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Attention mechanisms are one of the most frequently used architectures in

the development of artificial intelligence because they can process contextual

information e�ciently. Various artificial intelligence architectures, such as

Transformer for processing natural language, image data, etc., include the

Attention. Various improvements have been made to enhance its performance

since Attention is a powerful component to realize artificial intelligence. The

time complexity of Attention depends on the square of the input sequence

length. Developingmethods to improve the time complexity of Attention is one

of the most popular research topics. Attention is a mechanism that conveys

contextual information of input sequences to downstream networks. Thus, if

one wants to improve the performance of processing contextual information,

the focus should not be confined only on improving Attention but also on

devising other similar mechanisms as possible alternatives. In this study, we

devised an alternative mechanism called “Relation” that can understand the

context information of sequential data. Relation is easy to implement, and its

time complexity depends only on the length of the sequences; a comparison

of the performance of Relation and Attention on several benchmark datasets

showed that the context processing capability of Relation is comparable to that

of Attention butwith less computation time. Processing contextual information

at high speeds would be useful because natural language processing and

biological sequence processing sometimes deal with very long sequences.

Hence, Relation is an ideal option for processing context information.

KEYWORDS

Attention, artificial intelligence, neural networks, multilayer perceptron, Transformer,

time complexity, Relation

1. Introduction

Attention is a mechanism developed in 2017 to reveal the relationship

between different positions in sequential data (Vaswani et al., 2017). The

basic principles of Attention have been implemented in numerous research

fields, and it has exhibited outstanding performance to date. Its performance

has been particularly successful in the field of natural language processing,
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where many pretrained models such as bidirectional encoder

representations from transformers (BERT), are built based on

Attention.

Recurrent neural networks (RNNs), such as Long Short-

Term Memory and Gated Recurrent Unit, were mainly used

to process sequence data (Hochreiter and Schmidhuber, 1997;

Cho et al., 2014) before the advent of Attention. One of

the advantages of Attention over RNNs is its computational

speed. RNNs, due to their structure, process the tokens of a

sequence in a sequential manner, which cannot fully utilize

parallel computing. Therefore, abundant computing resources

cannot be utilized efficiently. However, sequence processing

using Attention can be parallelized, thus allowing complete

utilization of computing resources. Since the size of data

handled by deep learning methods is very large, the efficiency

of the computation is an important indicator for architecture

selection.

This study focused on self-Attention, which is used to

calculate the relationship between tokens in a single sequence

(Shim et al., 2022). The time complexity of Attention is

O(N2) when the length of the input sequence is N. The

computation time required to calculate the square of N

can be troublesome since real-world data are sometimes

lengthy. Therefore, many attempts have been made from

various perspectives to reduce the amount of time complexity

(Tay et al., 2020). Among the methods developed to date,

Linear Attention provides the best time complexity in

which the value is reduced to O(N) (Katharopoulos et al.,

2020).

Attention, including Linear Attention, is a very powerful

method for processing contextual information in sequential

data. However, according to the universal approximation

theorem, any multilayer perceptron (MLP) with sufficient

expressive power can approximate any nonlinear function in

the real world even without complex architectures, such as

RNNs, convolutional neural networks (CNNs), and attention

neural network (Cybenko, 1989). In other words, the attention

mechanism is not necessarily an essential structure for artificial

intelligence to understand contextual information. This is

indicated in a previous study as well (Tolstikhin et al., 2021). The

MLP is calculated for every token when employing Attention

for contextual processing; this structure is called point-wise

MLP. This point-wise computation is done for each token;

however, it does not convey the relationship between tokens

in sequences to the downstream network. Hence, Attention is

used for adding information between tokens in input sequences

to the point-wise MLP. The context needs to efficiently convey

the contextual information of the entire input sequence to

the downstream network for a neural network to efficiently

process and understand it. Conversely, it is possible to employ

alternative methods without using Attention if each point-wise

MLP can appropriately add contextual information derived

from the entire input sequence.

In this study, we have devised an alternative method called

Relation for conveying contextual information to each point-

wise MLP. It is a simple structure that conveys contextual

information from an input sequence to each point-wise MLP.

The motivation behind developing the proposed method was to

improve the computation time for Attention. Relation improves

the time complexity by avoiding the matrix product calculation

that generates a matrix of sizeN×N while calculating Attention.

The time complexity of Relation is O(N), which is the same as

that of Linear Attention. Additionally, we analyzed if Relation

can replace Attention and Linear Attention using several

well-known natural language processing benchmark datasets.

When comparing computation speeds on these benchmark

datasets, we observed that the computation speed of Relation

was significantly faster than that of Attention and Linear

Attention while maintaining a comparable degree of prediction

performance.

2. Related work

The field of computer vision has employed attention

mechanism for a long time. The first study to use it for context

processing was conducted in 2017 (Vaswani et al., 2017). The

attention mechanism was used to implement the encoder-

decoder model, a model used earlier for machine translation

and building dialogue agents. The authors named this attention-

based encoder-decoder model Transformer. Transformer has

been used in various fields to solve a variety of problems. While

the aforementioned BERT is a research achievement within the

domain of natural language processing, for example, Vision

Transformer (Dosovitskiy et al., 2021) and Image Transformer

(Parmar et al., 2018) are applications of Transformer in the

field of computer vision. Vision Transformer is almost the

same as the original Transformer, and Image Transformer is

a Transformer that incorporates techniques used in CNNs,

a network architecture commonly used in computer vision.

The development of these Transformers is an example of

applied research on the attention mechanism. However, as was

previously indicated, research has also been conducted from

another perspective to reduce the computational complexity of

Attention (Tay et al., 2020). Sparse Transformer (Child et al.,

2019) improves the computational complexity to O(N
√
N).

Furthermore, Reformer (Kitaev et al., 2020) and Cluster-

Former (Wang et al., 2021) have improved the computational

complexity to O(N logN). Recently, methods have been

developed that achieve linear computational complexity with

respect to the sequence length. Linear Attention was one of the

pioneer methods to achieve linear computational complexity

by a simple modification of the computation of attention

mechanism, where the order of the matrix multiplications

required in the process of computing Attention was modified,

as described in the following sections. Since then, research on
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reducing the computational complexity of attention mechanism

has continued, and methods such as Performer (Choromanski

et al., 2021), Linformer (Wang et al., 2020), Random Feature

Attention (Peng et al., 2021), and other methods have achieved

linear computational complexity of attention mechanism with

similar prediction performance to Linear Attention.

3. Method

3.1. Attention and Relation

3.1.1. Attention and Linear Attention

Here, we have demonstrated the computation of Attention

A and Linear Attention L for the input sequence x ∈ R
N×m.

The length of the input sequence is N, and let m be the size of

the feature vector of each token in the input sequence. Initially,

the following equations are used to compute the query, key, and

value matrices:

Q = xWQ, (1)

K = xWK , (2)

V = xWV , (3)

where WQ ∈ R
m×d, WK ∈ R

m×d, and WV ∈ R
m×d are the

m× d of the trainable parameter matrix that is responsible for

projecting each token of the input sequence into a vector of d

elements, where d is the size of Attention and is called depth.

Attention A is calculated using the following equation:

A(x) = σ

(

QKT
√
d

)

V , (4)

where σ is the softmax function, applied row-wise to QKT .

The time complexity of Attention is O(N2) because it includes

multiplication between the N × dmatrix and d× N, generating

the N × N matrix.

Next, Linear Attention L is computed by the following

equation:

L(x) = τ (Q)(τ (K)TV), (5)

where τ is defined by the following equation:

τ (x) =







x+ 1 (x > 0)

ex (x ≤ 0)
. (6)

In the computation of Linear Attention, the d × N matrix and

the N × d matrix are first computed, resulting in the d × d

matrix, and then the N × d matrix and the d × d matrix are

multiplied. Therefore, the time complexity of Linear Attention

is O(N) (Katharopoulos et al., 2020).

3.1.2. Relation

In this study, we have devised a method called Relation,

which conveys the entire contextual information of the input

sequence to the downstream point-wise MLP without the use

of Attention. First, G and H are generated using the following

equations:

G = xWG, (7)

H = xWH , (8)

where WG ∈ R
m×d and WH ∈ R

m×d are trainable parameter

matrices in m× d where each token in the input sequence is

projected to a vector of d elements. Each row of H is considered

a vector as follows:

H =
[

h1 h2 · · · hN
]T

. (9)

Next, h′ is computed from the element-wise mean of hi using the

following formula:

h′ =
1

N

N
∑

i=1

hi. (10)

Let H′ be the matrix of N rows, each row of which is the vector

h′:

H′ =
[

h′ h′ · · · h′
]T

∈ R
N×d (11)

Finally, the Relation R is calculated using the trainable parameter

matrixW ∈ R
d×d as follows:

R(x) = φ((G⊙H′)W) (12)

where ⊙ is the operator for computing the Hadamard product,

and φ is a nonlinear activation function such as the rectified

linear unit.

In this Relation system, h′ is the data containing the features

of the entire input sequence. We have interpreted each row of

G as a weight that allows each token in the input sequence to

extract information from h′. The overall view of the Relation

system is shown in Figure 1. As shown in the figure, the input

data ∈ R
N×m are projected to G by a point-wise MLP, which is

used to compute the Hadamard product with H′. In the bottom

panel,H is generated from the input data. The mean of elements

in each row of H is calculated to generate h′. Subsequently, h′

is broadcasted to H′. Finally, Relation R is computed from the

Hadamard product using point-wise MLP. The maximum size

of the generated matrices in the computation is N × d, implying

the time complexity of Relation is O(N).

3.2. Benchmark

3.2.1. Network architecture

We used a simple structure without piling up the layers for

all the benchmarks conducted in the study so that we could

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2022.924688
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Yamada et al. 10.3389/frai.2022.924688

FIGURE 1

Structure of relation system. Input data are in the form of a matrix ∈ R
N×m, where the length and feature vector size of input data are N and m,

respectively. Output data are in the form of a matrix ∈ R
N×d, where d is the depth of the Relation system.

compare the performance of Attention and Relation without the

influence of other complex factors. In all network structures,

either Attention or Relation was computed from the input

sequence followed by a single layer of point-wise MLP. The

vector derived from the first token in the output from the point-

wise MLP was used to compute the final output; the vector

was used as input to a softmax or linear function depending

on the given problem (classification or regression) to produce

the final result. In this study, we used a simple point-wise MLP

without Attention or Relation as a Baseline Model (Baseline) for

comparison. Three layers of point-wiseMLPwere used to ensure

that the parameter size is consistent with the other networks.

For all networks, initial weight parameters were initialized using

Glorot uniform distribution (Glorot and Bengio, 2010), and bias

parameters were initialized by the null vector. The source codes

used to generate all the networks in this study are available on

the GitHub repository, github.com:yamada-kd/Relation.git.

3.2.2. Performance of context processing

We have used the General Language Understanding

Evaluation (GLUE) benchmark dataset to evaluate the ability

of each neural network to process contextual information. It

consists of a total of 11 test datasets of various types related

to natural language processing (CoLA, SST-2, MRPC, STS-B,

QQP, MNLI-m, MNLI-mm, QNLI, RTE, WNLI, and AX). It is

the most well-known benchmark system for evaluating artificial

intelligence dealing with contextual information (Wang et al.,

2019). It should be noted that the AX dataset is referred to

as a diagnostic dataset in the original paper. The predictors

were grown using the provided training dataset, and the final

predictor was obtained by early stopping with the patience set

to five. Adam (Kingma and Ba, 2014) was used with default

hyperparameter settings to update the parameters. Training data

were fed into the networks as minibatches with a size of 256.

Dropout was used with a dropout rate of 0.5 as the regularization

method for the networks. The constructed predictor solved the

test problem, and results were sent to the GLUE server to obtain

GLUE scores. The description of scores for each test is given in

the cited paper and is not explained here. Positional encoding

similar to that of Transformer was implemented (Vaswani

et al., 2017). Token embedding was done with a vector of 100

lengths, and GloVe was used as the initializer for embedding

(Pennington et al., 2014).

3.2.3. Computation time

The length of the longest sequence in the GLUE dataset is

467, while that in the IMDb dataset (Maas et al., 2011) and

Reuters newswire classification dataset (Reuters) (UCI Machine

Learning Repository, 1997) provided by TensorFlow (Abadi

et al., 2015), and WikiText-103 (Merity et al., 2016) is 2,494,

2,376 and 6,231 respectively, which are very long. As mentioned

above, the time complexity of Attention is O(N2), and that of

Relation is O(N). We benchmarked the computation times on

these datasets to determine the difference in actual computation

time when using long input sequences. WikiText-103 includes

pairs of a header and sentences in an instance. For the dataset,

we conducted the binary classification task, where each method

classifies whether the input sentences belong to the secondary

level headers or the other level headers. The number of instances

in the learning dataset of IMDb, Reuters, and WikiText-103 is

25,000, 8,982, and 304,092, respectively. We measured the time

taken for the accuracy of the validation dataset to reach 0.8

consecutively 10 times.
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3.2.4. Statistical analysis

All the experiments in this study were repeated five times

by changing the initial parameters randomly. The results

display the computed mean values and standard deviations.

The performance of each pair of methods was compared at a

confidence level of 0.95 using the Steel-Dwass test.

4. Results

4.1. Performance to process context

Table 1 shows the results of GLUE-based prediction

performance benchmarks. It can be observed that the prediction

performance is not as good as that of existing state-of-the-art

methods or complex structures such as Transformer. However,

this is natural because the objective of this experiment was

to verify if the Relation can process contextual information

similar to Attention and not whether Relation can achieve high

prediction performance when used for complex structures such

as Transformer.

The general language understanding evaluation score

measures accuracy, correlation coefficient, or F1 score, and a

high value indicates good performance. The GLUE benchmark

consists of 11 evaluation items, the most important of which is

AX. For the remaining 10, training and validation datasets are

provided to train the predictors to make predictions on the test

dataset; however, for AX, neither the training dataset nor the

validation dataset is provided. AX is a problem that considers

two sentences as input and classifies them into three classes.

Since MNLI is a similar problem, we have used a predictor

trained on this dataset to predict AX, which is completely

independent of the other 10 datasets.

It was observed that the baseline model performed worse

than Attention or Relation predictors on almost all datasets at

all depths and very poorly on AX. Baseline is a method that does

not consider any context of the input sequences. Network size

does not have any influence onmodel performance since the size

of each method at each depth is unified; the GLUE benchmark

performs better when the context is taken into account. Hence,

the inability of the baseline model to consider context may be

the reason for its low prediction performance. The performance

of networks with Attention and Linear Attention, including the

value of AX improved with increasing depth. Furthermore, the

prediction performance using these networks was better than

that of Baseline because the context of the input sequences

is taken into account. We conducted statistical analysis for

the values of AX and Avg, which was also called the GLUE

score. Consequently, the performance of Attention and Linear

Attention was significantly better than that of Baseline on both

criteria at all depths. Meanwhile, the performance of Linear

Attention was significantly better than that of Attention on both

criteria when the depth size was 128. Their performance seemed

to be comparable to each other in other cases.

By contrast, the network with Relation also exhibited

improved prediction performance depending on the depth size.

The performance of Relation was significantly better than that

of Baseline on both criteria at all depths according to the

statistical test. Additionally, the performance of Relation was

better than that of Attention on avg when the depth size

was 128 and on AX when the depth size was 64 or 256.

Furthermore, the performance of Relation was significantly

better than that of Linear Attention on AX when the depth

size was 256. No statistical significance was observed in other

pairwise comparisons among the three methods. However, the

prediction performance of Relation was inferior to Attention

and Linear Attention in some cases on MRPC, QQP, RTE, and

WNLI, although the difference was not statistically significant.

The distinctive feature of these problems was that Baseline,

which in principle could not process context information,

performed comparably to the other methods. This means

that when solving these problems, it is not so important

for methods to process the context information, compared

to the other problems. Therefore, it can be assumed that in

addition to Baseline, all methods that can process the context

information, such as Attention, Linear Attention, and Relation,

would have only shown comparable prediction performance.

Conversely, considering that Relation performed statistically

significantly better than Attention and Linear Attention in some

cases on the other problems that required methods to process

context information. Relation may be a promising mechanism

for processing contextual information. Taken together, we

concluded that the performance of Relation was better than or

comparable to Attention and Linear Attention on the datasets

tested in this study. Thus, it is clear that contextual information

can be processed by Relation in the same manner as Attention

and Linear Attention.

4.2. Computation time

The results of evaluating the computation time of each

method using the IMDb, Reuters, andWikiText-103 datasets are

shown in Table 2. The calculation with Baseline, which consists

of only point-wise MLPs, could not be completed because

its accuracy did not increase depending on the progress in

epochs. The accuracy using Baseline was approximately 0.5 on

IMDb, 0.3 on Reuters, and 0.5 on WikiText-103 from the first

epoch to the end of the computation. The Baseline exhibited

decent prediction performance on some of the GLUE datasets.

GLUE has numerous short input sequences, so it is likely

that in some cases if certain tokens are used for prediction,

accurate predictions can be made without taking the context

into account. However, the sentences in IMDb, Reuters, and

WikiText-103 are long and composed of a variety of words;
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TABLE 1 Benchmark results with general language understanding evaluation (GLUE).

Method Avg CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI AX

Parameter size: 64

Baseline 43.6 –0.380 59.6 79.9/66.5 13.7/14.2 16.4/80.3 38.2/38.2 53.2 50.4 55.8 0.460

0.705 0.850 1.01 0/0 1.07/1.56 8.09/1.90 0.464/0.286 0.365 0.653 6.15 0.802

Attention 50.6 2.32 73.6 75.4/65.7 24.9/24.0 51.6/80.1 52.4/51.0 57.2 51.0 58.6 4.78

1.13 3.29 0.819 2.37/1.45 0.673/1.45 0.753/1.73 0.546/0.447 0.308 0.796 11.0 0.981

Linear 52.7 8.92 79.8 79.2/68.9 25.2/25.9 49.3/75.8 54.9/53.4 57.1 51.3 61.0 7.12

0.942 1.45 0.869 1.32/1.11 1.66/1.63 0.540/0.623 0.316/0.567 0.517 0.581 7.66 1.82

Relation 53.5 10.8 80.6 76.5/67.4 28.3/27.3 51.5/79.0 55.4/54.5 58.0 51.8 60.2 9.74

0.952 2.36 0.397 1.65/1.14 1.65/3.09 0.650/2.11 0.377/0.447 0.555 0.858 8.22 0.885

Parameter size: 128

Baseline 43.8 –1.24 60.2 79.3/66.0 14.0/15.3 23.8/78.1 38.2/38.5 52.9 51.0 54.7 1.02

1.11 1.37 1.01 1.32/1.13 0.832/1.91 10.8/2.78 0.277/0.391 0.292 0.656 10.5 1.65

Attention 51.7 9.46 73.6 76.3/66.6 25.9/24.3 51.0/79.2 53.4/52.5 56.8 52.1 59.3 6.32

0.897 1.66 0.658 1.06/0.814 1.49/1.68 0.526/1.26 0.251/0.800 0.730 0.297 8.91 1.32

Linear 53.7 9.78 80.0 77.9/68.3 28.4/29.1 50.0/76.7 56.6/55.2 56.5 52.4 63.4 10.2

0.589 1.44 0.777 1.52/0.876 2.51/1.71 0.483/1.08 0.344/0.439 0.439 0.936 3.03 1.48

Relation 53.6 10.6 81.2 73.9/65.9 31.2/30.3 51.1/77.3 56.6/55.8 58.4 51.6 59.7 9.48

0.427 1.99 0.702 2.24/1.46 1.09/1.38 0.940/1.11 0.336/0.543 0.223 0.555 6.01 1.67

Parameter size: 256

Baseline 43.6 1.30 60.1 75.4/63.2 13.0/14.0 11.9/80.7 37.8/38.4 53.0 51.8 59.3 1.16

1.24 2.25 1.33 1.64/1.34 1.06/1.13 11.8/2.33 0.192/0.303 0.179 0.515 10.3 0.802

Attention 51.9 8.28 74.2 76.1/66.4 25.3/24.2 51.6/80.4 54.0/53.0 57.2 52.4 59.9 6.84

1.44 3.76 0.339 1.03/0.760 2.94/3.24 0.292/1.33 0.288/0.487 0.650 0.270 8.83 1.98

Linear 54.1 9.10 80.3 78.0/68.5 31.7/31.2 50.3/76.4 57.0/55.5 56.4 52.9 64.4 10.4

0.416 1.93 0.658 1.59/1.14 1.36/1.11 0.381/0.336 0.100/0.259 0.187 0.587 1.94 0.462

Relation 54.2 10.5 81.0 74.9/66.3 33.5/32.2 51.2/76.7 57.8/56.7 58.8 52.6 59.4 12.4

1.06 2.05 3.61 3.61/2.35 1.46/1.24 0.581/1.07 0.342/0.182 0.497 0.432 5.25 1.50

The number to the right of “Parameter size” denotes the depth of Attention, Relation, or MLP. “Linear” denotes Linear Attention. For MNLI, accuracy on MNLI-m and MNLI-mm are reported. For MRPC and QQP, accuracy and F1 are reported. For

STS-B, Pearson and Spearman correlations are reported. For CoLA, Matthews correlation is reported. For all other tasks, accuracy is reported. The values in the upper and lower panel in each method represent the mean and absolute value of the standard

deviation (italic value) based on five times the evaluation scores. The evaluation scores are scaled by 100. The best value in each block is highlighted in boldface.
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TABLE 2 Computation time (s) of learning phase for IMDb, Reuters, and WikiText-103.

IMDb Reuters WikiText-103

Method Total time Time/epoch Total time Time/epoch Total time Time/epoch

Parameter size: 64

Baseline n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a

Attention 316 15.3 952 4.35 44,100 1,100

13.8 0.0108 111 0.00920 1,600 1.73

Linear 64.1 2.14 233 0.720 1,270 65.9

5.92 0.00656 50.8 0.00213 85.2 3.80

Relation 32.9 1.73 145 0.579 1,410 50.3

0.103 0.00543 10.9 0.00727 34.8 1.24

Parameter size: 128

Baseline n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a

Attention 347 17.2 563 4.93 44,200 1,210

7.69 0.00800 29.0 0.00650 1,370 1.68

Linear 107 3.73 172 1.27 2,050 108

3.04 0.0554 13.4 0.00249 67.6 3.56

Relation 54.1 2.85 115 0.971 2,080 81.1

0.352 0.0185 7.07 0.0152 59.0 2.97

Parameter size: 256

Baseline n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a

Attention 431 22.2 445 5.65 51,000 1,540

11.7 0.0539 14.2 0.0360 1,110 1.58

Linear 166 6.12 190 2.09 3,520 185

13.1 0.00934 9.36 0.0112 69.6 3.66

Relation 86.1 4.53 134 1.59 3,400 137

0.0957 0.00505 3.89 0.0300 107 2.88

Total learning time and time per epoch are presented. The number to the right of “Parameter size” denotes the depth of Attention, Relation, or MLP. “Linear” denotes Linear Attention.

The values in the upper and lower panels in each method represent the mean and absolute value of the standard deviation (italic value) based on five times the evaluation scores. The best

value in each block is highlighted in boldface.

hence, it is assumed that the correct answer could not be derived

without considering the context.

The accuracies of Relation, Attention, and Linear Attention

increased depending on the learning progress; based on this,

we reconfirmed that Relation and Attention could process

the context information properly. Among them, the network

with Relation exhibited the best performance in terms of total

computation time and computation time per epoch at all depths

on IMDb and Reuters. According to the statistical analysis, the

performance of Relation on the total computation time and

computation time per epoch on these datasets is significantly

better than that of both Attention and Linear Attention at all

depths. The overall parameter size for each network is unified

for each depth, meaning the size of the parameters does not

affect the computation performance. As mentioned earlier, the

time complexity for both Linear Attention and Relation against

the sequence length isO(N). Nevertheless, the computation time

of Relation is better than Linear Attention. It would be due to

the following reason. The time complexity for Linear Attention

is 2Nd2 + 3Ndm and that for Relation is Nd2 + 2Ndm +
Nd, when the projection and depth of the input sequence

are considered for calculation. Therefore, Linear Attention

calculation requires Nd2 + Nd(m − 1) more computations

than Relation. The difference in the computation load between

Linear Attention and Relation is due to the difference in actual

computation time in the experimental results. Whereas, when

we used WikiText-103, which consisted of a longer sequence,

the tendency changed; the total computation time of Relation

was comparable to that of Linear Attention, though Linear

Attention and Relation were significantly much better than

Attention, according to the statistical test. The computation

using Attention took a surprisingly long time, emphasizing
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the effect of differences in time complexity between O(N) and

O(N2), and the usefulness of Relation and Linear Attention

on long sequence processing was reconfirmed. Comparing to

Linear Attention, Relation required more epochs to achieve

good prediction performance at depth of 64.Whereas at depth of

128, there was no statistical significance, and at depth of 256, the

total computation time of Relation was statistically significantly

better than that of Linear Attention. These results showed that

the performance of Linear Attention and Relation on the total

computation time was comparable. Depending on a problem

and depth, either Linear Attention or Relation would be able to

reach the correct answer in less computation time than Relation

or Linear Attention; in actual use, a better method should be

adopted depending on the problem. Whereas the computation

time per epoch of Relation was statistically significantly better

than that of Linear Attention at all depths. Taken together,

Relation can achieve the same prediction performance as

Attention in a shorter duration and Linear Attention in a

comparable or shorter duration.

5. Discussion

In this study, we devised a mechanism that considers

context information and compared its performance to networks

with Attention and simple MLPs without context processing

capability. The attention mechanism has been used in

various networks, including Transformer. The motivation

behind developing the proposed method was to improve the

computation time for Attention. This improvement affects

various fields, such as natural language processing and image

processing. Therefore, extensive research has been conducted on

the improvement of computation time for Attention (Tay et al.,

2020). The time complexity of Attention was O(N2) and that

of Linear Attention was O(N). Thus, Linear Attention exhibited

better performance from the perspective of computation time,

and our goal in this study was to create a mechanism with

the same level of computational complexity and prediction

performance as Linear Attention. Improving time complexity is

not merely a benefit of reducing the time required for learning.

It is undeniable that we can further improve the performance

of the final artificial intelligence in the same computational

time by making the network structure more complex instead

of reducing the computational time if the method with reduced

time complexity has the same context processing capability as

Attention. From this perspective, Relation is considered to be a

useful method for context processing.

Over the years, the amount of data available has increased

exponentially. The real world contains a wide variety of data,

including natural language, images, biological strings, economic

time series data, and contextual information. The Relation

can be useful for dealing with such data. In this study, we

implemented a simple approach in which the information of

each token in the input sequence was aggregated into a single

vector by computing an element-wise mean value of each vector

projected from each token in the input sequence. The aggregated

information was then returned to the network corresponding

to each token; that is, most of the computation in Relation

consists ofMLP, which would be surprising for some researchers.

However, the idea of using MLP alone to process context is

not novel. Like RNNs, MLPs can process context information

because they can estimate all nonlinear relationships by the

universal approximation theorem. One of their implementations

is MLP-Mixer, which consists of MLPs alone to process context

information (Tolstikhin et al., 2021). Since the goal of this

study was to improve the time complexity of Attention, we

did not consider MLP-Mixer for comparison, which has a

time complexity of O(N2). However, it would be useful to

compare Relation with other methods that use mechanisms

other than Attention. In addition to MLP-Mixer, for example,

there is another method that can process context information,

the Sigma-if neural network, which is a contextual generalization

of MLP (Huk, 2012). A comparison with such a method that

enables contextual processing through a mechanism other than

Attention will help further clarify the pros and cons of Relation.

In the future, we intend to continue our efforts to find new

methods because there could be better ways of capturing the

entire contextual information than Relation or other methods.

Benchmarks with GLUE, a benchmark system for natural

language processing, and benchmarks on datasets containing

long sequences revealed that Relation can process contextual

information with improved computation time. The objective

of this study was to verify if Relation could process context

information faster than Attention and not if it could achieve

high prediction performance when usedwith complex structures

such as Transformer. In other words, a limitation of this

study is that it is unclear whether Relation will perform

efficiently when used as a component in a larger network

structure such as Transformer. This study only revealed that

Relation can process contextual information that a simple

MLP (Baseline) could not process; however, it can process as

much information as Attention in a small network structure.

Furthermore, other aspects should be verified. In this study,

we used common parameter settings and methods when

training neural networks including Relation and other neural

networks used for comparison. For example, the pseudo-

random number generator (PRNG) used to initialize the neural

network parameters was the Philox algorithm (Salmon et al.,

2011), which is the default PRNG in TensorFlow. However, it

has been reported that PRNG may have a particular impact

on neural networks that handle contextual information (Huk

et al., 2021) and thus selecting and using a suitable PRNG is

an important factor to consider in the future. In the future, we

will analyze the effectiveness of Relation on large networks in

addition to these improvement studies. The possibility of its use

in various fields will increase if the effectiveness of Relation in
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large networks is clarified; however, this is not to say that there is

no value in using Relation in the present situation. Since Relation

can process context information, at least in small structures,

and is computationally superior to Attention, it may be a viable

alternative to Attention in situations where large amounts of

data must be processed within a limited time frame.
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