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Şaban Öztürk,
Amasya University, Turkey

REVIEWED BY

Riccardo Conte,
University of Milan, Italy
Gulay Cicek,
Beykent University, Turkey

*CORRESPONDENCE

Hanqi Zhuang
zhuang@fau.edu

SPECIALTY SECTION

This article was submitted to
Machine Learning and Artificial
Intelligence,
a section of the journal
Frontiers in Artificial Intelligence

RECEIVED 19 April 2022
ACCEPTED 26 September 2022
PUBLISHED 21 October 2022

CITATION

Muhamed Ali A, Zhuang H, Ibrahim AK,
Wang JL and Chérubin LM (2022)
Deep learning prediction of
two-dimensional ocean dynamics with
wavelet-compressed data.
Front. Artif. Intell. 5:923932.
doi: 10.3389/frai.2022.923932

COPYRIGHT

© 2022 Muhamed Ali, Zhuang,
Ibrahim, Wang and Chérubin. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Deep learning prediction of
two-dimensional ocean
dynamics with
wavelet-compressed data

Ali Muhamed Ali1,2, Hanqi Zhuang2*, Ali K. Ibrahim1,2,

Justin L. Wang3 and Laurent M. Chérubin4

1Harbor Branch Oceanographic Institute, Florida Atlantic University, Boca Raton, FL, United States,
2Department of CEECS, Florida Atlantic University, Boca Raton, FL, United States, 3Department of
Computer Science, University of Illinois Urbana Champaign, Champaign, IL, United States, 4Harbor
Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States

This study addresses the challenge represented by the application of deep

learning models to the prediction of ocean dynamics using datasets over a

large region or with high spatial or temporal resolution In a previous study by

the authors of this article, they showed that such a challenge could be met

by using a divide and conquer approach. The domain was in fact split into

multiple sub-regions, which were small enough to be predicted individually

and in parallel with each other by a deep learning model. At each time step

of the prediction process, the sub-model solutions would be merged at the

boundary of each sub-region to remove discontinuities between consecutive

domains in order to predict the evolution of the full domain. This approach

led to the growth of non-dynamical errors that decreased the prediction skill

of our model. In the study herein, we show that wavelets can be used to

compress the data and reduce its dimension. Each compression level reduces

by a factor of two the horizontal resolution of the dataset.We show that despite

the loss of information, a level 3 compression produces an improved prediction

of the ocean two-dimensional data in comparison to the divide and conquer

approach. Our method is evaluated on the prediction of the sea surface height

of the most energetic feature of the Gulf of Mexico, namely the Loop Current.

KEYWORDS

sea surface height, loop current forecast, long short term memory, empirical

orthogonal function, wavelet transform, deep learning

1. Introduction

Today’s full-water column and seas surface height (SSH) predictions primarily rely

on the use of finite-difference, finite-volume, and finite-element methods to solve the

primitive equation of motion in numerical models used to simulate ocean dynamics. The

outputs of these models consist of the temporal prediction of three or two-dimensional

fields of ocean state variables including the velocity field, temperature, salinity, and SSH,

which expresses the complex subsurface dynamics of the ocean. Since the 1990s, the

field of machine learning has provided improved methods to retrieve two-dimensional
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information from satellite measurements, such as surface wind

speed (Krasnopolsky et al., 1995), long wave net radiation at the

sea surface (Liu et al., 1997) and ocean surface specific humidity

and air temperature (Jones et al., 1999). Machine-learning-based

approaches benefit from their ability to represent both nonlinear

and stochastic phenomena (Zhang et al., 2017; Song et al., 2020).

Deep learning is a specific machine-learning method that

was developed on the basis of imitating the neural structure

of information processing of the human brain to extract

features from input data, enabling a machine to understand

the underlying information in the data and obtain specific

information (Xiao et al., 2020). Particularly, as one of the

deep learning models, the Recurrent Neural Networks (RNN)

(Elman, 1990) was designed to extract dynamic time series and

temporal features through the context of events, which forms

the basis of predictions. However, RNNs suffer from the gradient

vanishing problem making them unable to adjust or learn from

long-term dependencies (Bengio et al., 1994; Schaefer et al.,

2008; Pascanu et al., 2013).

To address this problem (Hochreiter and Schmidhuber,

1997) proposed the Long Short-TermMemory (LSTM) network

in the late 1990s which has been widely used in many fields,

including the short- and mid-term predictions of oceanic

features (Zhang et al., 2017; Liu et al., 2018; Wang et al.,

2019; Xiao et al., 2019; Muhamed Ali et al., 2021). LSTM

networks have outperformed fully connected neural networks

and other machine learning techniques in natural language

processing (Salehinejad et al., 2017; Al-Rfou et al., 2019) that has

many similarities with ocean current predictions, as shown by

Immas et al. (2021). In addition, this type of network has seen

an increase in real-life applications, including but not limited to

aquaculture (Banan et al., 2020), wind and solar energy resources

management (Shamshirband et al., 2019), and also in industrial

applications (Fan et al., 2020).

In a recent study by Wang et al. (2019), an LSTM model

was used for the prediction of the SSH of the most energetic

circulation feature of the Gulf of Mexico (GoM), namely the

Loop Current. It is a strong pulsating current that forms a

circulation loop in the eastern Gulf of Mexico and that sheds

large anticyclonic eddies at irregular intervals ranging from 3 to

18 months (Chérubin et al., 2005, 2006; Donohue et al., 2016).

The dataset used in Wang et al. (2019) consisted of 18 years

of simulated SSH at 1/25o horizontal resolution for the entire

GoM. To cope with the data density, Wang et al. (2019) chose

to split the computational domain into smaller non-overlapping

sub-domains. This approach called the "divide and conquer"

(DAC) method led to the implementation of an LSTMmodel for

each sub-domain. In order to ensure the continuity of the sub-

domain solutions across their boundaries, a weighted smoothing

algorithmwas applied at each time step of the prediction process.

Despite the smoothing of discontinuities, this approach leads

to the growth of unrealistic SSH features in the predicted

SSH. Using metrics set in the literature for LC prediction, the

LSTM DAC method predicted the Loop Current System frontal

distance from reference points within 40 km, 9 weeks in advance

in advance vs. 4–5 weeks for ocean conventional numerical

models (Oey et al., 2005; Wang et al., 2019). Furthermore, the

model predicted the final separation of eddies Cameron and

Darwin 8 and 12 weeks in advance, respectively.

In the study herein, the data size limitation is addressed by

applying a data compression technique to reduce the size of

the data while preserving the dynamical information relevant to

the LC dynamics and its prediction. The compression method

consists of the Discrete Wavelet Transform (DWT) used to

conduct two-dimensional wavelet decomposition. Each two-

dimensional data frame is decomposed into two components,

a high frequency part, called “Detail” and a low frequency

part called “Approximation” (Ergen, 2012). The resulting

Approximation corresponds to a compressed version of the

original data with half its resolution. This method is evaluated

on the same dataset as in the Wang et al. (2019) study with

the same computational constraints. The LSTM model is thus

implemented on the entire domain of the compressed SSH

data, which does not require partitioning to predict the future

evolution of the SSH.

The remainder of the paper is organized as follows:

Section 2 describes the different components of this new model

including the DWT, the Empirical Orthogonal Function (EOF)

decomposition, and the LSTM model, which is hereafter called

the Wavelet-EOF-LSTM Learning (WELL) model. Then the

region of interest, the data set, and the model performance

metrics are also presented in Section 2. In Section 3 the WELL

model SSH predictions are evaluated against the DAC model.

Concluding remarks are given in Section 4.

2. Methods

The WELL model consists of the following sequential

blocks (Figure 1). First, the DWT is applied to each frame of

the SSH tensor, which results in Approximation and Details.

The Approximation series is further decomposed by an EOF

into its temporal (principal components or PCs) and spatial

components (modes). The evolution of PCs is used to train the

LSTM model, which will then be used to predict their temporal

evolution. The predicted SSH is obtained by applying the inverse

EOF and DWT to the predicted PCs.

2.1. Wavelet decomposition

The main benefit of DWT is its multi-resolution scale

analysis ability (Mallat, 1999). The DWT either compresses

the signal (high pass), which provides the detailed hidden

information in the signal, or expands it (dilates, low pass) to

provide approximate information. The transformed signals
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FIGURE 1

Block diagram of the proposed WELL model. DWT stands for Discrete Wavelet Transform, EOF for Empirical Orthogonal Function, and IDWT for
Inverse DWT.

with high (detail) and low (approximation) frequencies (here

wavenumbers) are analyzed independently. The approximate

component is further transformed into sub-level detail

and approximate signals which constitutes a multi-level

decomposition (Figure 2) and reduces the dimensions of the

input. The Approximation and Detail coefficients for each level

can be calculated by using Equations (1) and (2).

ylow[n] =

∞
∑

k=−∞

x[k]g[2n− k] (1)

yhigh[n] =

∞
∑

k=−∞

x[k]h[2n− k] (2)

where x[k] is the input signal; g[n] and h[n] are low and high

pass filters, respectively; and ylow and yhigh are the output of the

low and high pass filters, respectively (Figure 2).

For each level of decomposition shown in Figure 2, ai is used

for the next step (or scale) transformation, and di is considered

as high frequency noise in the data and, thus, not used. At scale

i + 1, the dimension of ai+1 and di+1 is reduced by half from

scale i. DWT reduction can continue until the dimension of ai

is reduced to two. In this study, the MATLAB Wavelet Toolbox

DWT was applied using the order 4 Daubechies wavelet.

2.2. Empirical orthogonal function

The data used in this analysis consists of time series of spatial

maps, such as SSH. A useful technique for compressing the

variability of this type of time-series data is EOF, which is a form

of principal component analysis (Thomson and Emery, 2014).

The data is decomposed on orthogonal spatial modes, whose

net response as a function of time accounts for the combined

variance in all of the modes. However, there is no direct physical

or mathematical relationship between the statistical EOFs and

any related dynamical modes. The time-varying amplitude or PC

of each orthogonal mode is obtained through the singular value

decomposition (SVD) as shown in the following. Let’s consider

the following SVD equation:

X = UDWT (3)

where X is an nxp array of spatial data points over time; D is

an nxp rectangular diagonal matrix of non-negative values, the

singular values of X; U is an nxn matrix, whose columns are

orthonormal vectors of length n, called the left singular vectors

of X; and W is a pxp matrix, whose columns are orthonormal

vectors of length p, called the right singular vectors of X, which

is the array of time varying SSH fields. UD contains the time-

dependent PCs andWT the stationary patterns or EOF modes.

Let P = UD and E = WT . Equation (3) can be written as:

X = PE (4)

and
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︸ ︷︷ ︸
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(5)

Let αi be the diagonal elements of D with i = 1, 2, 3, .., p.

The amount of varianceVi contained in the spatial pattern iwith

respect to the total variance can be calculated as follows:

Vi =
α
2
i

∑p
i=0 α

2
i

(6)

It is shown here that the PCs, collectively, represent the total

variance of the data field (Zeng et al., 2015; Hall and Leben,

2016).

2.3. Long short term memory network
prediction sequence

The LSTM network used in this study is described in

Muhamed Ali et al. (2018) and Wang et al. (2019). The

MATLAB Neural Network Toolbox was used to implement the
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FIGURE 2

Two levels of Discrete Wavelet Transform. g[n] and h[n] denote low and high pass filters, respectively. Number 2 indicates that the output of each
filter is decimated by a factor of two. ai denote approximation coe�cients and di detail coe�cients.

LSTM network. After balancing the computational cost and

the accuracy performance, one shallow LSTM layer with 1, 800

hidden nodes was selected. The hyper-parameters were adjusted

manually in a two-stage process. First the hyper-parameters

were tuned by investigating their effect on the mean squared

error of the SSH during the training stage, where the rate of

convergence is used to identify the best learning curve of the

LSTM network. In the second stage, the hyper-parameters were

fine tuned by investigating the results in sliding windows to

avoid overfitting. During this process, the number of hidden

nodes and the number of epochs were found to be the most

sensitive parameters to tune. The initial learning rate was chosen

at 0.001, the gradient decay factor at 0.9, and the batch size at

64. The LSTM network was both trained and tested with SSH

Approximation PC vectors. In the prediction phase, after each

prediction, the LSTM updates its state in accordance with its

own prediction. This allows the LSTM to continue predicting

based on both the original training data and future predictions.

In addition, new SSH observations can be added at any time

to the training data set, which are then used to retrain the

LSTMmodel.

2.4. SSH dataset and computational
domain

The SSH dataset used in this study was obtained

from the HYCOM + CFSR Gulf of Mexico Experiment

(GOMl0.04/expt_02.2) provided by the HYCOM Consortium.

The SSH data is preferred over the sea surface temperature (SST)

because the former is the most affected by the Loop Current

System, and it is the most accurate of all variables provided by

HYCOM (Rosburg et al., 2016). The data used in this study

spans from January 1992 to December 2009, containing a total

of 6,574 days or approximately 954 weeks of SSH. In total, 38

LC eddies were formed during this period. The first 90% of the

available data were used for training, and the remaining 10% for

testing and validation. In order to perform weekly predictions,

the daily SSH maps were decimated to weekly time series, i.e.,

one SSHmap per week. The HYCOM SSH data is referred to the

“observed” field in the rest of the study. The LSTM model was

trained with weekly SSH fields from January 1992 to April 2008.

The predictions were conducted for each week of the period

March 2008 to December 2009 over 20-week windows each.

2.5. Model performance measures

While the LSTM model can predict the SSH of the entire

GoM, the evaluation of the predictions was focused on the

Loop Current System in the region of interest (ROI) outlined in

Figure 3. This is the region in which the LC is the most active

and where eddy separation occurs and westward drift begins

(Chérubin et al., 2005, 2006). It does not include land, which

would have to be removed from the SSHmatrix otherwise before

reduction. Because HYCOM SSH was chosen, the SSH pattern

sequences that the deep learning model has learned are intrinsic

to the dynamics of the HYCOM model. Therefore, the skill

measurement can only be done with HYCOM, which in this case

represents the “true” ocean.

The same performance measures of the prediction skills as

in Wang et al. (2019) were used in this study. The Correlation

Coefficients (CCs) and Root Mean Square Errors (RMSEs)

between “observed” and predicted fields were calculated. In

order to evaluate the WELL model prediction against previous

models, we used the same metric as in Oey et al. (2005),

Zeng et al. (2015), and Wang et al. (2019). The Loop Current

System frontal distances to 7 reference points, referred to as the

Frontal Position Error (FPE) were also evaluated. As in Zeng

et al. (2015), the front was defined by the 0.45 m contour line,

and the same reference points as in Oey et al. (2005), Zeng

et al. (2015), and Wang et al. (2019) were used (Figure 3). The

Frontal position Root Mean Square Error (FPRMSE) is used to

measure the accuracy of the predicted LC and LCE positions.

This measure consists of the difference between the distance dp,r

from a predicted frontal position to a reference point and the

distance do,r from the corresponding observed frontal position

to the same reference point. FPRMSE is averaged over all the
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FIGURE 3

Model domain overlaid with SSH in meters. The black rectangle shows the region of interest (ROI) described in the text. The crosses mark the
reference points used to measure the SSH prediction accuracy.

FIGURE 4

Five levels of DWT Approximations SSH spectra.
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FIGURE 5

Seas surface height (m) and variance (m2) over the period November 1992 to March 1993, which is part of the training period. The left column
shows the HYCOM SSH; the middle column shows the variance of the DAC model SSH; the right column shows the di�erence in variance
between the WELL 3-level compressed SSH and the DAC model SSH. W2 - W16 indicates the number of weeks starting on the first week of
November 1992.
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FIGURE 6

First 6 EOF modes for the original SSH (top row), the 3-level compressed SSH (middle row), and for the DAC model input SSH in which the EOF
decomposition was applied to each sub-domain.

reference points as follows:

FPRMSE =

√
∑R

r=1(dp,r − do,r)2

R
(7)

where R is the number of reference points used in the

calculation. We also used a contour similarity measure such as

theModified Hausdorff Distance (MHD) (Hiester et al., 2016) to

estimate the mismatch between curves. This measure exhibits a

high sensitivity to outliers and can be expressed as follows. Given

two corresponding sets of points, let

dis(A,B) =
1

|A|

∑

a∈A

dis(a,B); dis(a,B) = infb∈B dis(a, b),

(8)

and

dis(B,A) =
1

|B|

∑

b∈B

dis(A, b); dis(A, b) = infa∈A dis(a, b),

(9)

The MHD is then the maximum value between them:

MHD = max{dis(A,B), dis(B,A)} (10)

where A represents a set of sample points on the observed

contour, B represents a set of sample points on the predicted

contour, dis(a, b) is the Euclidean distance between point a and

point b, and dis(a,B) is the minimum distance between a and

each of the points in set B. Simply put, MHD is the larger

of two averages, each of which is the average of the distances

from individual sampled points on one contour to the other

(Hiester et al., 2016).

3. WELL model prediction of the
loop current system SSH

First, we address the effects of the DTW spatial compression

process on the SSH input of the WELL model. Then the model

prediction skills are assessed with the performance measures

defined in Section 2.5. The assessment is focused on the

prediction of eddies Cameron and Darwin life cycle and final

separation, which are two LC eddies that were formed during

the test period of this study, in July 2008 and February 2009,

respectively. The WELL model is also evaluated against the SSH

prediction of the DAC model by Wang et al. (2019).

3.1. E�ects of DWT compression on SSH
input

Unlike the DAC model which directly inputs the raw

SSH from HYCOM, in the WELL model the SSH is spatially

compressed using a DWT. As shown in Section 2, the SSH

resolution is reduced by a factor of 2 at each compression

level, which is accompanied by a loss of information at the

small scale as shown in Figure 4. However, the variance of

the SSH is increased in the compression process as shown in

Figure 5. The effect is particularly visible in the separation phase

of the LC system when the frontal eddies of the LC intensify

(Chérubin et al., 2005; Donohue et al., 2016). This is due to the

preservation of the SSH variance when the size of the grid cell is

increased due to the reduction of the grid resolution. Therefore

the SSH variance per unit area remains the same. While

the SSH patterns remain unchanged during the compression

process, so are the EOF modes as shown in Figure 6. The
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FIGURE 7

Reconstructed SSH for five DWT compression levels. (A) Observed SSH; (B) SSH reconstructed from the level 1 DWT compression; (C) SSH
reconstructed from the level 2 DWT compression; (D) SSH reconstructed from the level 3 DWT compression; (E) SSH reconstructed from the
level 4 DWT compression; (F) SSH reconstructed from the level 5 DWT compression. Fifteen contour levels from -50 to +100 cm with 10cm
intervals are shown. The numbers on the vertical and horizontal axes indicate the grid point count.

first 6 EOF modes structure is identical between the EOF

calculated from the HYCOM and the compressed SSH. The only

difference is the magnitude of the modes, which is higher in the

compressed SSH modes as a result of the compression process

as previously explained. The decompression of the predicted

SSH is shown to return realistic SSH levels up to compression

level 3, after which the reconstruction becomes very noisy

(Figure 7).

3.2. Model sensitivity to DWT levels

Because of the information loss associated with the DWT

data compression, the performance of the LSTM model vs.

the number of DWT levels was evaluated. With more levels,

DWT yields a higher compression rate, which may result in

the loss of relevant dynamical information. This loss can be

observed in the SSH spectral changes associated with the DWT
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FIGURE 8

Prediction model performance evaluation of five DWT compression levels using the SSH data from March 2008 to December 2009. (A) RMSE. (B)
Correlation Coe�cients. (C) Frontal position FPRMSE in km.

levels (Figure 4). Increasing the DWT level leads to a loss of

features in the mesoscale (up to 50 km at the fifth level). These

scales are, however less than the dominant wavelengths of the

perturbations observed by Donohue et al. (2016) that propagate

around the northern front of the LC.

The model performance metrics were calculated over the

entire ROI region and their evolution over a 20-week prediction

window is shown in Figure 8. Both the CCs and RMSE were

slightly improved as the number of levels increased up to 4

and then degraded with a compression level of 5. This implies

that the relevant dynamical information of the SSH is effectively

selected by the DWT transformation, which slightly improves

the SSH prediction with the DWT level. However, because the

Details part is not predicted, the transformation back to the

original SSH resolution is conducted by replacing the Details

with zeros. SSH reconstructed from the 4th and 5th DWT

levels show an increase in the SSH noise induced by the

zeros of the Details, which is unrealistic (Figure 7). Level 3

DWT decomposition led to the best overall SSH field where

the effects of zeros were negligible in the reconstruction. The

third level of DWT compression was then used in the rest of

this study.

3.3. Overall model performance for
20-week long predictions of the loop
current SSH

The average RMSEs and CCs between the predicted and

observed SSH were computed for the defined ROI over March

2008 to December 2009 period and averaged over all 20-

week prediction sliding windows (Figure 9). SSH persistence

was defined as the first state of the SSH prediction period.

The RMSE and CC indicated that the model prediction was

better than persistence. However, both performance measures

tended toward a plateau, as the model errors did not increase

significantly toward the end of the 20-week period. This is

because the LC and its eddies remained in the ROI for most of

the 20-week period. Overall, the DWT compression did not have

much effect on the temporal phase of the feature predicted as
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FIGURE 9

(A) Average prediction correlation coe�cients (CCs) and (B) average prediction RMSEs per week for all 20-week prediction sliding windows over
March 2008 to December 2009 period. The horizontal axis is the number of weeks.

FIGURE 10

The average FPRMSE (A) and the average MHD score (B) per week for all 20-week prediction sliding windows over March 2008 to December 2009
period. The horizontal axis is the number of weeks. The horizontal lines show the mean value of the MHD score for each model and persistence.

shown by the closeness of the CC values between the prediction

by the WELL and the DAC model.

The correlation coefficient remained well above 0.6 over the

20-week period, which is well above the 4 to 6-week period

of current state-of-the-art data assimilated ocean numerical

models (Lin et al., 2007; Yin and Oey, 2007; Xu et al., 2013).

However, the WELL model improved the RMSEs by up to

20% at 8 weeks and 11% at 18 weeks over the DAC model

(Figure 9B). The frontal position errors of theWELLmodel were

smaller than those of persistence, as shown in Figure 10A. The

prediction error of the WELL model was less than in the DAC

model after 9 weeks, about 42 km at 12 weeks, less than the 50

km obtained by the DAC model. The frontal position error for

the neural network model of Zeng et al. (2015) was at best 60 km

at 6 weeks. The DAC model was better for predictions less than

6 weeks ahead with a slight improvement of 5km at best.

The MHD score (Figure 10B) confirmed the overall better

agreement of the predicted SSH contours by the WELL model

with the observed ones.With this measure (lower scores indicate

higher contours similarity), both the DACmodel and the WELL

model outperformed persistence. The WELL model predicted

SSH contours were more similar to the HYCOM SSH most of

the weeks than those of the DAC model.

3.4. Long-term prediction of Eddy
Cameron and Eddy Darwin SSH evolution

During the second half of 2008 and 2009, two major

LC eddies were formed: Eddy Cameron (Jul 08 – May 09)

and Eddy Darwin (Dec 08 – Nov 09). Both eddies detached

and re-attached at least once before separation occurred. The
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FIGURE 11

The average FPRMSE (left column) and the average MHD score (right column) per week for 14-week prediction windows over a four-week sliding
window using the 0.45 m contour level of the SSH. (A) Eddy Cameron formation in July 2008. (B) Eddy Darwin formation in December 2008. (C)
Loop current leap state in May 2009 (average of 4 weeks). The horizontal lines on the graph in the right column indicate the mean value of the
MHD.

prediction performance for each eddy as measured by the

FPRMSE averaged over 4-week (instead of 1 week in order to

capture more changes in the evolution of the eddies) sliding 14-

week prediction periods reveals that the WELL model expanded

by about 2 weeks the prediction window at a given FPRMSE

over the DAC model for Eddy Cameron. Figure 11A shows

that the WELL model’s frontal position error is less than 30

km up to 5 weeks ahead, which is much less than the 70
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FIGURE 12

The first six principal components (PCs) linear correlation coe�cient (CC) time evolution over a 14-week prediction period of formation of eddy
Cameron. The blue (red) solid line shows the WELL (DAC) model PC CCs. For the DAC model, each PC was averaged across all six partitions. The
linear correlation coe�cients were calculated with HYCOM PCs for the same period.

km of the DAC model. The average MHD scores confirm this

improvement.

For eddy Darwin (Figure 11B), both models exhibited

similar frontal position errors until week 5. The DAC model’s

frontal position error was lower than the WELL model’s until

week 9. From week 11 onward, the WELL model frontal

position errors exhibited the same values as weeks 2-4 (<

30 km), while the DAC model frontal position errors were

above 80 km. The MHD scores also show that the model

performances were on average similar, although the similarity of

theWELLmodel was higher than for the DACmodel from week

8 onward.

The LC SSH after eddy shedding was also predicted and its

performancemetrics are shown in Figure 11C. It is characterized

by little changes in the dynamics of the LC, concentrated mostly

in the southeast region of the GoM for a long period of time

(till May 2009) and known as the leap state. Interestingly, the

DAC model predictions frontal position errors were similar to

or lower than the WELL model’s, but the MHD scores were

lower for the latter from weeks 10–13. The DAC and the

WELL models performed differently for each eddy although

both models had more errors predicting eddy Cameron than

eddy Darwin as shown by the lower average MHD score for

eddy Darwin.

3.5. Principal components prediction

The EOF analysis is often used to determine the dominant

modes of variability of a time series in a statistical manner. The

decomposition contains both the spatial patterns (Figure 6) and

their weight in the signal variance which is provided by the

time varying PCs (Figure 12). The PCs evolution is the output

of the LSTM model. The prediction model skills can therefore

be assessed through the extent of the differences with the PCs of

the HYCOM SSH as done inWang et al. (2019), while the spatial

modes remain the same throughout the prediction process. To

do so, we calculated the linear correlation coefficients (CC-Jolliff

et al., 2009) for each prediction week of the first 6 PCs with the

HYCOM PCs.

The linear CCs time series are shown in Figure 12 for a 14-

week long prediction window that encompasses the formation

of eddy Cameron. Wang et al. (2019) showed that the two

most relevant PCs for the prediction of eddy separation in this

dataset (HYCOM) are the PCs associated with EOF modes 2

and 3, called PC2 and PC3, respectively. Figure 12 shows that

the correlation for the WELL model is well above 0.6 for PC3

throughout the 14-week prediction window and above 0.5 until

week 11 for PC2. For the DAC model, the CC for PC3 is below

0.6 after week 3 but remains almost constant for PC2 and above
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FIGURE 13

Same as Figure 12 for eddy Darwin.

0.5. It was less than the PC2 correlation of theWELLmodel until

week 9. As shown in Figure 10, theWELLmodel frontal position

and contour similarity skills were higher than the DAC model

skills, which confirms the role of PC3 in the LC evolution.

For Eddy Darwin, the CC evolution of each PC differs from

the one of Eddy Cameron (Figure 13). As for Eddy Cameron,

PC3 of the WELL model is better correlated with the HYCOM’s

PC3 than the PC3 of the DAC model. The CC of the WELL

model’s PC1, PC3, PC5, and PC6 show an increase above

the same DAC model’s PCs CC values toward the end of the

prediction period, starting as early as week 6 prediction for

PC3. This difference is reflected by improved frontal position

skills of the DAC model until week 10 and of the WELL model

after that (Figure 11B). The decrease in the CC of the WELL

model’s PC2 fromweeks 4 to 11 seems to correspond to the lower

frontal position skill of the WELL model during that period. As

previously shown by Wang et al. (2019), the prediction skills of

the LSTMmodel are achieved through the prediction of the PCs

of the most relevant modes, which confirms the role of PC3 and

PC2 in the evolution of both eddies.

3.6. SSH contours prediction of eddies
Cameron and Darwin

The SSH can be reconstructed by recombining the EOFs

with their respective PCs. The dynamics of the shedding process

were different between eddies and it is reflected in the contour

pattern errors between the two models’ prediction and HYCOM

SSH shown in Figures 14, 15. The 14-week prediction of eddy

Cameron’s SSH reveals a better agreement between the WELL

model and HYCOM than the DAC model in the critical stages

of the LC dynamics. For example, on week 9, the WELL model

achieved the separation of the LC eddy at the same time as

in HYCOM and kept it separated, unlike the DAC model in

which shedding occurred on week 7 (Figure 14). The 14-week

prediction of eddy Darwin shows more consistency between all

three models through the first 11 weeks (Figure 15). The WELL

model appears to better follow the SSH contour oscillations

driven by the growth of the baroclinic instability (Yang et al.,

2020) during the separation process. Temporary separation

occurs on week 12 in HYCOM but in the WELL prediction, the

LC is in a necking down position. A change in SSH contour

would then show the LCE attached to the LC in the HYCOM

model. Full separation occurs on week 14 and is predicted by the

WELL model.

4. Conclusion

Discrete Wavelet Transform is known to be one of the best

compression techniques, especially in image processing (Nashat

and Hussain Hassan, 2016). It provides a mathematical tool for
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FIGURE 14

Seas surface height contour (0.45 m) 14-week prediction of eddy Cameron started the third week of May 2008 for the DAC (black solid line) and
the WELL (blue solid line) models. The solid red line shows the HYCOM SSH. Week 1 shows the prediction for the first week after the start date.
(a–n) Week 1–14.

encoding information in such a way that it is layered according

to the level of detail. The aim of an image compression technique

is to reduce the redundancy of the image data in order to

improve analysis efficiency. In addition, a wavelet transform

fundamentally isolates each frequency in a given signal that

may exist at different time resolutions. Transformation of

the signal is done by scaling (dilation) and transformation

(shifting) functions, which are derived from a mother wavelet.

Therefore, DWT acts as a filter that emphasizes frequencies

that are most significant to the signal being processed. This

concept was applied to two-dimensional simulated SSH data

of the GoM in order to predict the evolution of the LC

according to the reference model HYCOM. Several levels of

compression were tested and resulted in a loss of information

at the mesoscale although the scales removed were less relevant

to the LC dynamics. However, the benefit of the compression

levels was hindered by the reconstruction of the SSH at the

original resolution. Indeed the Detail component of the DWT

decomposition was not predicted, hence replaced by zeros

during the reconstruction process, which added noise to the

SSH solution. This method is used by default in the MATLAB

Wavelet Toolbox.

Despite the level-3 compression of the original SSH, the

WELL model prediction skills were similar if not better than
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FIGURE 15

Same as Figure 14 for eddy Darwin. The prediction was started the second week of October 2009. (a–n) Week 1–14.

the DAC model, which relied on sub-domain partitions to

predict the same area at the same horizontal resolution. The

WELL model predicted SSH contour had greater similarity

than those of the DAC model. The frontal position error was

less than 30 km after 11 weeks for eddy Darwin’s prediction.

The prediction of PCs revealed that both models showed

differences in the prediction of PC3 and PC2, the two most

relevant PCs for eddy separation. Correlation with PC3 and

PC2 of the HYCOM model was higher with the WELL model

PCs than with the DAC model PCs. For the long term

prediction of eddy Darwin, the correlation values increased

with the length of the prediction. Tracking the 0.45 m SSH

contour, the WELL model could predict the final separation

of eddy Cameron 10 weeks in advance. For eddy Darwin’s

separation prediction, the WELL model predicted SSH contour

oscillations followed closely by the ones of HYCOM SSH,

and the full separation was predicted 14 weeks ahead. It

shows that the DWT compression does not negatively affect

the SSH prediction and can in fact improve it. This study

demonstrates that a similar compression can be applied to the

high-resolution prediction of other dynamically active regions

of the ocean, which can present a numerical challenge without

compression.

Despite the lack of physics in the prediction process which

is fully data driven, this LTSM model, trained with long-term

simulated SSH data, can achieve long-term predictions that
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largely surpass the current state-of-the-art ocean numerical

models, although not tested with real SSH data. Our model

can predict the location of the LC system fronts with

an accuracy of 30 km more than 11 weeks in advance,

which is unheard of in the realm of numerical ocean

model forecasting. Notwithstanding, the biggest limitation

to the generalization of the application of this model to

real ocean variables, is the data density. Long-term, high-

resolution, synoptically consistent time-series are needed that

encompass sufficient variability of the dynamical system in

order to capture all possible events. Only then the deep

learning model can achieve significant long term predictions,

that remain out of reach for our current statistical or

mathematical tools.
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