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The deep-levelmining industry is experiencing narrowing profitmargins due to

increasing operating costs and decreasing production. The industry is known

for its lack of dynamic control across complex integrated systems running deep

underground, making IoT technologies di�cult to implement. An important

integrated system in a typical undergroundmine is the refrigeration-ventilation

system. In practice, the two systems are still controlled independently, often

due to a lack of continuous measurements. However, their integrated e�ects

ultimately a�ect energy usage and production. This study develops and

compares various machine learning prediction techniques to predict the

integrated behavior of a key component operating on the boundary of the

refrigeration-ventilation system, while also addressing the lack of continuous

measurements. The component lacks sensors and the developed industrial

machine learning models negate the e�ect thereof using integrated control.

The predictive models are compared based on accuracy, prediction time, as

well as the amount of data required to obtain the required level of accuracy.

The “Support Vector Machines” method achieved the lowest average error

(1.97%), but the “Artificial Neural Network” method is more robust (with a

maximum percentage error of 12.90%). A potential energy saving of 215 kW or

2.9% of the ventilation and refrigeration system, equivalent to R1.33-million per

annum ($82 9001) is achievable using the “Support Vector Machines” method.

KEYWORDS

integrated dynamic control, energy management, real applications in engineering,

deep-level mining, artificial intelligence, predictive modeling, optimization, machine

learning

1. Introduction

The deep-level mining industry is experiencing narrowing profit margins

due to increasing operating costs and decreasing production (Ruffini, 2010;

Lane et al., 2015; Neingo and Tholana, 2016). Electricity consumption is the

second largest operating cost (after labor) with refrigeration and ventilation being

1 Exchange: $1 = R16.05 on 6 May 2022.
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FIGURE 1

Energy distribution of a typical deep-level mine.

the largest combined energy consumer in the industry, deep-

level mining as depicted in Figure 1 (Cilliers et al., 2016;

Crawford et al., 2019). Optimizing the refrigeration and

ventilation system will result in a reduced energy consumption

and an increased profit margin.

Ventilation is required to extract heat from the underground

environment and ensure that working conditions are within

legal limits (Nel et al., 2018; South Africa, 2018). However, for

mines with high virgin rock temperatures and large depths below

surface, refrigeration is required to maintain low temperatures.

This increases the heat extraction capacity of the air going

underground (Peach et al., 2018).

The refrigeration system utilizes water as a heat exchange

medium between the air going underground and the ambient

air, facilitating heat rejection into the ambient air. The outlet

water temperature set-point is typically a static value based on

“worst-case” design conditions and does not account for real-

time ambient conditions (Maré, 2017; Peach et al., 2018). The

result is an oversupply of cooling to the air going underground,

resulting in energy wastage (Nell et al., 2019). A varying set-

point will enable the system to reduce the cooling required and

consequently reduce the energy consumption.

Varying the set-point requires a complex integrated control

philosophy. Characteristic systems are required to model the

actual system and predict parameters to account for changes

in the system. The characteristic system can then be used as a

predictive model in a dynamic control philosophy (Hasan et al.,

2013; Chu et al., 2014). This has not been done in the deep-

level mining industry due to the lack of sensor infrastructure and

the large and complex integrated nature of the systems in these

mines (Prinsloo et al., 2019).

The lack of sensor infrastructure in mining prevents the

implementation of semi-empirical and mathematical-based

control and predictive philosophies (Nell et al., 2019; Prinsloo

et al., 2019). The lack of sensors result in data points that

lack features (a measureable piece of data i.e., a column in a

dataset). Characteristic models are thus required to replicate

a system from feature-missing data. Fuzzy systems have been

used in other applications to overcome a shortage of data points

to develop relationships between dependent and independent

variables but not to overcome missing features within a

dataset (Savic and Pedrycz, 1991).

Machine Learning (ML) predictive techniques have the

ability to characterize systems with little data and, although the

number of features affect the accuracy, predictive techniques

can characterize systems with little features (Al-Mukhtar et al.,

2020). Three of the most commonly used ML predictive

techniques are (Alanazi et al., 2017; Hassan et al., 2021):

1. Artificial Neural Networks:Artificial Neural Networks (ANN)

have been used in various characteristic models (Al-Mukhtar

et al., 2020; Teymen and Mengüç, 2020; O’Kelly and Soltani,

2021). These models show good accuracy compared to

regression models where all the features are present (O’Kelly

and Soltani, 2021). However, these models were implemented

on systems with all the features accurately measured and

have not been implemented on a system with lacking

feature sensors.

2. Support Vector Machines: Support Vector Machines

(SVM) have a specific algorithm for regression, which is

called Support Vector Regression (SVR). SVRs have been

compared to Response Surface Methodologies for predictive

applications (Mia and Dhar, 2019). Similarly, these models

have been used for prediction purposes (Temeng et al., 2020),

but lack implementations on systems lacking features within

data points.

3. Nearest Neighbor Regression:The k-Nearest Neighbor (k-NN)

algorithm is commonly used for classification (Demidova and

Sokolova, 2021; Komatwar and Kokare, 2021) but can also be

used in regression applications (Papadopoulos et al., 2011).

However, the focus of k-NN implementations has been on

complete datasets (not lacking features).

A literature survey was conducted to evaluate the existing

solutions with regards to integrated control within the mining

industry with limited sensor infrastructure—a summary of the

literature review can be seen in Table 1. The purpose of the table

is to identify the gaps in previous research. The fields that form

the comparison for the literature are:

• Machine Learning:

• Predictive Methods: Were predictive ML methods

utilized in the study?

• Limited Features: Did the data used to develop models

lack features?

• Deep-level Mining Industry:

• Integrated Control: Did the studies implement control

on multiple dependent systems within the deep-level

mining industry?
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• Enhanced System Control: Did the studies implement

dynamic control on systems within the deep-level

mining industry?

Appropriate keywords from each research field (such as

predictive control, Machine Learning, limited data, deep-level

mining, etc.) were identified and used individually and in

a combination to identify relevant research within various

databases (such as Springer and ScienceDirect). The relevant

research was identified and summarized in Table 1, Further,

Table 1 indicates relevant research fields that were not addressed

within the reviewed studies.

As highlighted in Table 1, previous studies have utilized

predictive ML methods to overcome the lack of features within

the deep-level mining industry for enhanced system control.

However, these models have not been implemented on the

complex integrated systems within the mining industry. Further,

an evaluation of these methods will benefit the industry to

reduce wastage by implementing integrated dynamic control on

large energy-consuming systems, such as the refrigeration- and

ventilation system (Prinsloo et al., 2019).

This study provides a comparison of ML predictive

techniques through an application in the deep-level mining

industry. The comparison will serve to identify the best

technique to utilize in the implementation of an integrated

dynamic control philosophy on the refrigeration system. The

comparison will be focused on the deep-level mining industry

to accommodate for the shortcomings of the industry, mainly

concerning the lack of feature sensors.

2. Prediction model development

2.1. Application

A Bulk Air Cooler (BAC) uses cold water to remove heat

from the air supplied to the underground environment and

acts as the interface between the refrigeration and ventilation

systems. Refrigeration plants cool the water in a closed loop

system. The BAC discharge air is the inlet of the ventilation

system. The ventilation system is a static, stable system and only

varies with the inlet temperature (BAC discharge temperature).

The BAC discharge air temperature is dependent on the

inlet parameters. The inlet and outlet parameters are depicted

in Figure 2. The adjustable inlet parameters are air flow rate,

water temperature and water flow rate. However, the air flow

rate is determined through the air flow requirement of the shaft

and the water flow rate cannot be changed due to the pumping

configuration. Thus, the only available variable for control is the

water temperature.

A static discharge temperature for the BAC is required,

due to the static, stable nature of the ventilation system. To

achieve this, the inlet parameters (water temperature) need

to vary based on the other inlet parameters. However, in the

present control strategy, the water temperature is static. The

water temperature set-point can be determined from the other

varying inlet parameters and the required discharge temperature

by using ML techniques.

2.2. Data

Characterizing the BAC performance from historic data will

allow accurate control. However, the ambient relative humidity

is not being measured and relationships between the other

parameters are required to characterize the BAC. Half-hourly

data was obtained for four summermonths to represent the BAC

operation. The data was filtered and time periods were excluded

that experienced irregular operation (for example, production

stoppages, employee strikes, etc.). A total of 1 655 data points

were used to characterize the BAC.

The various ML characteristic techniques determine the

relationships according to their design regression characteristic.

These relationships are determined from the filtered data and

then used to determine the water temperature set-point. Due to

a lack of sensors, only 2 variables are used as inputs. The same

dataset structure, visualized in Figure 3, is applied to the various

characteristic techniques.

2.3. Process control flow

The models will be used to predict the water temperature

of the BAC based on the ambient temperature and required

discharge temperature. This temperature becomes the set-point

for the system providing the water temperature at a temperature

within 2% of the provided set-point. This process is depicted in

Figure 4.

2.4. Machine learning prediction methods

Various ML prediction methods exist to characterize and

classify systems. However, the temperature set-point needs

to be a continuous number and not combined into a

range. Classification techniques are therefore not relevant.

ML prediction techniques with the ability to do regression

characterization will be used in this comparison. The following

three commonly used ML regression predictive techniques,

identified and described in Section 1, will be compared:

• Artificial Neural Network

• Support Vector Machine

• K-Nearest Neighbors
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TABLE 1 State-of-the-art matrix indicating gaps in previous research.

Sources Machine learning Deep-level mining industry Comments

Predictive

methods

Limited

features

Integrated

control

Enhanced

system control

Youssefi et al. (2009),

Papadopoulos et al.

(2011), Al-Mukhtar et al.

(2020), and O’Kelly and

Soltani (2021)

✔ ✘ ✘ ✘

Utilized ANN or k-NN for prediction on

full-feature datasets outside of the mining

industry. Obtained R2 values above 0.8 on all

datasets.

Wang et al. (2019),

Harmse (2021), and

Harmse et al. (2022)

✔ ✘ ✘ ✔

Utilized ANN for prediction on full-feature

datasets on a single system within the mining

industry, obtaining errors less than 5%.

Hasan et al. (2013),

Hasan et al. (2014), and

Hasan and Twala (2016)

✔ ✔ ✘ ✔

Utilized limited feature datasets on an

independent system within the mining

industry. ANN and SVM obtaining higher

accuracy for classification compared to

“Naïve Bayes” “Classifier” and “Decision

Trees.”

Cilliers et al. (2016),

Maré (2017), Crawford

et al. (2019), and

Pretorius et al. (2019)

✘ ✘ ✘ ✔

Improved control on independent systems

within the mining industry, through

simulation.

Arndt (2000) and

Du Plessis et al. (2015)
✘ ✘ ✔ ✔

Improved control on multiple dependent

systems with full-feature monitoring within

the mining industry, through simulation.

FIGURE 2

Application layout depicting parameters a�ecting the discharge air temperature.

2.4.1. Artificial neural network

An ANN was developed to represent the BAC and predict

the required water temperature for the desired BAC discharge

temperature. The ANN was built in Python R©2 using the

TensorFlow3 library (Van Rossum and Drake, 2009;

Abadi et al., 2015). The best hyperparameters were

identified using Keras-Tuner4 (O’Malley et al., 2019).

2 Python is an open-source object-oriented programming language.

3 The TensorFlow library is an open-source library (for Python) for

machine learning, optimized for neural networks.

Table 2 summarizes the hyperparameters of the

developed ANN.

The ANN was trained using mean squared error as a loss

metric. An early stop criterion of mean squared error was also

used to prevent over-fitting. The data was split into 80% training

data and 20% validation data. The training triggered the early

stop criterion within 35 epochs and resulted in a mean absolute

error of 0.77◦C on the validation dataset.

4 The Keras-Tuner library is an open-source library (for Python) for

identifying the optimal hyperparamters for a defined dataset and model.
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FIGURE 3

Input variables and output variable of the various characteristic models.

FIGURE 4

Simplistic process control flow.

TABLE 2 Best ANN hyperparameters identified for the provided

dataset.

Layer

number

Number of nodes Activation

function

Input layer 2 -

1 7 Scaled Exponential Linear Units (SELU)

2 5 SELU

3 13 SELU

Output layer 1 -

2.4.2. Support vector machines

The regression model of the SVM algorithm (SVR) in the

Scikit-Learn5 library was used to form the SVM prediction

method (Pedregosa et al., 2011). The input and output data

are scaled using a the standard scaler from Scikit-Learn and

the regression model provides a scaled output. The output is

inversely scaled to obtain the prediction value for the water

temperature. The GridSearchCV function (from Scikit-Learn

Pedregosa et al., 2011) was used to obtain the optimal parameters

for the prediction model. The optimal parameters are listed in

Table 3.

Similarly, the data was split into 80% training data and 20%

validation data. Using the optimal parameters in Table 3, the

RMSE for testing data was 0.72◦C.

5 The Scikit-Learn library is an open-source library (for Python) for

machine learning containing various models and functions for the

optimisation of these models.

2.4.3. K-Nearest neighbor

Multivariable k-NN regression was implemented to

characterize the BAC. The mean value of the k nearest points is

the output of the regression. For the BAC characterization, the 2

input variables form the coordinates to determine the proximity

to the desired point and mean of the corresponding output

variables forms the result of the regression.

The k-NN was developed in python using the Scikit-Learn

library (Pedregosa et al., 2011). The filtered data was divided into

a validation and test dataset according to random 80–20% split,

respectively. The value of k (number of nearest neighbors) was

identified through evaluating the RMSE (Root-Mean-Square

Error) on the test dataset for values of k ranging from 1 to 60.

These values are depicted in Figure 5.

The optimal value for k was determined to be 23 with

a RMSE of 0.87◦C. This k value was used in the model for

predicting the water temperature and thus in the comparison to

the other two ML prediction methods.

2.5. Comparison of techniques

The various models are verified through simulation. A

calibrated simulation built in Process Toolbox is used to verify

the predictions of the various models. Process Toolbox is a

transient thermohydraulic simulation software predominantly

used in the mining industry (Maré, 2017). The various methods

will be compared according to:

1. Accuracy on a day’s simulated ambient temperature profile

2. Data required to obtain a 5% average error on an unseen

dataset

3. Time required to train the models and make predictions

within the control environment (implemented on the

computers available at the respective mine)
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TABLE 3 Best SVM parameters identified for the provided dataset.

Parameter Best value Parameter

or function description

Kernel Poly Kernel function type

C 10 Regularization parameter

γ Scale Kernel coefficient

coef 0 0.01 Kernel projection coefficient

Degree 3 Degree of polynomial kernel function

FIGURE 5

Comparison of RMSE for various values of k.

The best model (based on the requirements above) is then

selected for validation through implementation. The model will

predict the water temperature required based on actual present

ambient conditions and the discharge air temperatures will be

compared to the desired set-points. The power consumption for

the entire refrigeration system will be recorded and compared to

similar ambient temperature days to evaluate the cost and power

saving benefit achieved by the prediction model.

3. Results and discussion

The design specifications were used to build the BAC

simulation model in Process Toolbox. Process Toolbox is a

transient thermal hydraulic software widely used for verification

and scenario simulation in the mining industry (Maré, 2017;

Mathews et al., 2020; Harmse et al., 2022). Operating data

along with manual measurements were used to calibrate the

simulation within 1% error. The water temperature, ambient

temperature, and humidity are inputs, while the simulation

provides a discharge air temperature as an output. The built and

calibrated simulation can be seen in Figure 6.

As depicted in Figure 6, the ambient air either passes

through the BAC or bypasses the BAC to supply the demand.

However, the BAC fans ensure that 90% of the air supplied to the

demand passes through the BAC. Cool water, with a temperature

determined by the water set-point, is supplied to the BAC to

cool the air passing through, resulting in the desired discharge

air temperature.

3.1. Accuracy

An average day profile of the ambient temperature and

humidity is provided to the various models as an input to

predict the required water temperature to ensure a discharge

temperature of 9◦C. The water temperatures provided from

the various models are then simulated and the discharge air

temperature is compared to the discharge set-point (9◦C).

The resulting discharge temperature profiles are depicted in

Figure 7. Further, the simulated temperatures for the model that

is furthest from the set-point at each time period are compared

to the present discharge temperature in Figure 8.

As seen in Figure 7, the SVM method resulted in the

lowest minimumdischarge temperature. The resulting discharge

profile varies around 9◦Cwith an average discharge temperature

of 9.13◦C. The prediction model is susceptible to inaccuracy

for areas within the modeling space with less data points (as

seen at the end of the profile). This is acceptable, as the thermal

properties of the mine will smooth the profile out over the

course of a day. Thus, the working areas deeper in the mine will

experience a fairly stable temperature comparable to a consistent

9◦C discharge temperature.

The ANN and k-NN methods follow similar profiles. The

average temperature for the ANN is 9.38◦C. This means that

the working areas will experience a temperature slightly higher

than that of a consistent 9◦C discharge temperature. The k-

NN method has the highest average temperature (average of

9.46◦C) and the highest maximum temperature. This will result

in the highest experienced temperature at the working areas.

Compared to the present conditions with no control, all three

methods provide a more stable BAC discharge temperature. A

more detailed comparison of the various methods can be seen in

Table 4.

The highlighted cells in Table 4 indicate the most accurate

result, which indicates that the SVM prediction model provided

the best overall accuracy. The SVM prediction model has

the closest average to the set-point and the lowest maximum

error. This means that the working areas will experience the

least deviation from a consistent 9◦C discharge temperature

compared to the other two models, with the k-NN resulting in

the largest deviation experienced.

3.2. Data points required for 5% average
error

The training and predicting process was iterated for the

various models to determine the amount of data points

required for an average error of below 5%. The predictions
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FIGURE 6

Calibrated process toolbox simulation built for ML prediction model validation.

FIGURE 7

Comparison of ML predictive models for an average day’s

ambient conditions.

were implemented on an daily profile dataset that has not

yet been used in the model, with the discharge temperature

set-point remaining 9◦C. The predicted water temperatures

were simulated to determine the discharge air temperature and

then the average error can be calculated. This iterative process

continued until an average error of 5% was achieved. The

required data points for the variousmodels to achieve an average

error of 5% can be seen in Table 5.

The k-NN prediction model was not able to achieve 5%

average error for the entire dataset, consisting of 1 655 data

points. The amount of data points required for 5% average error

is thus unknown. The SVM prediction model required the least

amount of data points to achieve 5% average error. This is

FIGURE 8

Comparison of worst simulated control- and present discharge

temperature for an average day’s ambient conditions.

TABLE 4 Accuracy comparison of predictive methods.

Parameter ANN SVM k-NN

Average temperature error [◦C] 0.38 0.18 0.46

Average percentage error [%] 4.26 1.97 5.14

Mean percentage absolute error [%] 5.72 6.75 6.42

Maximum percentage absolute error [%] 12.90 18.24 19.34

The highlighted values indicate the best values for those parameters.

expected seeing as the average error for the entire dataset was

the lowest. However, the SVM achieved a 5% average error with

9% less data points than the ANN.
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TABLE 5 Data points required to obtain a 5% average error.

Model Number of Percentage of

data points entire dataset (%)

ANN 1,448 87.5

SVM 1,299 78.5

k-NN N/A N/A

The highlighted values indicate the best values for those parameters.

TABLE 6 Time comparison of predictive methods.

Parameter ANN SVM k-NN

Training time [s] 2.5000 0.3429 -

Prediction time [s] 0.2509 0.0309 0.0014

Total time [s] 2.7509 0.3738 0.0014

The highlighted values indicate the best values for those parameters.

3.3. Training and prediction time

The time taken for training the various models excludes

obtaining, loading and filtering the data. This is because it will

result in similar times across the various models. The prediction

time entails predicting the required water temperature for a day’s

24 point average profile. Similarly, the time taken for predicting

excludes loading the day’s average data. The recorded training,

predicting and total time can be seen in Table 6.

Due to the nature of the k-NN method, no training time

is required, only loading the filtered data and predicting the

outcome. The k-NN prediction model had the lowest times for

predicting and total time. These results are contrary to common

understanding but similar results have been documented in

similar comparisons (Colas and Brazdil, 2006; Li et al., 2017).

However, the time constant of the system (the BAC and

refrigeration system) is in the order of 30 min. This means

that even-though the ANN had the worst training, predicting

and total times, it is sufficient to be implemented in the

control philosophy.

3.4. Comparison summary

The SVM prediction model resulted in the best average

accuracy. However, an unevenly spread dataset resulted in a

large maximum prediction error. This is not an issue for the

ventilation system (due to the thermal properties) but is not

desirable for the other mining systems, such as the compressed

air and dewatering systems that do not have the large filter

effect.

The ANN prediction model resulted in the most robust

prediction (an acceptable average error with the lowest

TABLE 7 Ranking of prediction models based on application.

Ranking Large time Small time

constants (>2 h) constant (<2 h)

1 SVM ANN

2 ANN SVM

3 k-NN k-NN

maximum prediction error). However, the training and

prediction time was the longest of the three methods. This is not

a concern for the mining industry as all of the systems have time

constants in the vicinity of minutes and as a result, a prediction

time within seconds is negligible.

The k-NN prediction model was not able to achieve an

average error of 5% with the provided dataset. The k-NN

prediction model did exhibit the lowest training and prediction

time. However, this is not necessary for the mining industry due

to the large time constants of the various systems (ventilation

and refrigeration, compressed air and dewatering).

Incorporating all the factors, the various methods can be

ranked based on the time constants of the respective system. The

mining systems can largely be divided into two groups:

1. Large time constants (larger than 2 h)

• Ventilation system

2. Small time constants (less than 2 h)

• Compressed air system

• Dewatering system

The above groupings are a guide as the type of application

and can reduce and extend the time constants. Thus, the

time constants should be measured and the respective group

can then be determined. Once the group is determined, the

adequate prediction model can be chosen according to Table 7.

The ranking in Table 7 is based on a uniform dataset. If the

dataset is not uniform, the ANN prediction model is most

applicable due to it resulting in the most robust prediction

results.

3.5. Simulation implementation

The ventilation system is characterized by a time constant

larger than 2 h and as a result, the SVM prediction method is

more suitable. The theoretical impact of the prediction model

can be obtained through simulation. The water temperature is

provided to the refrigeration system and the power consumption

required is simulated. This is then compared to the present
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power consumption. As a result, the prediction model is able to

reduce the power consumption on average by 215 kW. This is

applicable to the summer which is equivalent to R1.33-million

per annum ($82 900) (see text footnote1).

4. Conclusion

The deep-level mining industry lacks integrated dynamic

control. There are numerous factors that contribute to the

lack of dynamic control, with the largest contributor being a

lack of sensor equipment and data. The use of ML prediction

techniques can be used in integrated dynamic control systems

with limited data and sensor equipment, and was identified as

a possible solution that can be implemented in the deep-level

mining industry.

This study utilized various ML prediction techniques

(namely ANN, SVM and k-NN) to predict the water

temperature required to achieve a desired discharge temperature

of a Bulk Air Cooler supplying chilled air underground

to a deep-level mine. The application also serves as basis

for comparison of these techniques within the deep-level

mining industry by using the specific mine as a case

study. It is expected that the methodology will yield similar

results in other deep-level mines as well, seeing as it was

developed to be a generically adaptable method to address

the lack of integrated dynamic control in the deep-level

mining environment.

For the case studymine, the SVM predictionmodel achieved

the lowest average error (1.97%) but also exhibited a large

maximum error. This is not a concern for the ventilation system

which acts as a large filter with the large time constant. The

slowest training and prediction time was achieved by the ANN

predictionmodel (total of 2.75 s) which is more than sufficient in

the deep-level mining industry with the smallest time constants

in the vicinity of minutes. The ANN prediction model achieved

the most robust predictions for the water temperature due

to the data-points not being evenly distributed across the

modeling space.

The SVM prediction was more suitable for the ventilation

system due to the large time constant of the system. The

implementation thereof could result in an energy saving of

215 kW or 2.9% of the ventilation and refrigeration system,

equivalent to R1.33-million per annum ($82 900) (see text

footnote1).

Future research is required to determine the strategy for

implementation and the sustainability thereof in the unique

deep-level mining environment. It is also proposed that the

strategy be implemented on other mines to confirm that the

results are similar to the results obtained from implementing

the strategy at the case study mine, as expected. Further, it is

suggested that future work evaluates the impact of data features

on the accuracy of the prediction models to determine the best

accuracy for capital cost. The comparison of the training of the

prediction times can also be further evaluated to determine the

variation in results due to dataset features and dataset size.
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