executes it.

The way the autonomous agent works is broadly inspired

by how human cognition (presumably) realizes the driving

task. Hence, it is reasonable to expect that a similar process

occurs in the mind of the human inside the vehicle the agent is

controlling. The human recognizes their own set of affordances

and computes a salience value s∗(j, r) for each action they have

in mind. We assume that the sensorial system of the vehicle is

reliable—as it is indeed in most situations—and that the system

has learned an efficient control policy in response to affordances.

Hence, is it reasonable to expect in most cases that s∗(j, r) ≈

s(j, r). For a more detailed explanation, see Da Lio et al. (2017).

However, there can be situations where the person desires a

different action or have a specific goal in mind the agent is not

aware of. With distributed cognition, the human can obtain the

desired behavior by collaborating with the agent, which is able to

interpret the human’s intention.

The human interacts with the agent by biasing the action

selection process, through the pedals and the steering wheel.

The gas/brake pedals control the longitudinal bias, and the

steering wheel controls the lateral bias. The biases influence
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FIGURE 3

Screenshot of the OpenDS simulator showing the human

biasing the agent to overtake. The scenario corresponds to

Figure 4(i), showing the a�ordances a in yellow and b in purple.

the computation of the global salience (2) by applying weights

either to sets of affordances or to individual ones. In the case

of longitudinal bias, the human can suggest the agent to drive

faster/slower by pressing the gas/brake pedal—hence, applying

a weight to the faster/slower affordances. The modified salience

function is the following:

s′(j, r) = k(g − b)j s(j, r) (3)

where g and b are the normalized gas and brake strokes,

and k is a convenient gain. In the case of lateral bias, the

human can prompt the agent to change lane to the left/right

by steering the wheel. This action weights the individual

affordances corresponding to lane change in the suggested

direction.

The presented collaboration paradigm works safely because

of distributed cognition. Since the system is composed of

two cognitive capable entities, each of them can supervise the

other and prevent wrong behaviors. For example, if the human

suggests to perform a dangerous or unfeasible maneuver, the

agent ignores the command. In fact, the agent dismisses any

action that is not affordable or for which the salience is low

or inhibited. This mechanism is one of the most critical part

in the system; Section 7.1 further analyzes its limitations and

how to resolve them. The next section provides simulations

demonstrating these safe behaviors.

6. Demonstrations

We test the collaboration mechanism in the open-source

driving simulator called OpenDS2, depicted in Figure 3. This

Section describes the outcome of five tests carried out in three

simulated scenarios. In each test, we focus on how the human

can promote various driving actions by collaborating with the

autonomous agent.

The first test scenario shown in Figure 4(i) is a two-lane

straight road where overtaking is possible and safe. In the

2 https://opends.dfki.de/

FIGURE 4

Three simulated scenarios to test the collaboration between the

agent and the human (yellow car) when other vehicles are

present (red cars). The dashed arrows show the a�ordable

actions. (i) It is possible to follow the red car or to overtake. (ii) It

is possible to follow the car on the right or the one on the left.

(iii) The only a�ordable action is to follow the car ahead.

same lane, there are the ego-vehicle and another car ahead

of it, colored in yellow and red respectively. The autonomous

agent identifies two possible affordances: to follow the red car

(affordance a in the figure), or to overtake (affordance b).

Since the leading vehicle is driving at almost the speed limit,

the agent chooses the affordance a. When the human steers

the wheel to the left, they exert a bias toward the affordances

corresponding to the left lane (justb in this example). As a result,

the salience of affordance b surpasses a, and the agent executes

the action of overtaking the red car. A second test with the same

scenario demonstrates the same outcome but with a different

form of interaction. This time, the human promotes the overtake

by pressing the gas pedal rather than steering the wheel. The

positive bias affects the weights of faster affordances, that is b.

Hence, just like before, the agent shifts from a to b and overtakes

the leading car.

In the next scenario, Figure 4(ii), there are two cars ahead

of the ego-vehicle, which occupy both lanes and travel at

the same speed. In this case, affordances a e b have the

same longitudinal control, i.e., b is not faster than a as

before. The salience of a is grater than b because the latter

discounts the cost of changing lane. Hence, the agent chooses

a. If the human steers the wheel to the left, choosing the

affordance b does not lead to any tangible speed improvement.

However, the agent understands the human’s desire and moves

to the adjacent lane and starts following the left car. Using

the same scenario, another test shows what happens if the

human tries to bias the agent using the gas pedal rather

than the steering wheel. In this case, the human bias has

no effect because there are no affordable faster actions. The

cars ahead do not allow the agent to increase the speed.

Therefore, the human request cannot be satisfied, and agent

keeps affordance a.
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The last scenario, Figure 4(iii), shows a car ahead of the ego-

vehicle and a car overtaking on the left lane. Here, affordance

b no longer exists: the car on the left prevents the agent from

changing lane. Since there are no affordable actions linked to

the left lane, when the human steers the wheel of presses the gas

pedal, there is no effect. The agent ignores the human’s request

and remains on the right lane following a. Further simulations

are available in Da Lio et al. (2022).

7. Discussion

In this paper, we have argued that vehicle intelligence can

benefit from the theoretical concept of distributed cognition.

Distributed cognition can help designing new paradigms

of collaboration between human drivers and autonomous

agents. Cooperative vehicle intelligence is grounded on the

idea that, in a system, knowledge does not lie solely

within the individual but rather within all entities involved

in the system. This research line moves away from the

mainstream development of autonomous driving, which aims

to completely remove humans from the driving task. However,

fully autonomous vehicles are still far from being achieved,

while distributed vehicle intelligence can solve at the present

time the problems caused by the disruption of classical

traffic dynamics.

We have proposed a collaboration paradigm founded upon

the rider-horse metaphor, allowing the human to influence

the decision making of the driving agent. Just like the

rider communicates their intention to the horse through

the reins, the human interacts with the agent using the

pedals and the steering wheel. If the human presses the

gas/brake pedal, they suggest the agent to drive faster/slower.

If the human steers the wheel, they suggest the agent to

change lane.

The collaboration system can support the user also in

situations where the human is normally uncertain on how to

behave. For example, the user hesitates to overtake because

they are not sure about the feasibility of the maneuver. The

user may want to drives closer to the opposite lane to see

better ahead before deciding whether to overtake. With our

collaboration mechanism, the user is not responsible to evaluate

if it is safe or not to overtake. It is the agent that performs

the evaluation and, in positive case, executes the overtake.

Therefore, there is no need anymore for the user to drive

for a moment to the center to have a clearer view of the

road, because the agent is the one responsible to check if the

overtake is feasible. Even if the user steers to the side to see

ahead, the agent will not execute the overtake if it deems the

maneuver risky (note that the perception system of the agent

differs from the human, so the agent does not actually need to

drive to the side to see better, like a human driver would do—

although there are new attempts at human-inspired perception

for autonomous vehicles; Plebe et al., 2021). This collaboration

paradigm leads to a new way of driving, and human drivers

will need some time to adjust to it. With this collaborative

style of driving, humans, and agents become responsible

for decisions at different levels: the agents take care of the

execution of safe maneuvers, and the humans decide on the

overall driving style, e.g., faster/slower, conservative/aggressive,

and such.

7.1. Limitations and future work

The distributed cognition approach works best when

the entities in the system lie close in the “cognitive” axis

of the classification space of Figure 1. In the context of

vehicle intelligence, this means that the human and the

driving agent should be capable of understanding each other’s

intentions. In other words, they should share the same

affordances. Unfortunately, this is not always the case. Fully

autonomous and reliable driving agents do not exist, yet. Hence,

unpredictable situations are still possible, where the human

detects unconventional affordances that the autonomous agent

is not aware of. For example, if the road is blocked by a tree,

an autonomous agent would stop forever; however, a human

driver could be aware that the ground on the side of the road

is “driveable” and that it is possible to bypass the blockage by

driving on the gravel. This is an affordable action that the agent

would most likely miss.

Future work is to extend the collaboration paradigm with

a “tight reins” mode—to use an expression in accordance with

the H-metaphor. With this mode, the human can apply a tight

control to make the agent accepts affordances not known before

and generate new behaviors. If the user insists on an action

that the agent is refusing to perform because not affordable

in its view, after a certain “persistence threshold”, the agent

accepts the new affordance and executes the maneuver. A

similar concept can be found in Vanholme et al. (2011) for

driving on highways. This solution would mitigate the issue

of artificial systems dangerously overriding human decisions—

an issue common also to other research domain such as

aeronautics.
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