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Gastric cancer remains an enormous threat to human health. It is

extremely significant to make a clear diagnosis and timely treatment of

gastrointestinal tumors. The traditional diagnosis method (endoscope, surgery,

and pathological tissue extraction) of gastric cancer is usually invasive,

expensive, and time-consuming. The machine learning method is fast and

low-cost, which breaks through the limitations of the traditional methods as

we can apply the machine learning method to diagnose gastric cancer. This

work aims to construct a cheap, non-invasive, rapid, and high-precision gastric

cancer diagnostic model using personal behavioral lifestyles and non-invasive

characteristics. A retrospective study was implemented on 3,630 participants.

The developed models (extreme gradient boosting, decision tree, random

forest, and logistic regression) were evaluated by cross-validation and the

generalization ability in our test set. We found that the model developed

using fingerprints based on the extreme gradient boosting (XGBoost) algorithm

produced better results compared with the other models. The overall accuracy

of which test set was 85.7%, AUCwas 89.6%, sensitivity 78.7%, specificity 76.9%,

and positive predictive values 73.8%, verifying that the proposed model has

significant medical value and good application prospects.

KEYWORDS

gastric cancer, non-invasive, machine learning, behavioral lifestyles, retrospective

study

Introduction

Gastric cancer (GC) is a common malignancy arising from the epithelium of the

gastric mucosa, with the third-highest mortality rate among the cancers worldwide

(Bray et al., 2018), and approximately 478,508 new GC cases in China were confirmed

in 2020 (Sung et al., 2021). In most cases, early-stage GC are asymptomatic, and

a large proportion of patients are diagnosed at an advanced-stages (Correa, 2013).

Unfortunately, the prognosis of advanced GC is poor as a result, with an average five-year

survival rate of less than 25%. Suppose populations are screened early to identify those at
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risk of developing cancer or potential early patients. In that case,

the incidence of GC can effectively be reduced, and the 5-year

survival rate will be improved through appropriate intervention

and prevention (Selgrad et al., 2010). Hence, it is increasingly

urgent to seek a diagnosis method of non-invasive, cheap, and

time-saving GC identification with high accuracy to achieve

early GC prevention.

Currently, methods for diagnosing gastric cancer include

traditional approaches based on the physician diagnosis and

machine learning methods based on artificial intelligence (AI)

(Niu et al., 2020). The former specifically includes endoscopy

and histopathological examination (Karimi et al., 2014). Existing

circulating biomarkers for GC diagnosis have low sensitivity,

and GC diagnosis is only based on invasive procedures

such as upper gastrointestinal endoscopy, in spite of the

substantial diagnostic precision endoscopy can achieve, it may

cause discomfort in patients through an invasive pathway

(Leja and Linē, 2021), moreover, the cost-effectiveness of

intervention is unreasonable in part of the western populations.

The diagnosis of precancerous lesions or cancerous tissues

in pathological section examination requires physicians to

consume much time marking each region in proper order

(Wu et al., 2021). In contrast, machine learning methods show

more advantages than traditional methods, they can optimize

the feature extraction process and achieve better classification

performance and generalization ability (Münzenmayer et al.,

2009; Meng et al., 2021). Despite multiple linear regression

(Marill, 2004) and logistics regression are widely applied to

medical statistics analysis of influence factors and traditional

gastric cancer risk early warning. Nevertheless, these statistics

analysis methods have limitations that cannot deal well with

the nonlinear relationships in biological information. Whereas

machine learning (Handelman et al., 2018) (ML) is equipped to

coordinate the variance and deviation of original data since both

the nonlinear relationship of biomedical knowledge and higher-

order interactions between variables can be solved well (Deo,

2015).

To a great extent, the performance of machine learning

depends on the rationality of included variables. Lifestyle

behaviors such as diet, drinking, and smoking are considered as

significant causes of GC andmain targets for primary prevention

(Katzke et al., 2015). The infection of Helicobacter pylori (H.

pylori) is the leading cause of stomach-related diseases and

considered as a primary risk factor for GC (Wang et al.,

2014). In addition, previous studies have confirmed serum

pepsinogen characteristics as early diagnostic characteristics

with a substantial precision for gastric cancer (Bornschein

et al., 2012; Yuan et al., 2020). These characteristics are non-

invasive, simple, and available in the practical work, which can

be used as a reliable clinical diagnosis basis for gastric cancer

diagnostic. In this work, we collected 13 clinically relevant

variables: potential gastric cancer influencing factors (first-

degree relatives GC history, vegetable, smoking, etc.) and some

non-invasive clinical characteristics (serum pepsinogen level,

Hp infection, etc.).

The objectives of the present study were to evaluate and

sought out the optimal ML algorithm to develop an efficient,

low-cost, safe, and noninvasive diagnostic method for gastric

cancer. Fortunately, this study is the first to use both lifestyle

behavior information and noninvasive clinical characteristics to

diagnose gastric cancer.

Materials and methods

Methods overview

This work mainly includes five sections: data collection,

variable selection, feature extraction, model training, and

intelligent prediction. The framework of our experiment

procedure was showed in Figure 1. Information was

collected by measuring subjects using questionnaires

(self-reported). Investigators were demanded to uniform

standards and questioning patterns and conducted special

training on the questioning pattern and classification of

qualitative characteristics.

The selection criteria of independent variables included in

the machine learning model are as follows:

• Variables should be a potential GC influencing factor.

• Variables must possess the exact definition and use the

same measurement methods throughout the experiment

and investigation.

According to the criterion mentioned earlier, 13 variables

were eligible for further study (Table 1).

This study conducted a novel machine learning algorithm,

XGBoost, compared with three other machine learning

algorithms. The research data were divided randomly into

training and test sets with a ratio of 4:1 (2,904/726). GridSearch

(Bao and Liu, 2006) was used to find the optimal parameters

of the model. Evaluation indicators such as accuracy, area

under the receiver operator characteristic curve (AUC), positive

predictive value, and sensitivity were calculated to compare

the performance of algorithms. The best machine learning

algorithm with optimal parameters was obtained while the

highest AUC in our test set.

Ethics and consent

This study was approved and authorized by ethics approval.

The ethical review process for the medical institution is shown

in Figure 2, informed consent was obtained from all the patients

before enrolment, and the use of information must be approved

by the applicant or their guardian. The relevant laboratory
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FIGURE 1

The workflow of current research.

data during the survey period were retrieved from the patient’s

electronic medical records.

Study subjects

We conducted a retrospective study with 4,382 subjects from

September 2017 to June 2020, and the details of the survey

process were shown in Table 2.

The questionnaire consisted of baseline information

(age, sex, and nationality); lifestyle (smoking consumption

condition{at least a cigarette a day, > 1 year}, smokers were

asked for the number of cigarettes and duration of smoking,

drinking state{alcohol consumption at least twice a week, over

a year}, and the drink frequency; dietary habits (the intake of

salt more than 10 g a day as a high-salt diet, approximately

assessment intake of daily oil, protein{bean, egg, milk, and

meat}, spicy and sugar); green vegetables and fresh fruits

{> 3 times a week}; The first-degree relatives gastric cancer

history. Inclusion criteria during survey: (1) Guarantee a good

compliance during the physical examination; (2) Age 25–85

years. And the exclusion criteria are as follows: (1) Refuse to

sign informed consent; (2) History of esophageal, gastric polyp,

and ulcer; (3) Existence of gastrointestinal warning symptoms

such as gastrointestinal bleeding, persistent vomiting, anemia,

abdominal mass, and dysphagia. (4) Severe mental illness affects

normal investigation or compliance is poor, (5) Incomplete data

(absence data of quantitative characteristics or individual total

information missing rate>30%). In total, 3,630 subjects were

enrolled in further study, the details of sample inclusion and

elimination are shown in Figure 3.

Clinical and biochemical data collection

Clinical data included H. pylori, PGI, and PGII. If

these clinical indicators have been tested earlier, the relevant

laboratory data during the survey period were retrieved from

patient’s electronic medical records. If there is no previous

testing or record of clinical indicators, we would inform patients

to sign informed consent forms and visit the nearest medical

facility for examination, which included the serological markers

and H. pylori (Ono et al., 2000).

Statistical analyses

SPSS 19.0 software was used for statistical analysis.

Quantitative variables were expressed by mean ± SD, a T-

test was used to compare two continuous variable groups that

follow a normal distribution, and a Chi-square test was used to

compare the adoption rate or percentage of the categorical data.
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TABLE 1 Variable inclusion in ML algorithms.

Variables Attribute and

type

Details

Gender Categorical variable Female (0), male (1)

Age Continuous

variable

Age of subjects

Family gastric

cancer

Categorical variable Gastric cancer history of first-degree

relatives; No (0), yes (1)

H. Pylori test Categorical variable H. pylori infection; Negative

(–,0),positive (+,1)

Vegetable

intake

Categorical variable Regular (0), occasional (1)

Fruit intake Categorical variable Regular (0), occasional (1)

Protein intake Categorical variable Intake of milk or beans; Regular (0),

occasional (1)

PGI Continuous

variable

Serum pepsinogen I

PGII Continuous

variable

Serum pepsinogen II

High-salt diet Categorical variable Salt ≤10 grams a day (0), Salt>10 grams

a day (1)

PGR Continuous

variable

The ratio of pepsinogen i and

pepsinogen ii

Smoking Categorical variable >1 cigarette a day for more than a year

(1), else (0)

Alcohol Categorical variable At least once a day for more than a year

(1), else (0)

Variables with statistically significant differences in single factor

analysis were included in multivariate analysis, OR-value and

95% CI were calculated to assess the related factors. P<0.05 was

considered as a statistically significant difference.

Study outcome

According to the Operative Link on Gastritis Assessment

(OLGA, which is a judgment indicator of the gastric mucosa

atrophy degree in a patient by a professional physician and

obtained from the laboratory data) standards and the Sydney

level system (Dixon et al., 1996; Zhou et al., 2016), basic

statistical information of subjects was compared among the

NAG (non-atrophy group, OLGA-0 group), MAG (mild-

moderate atrophy group, OLGA I-II group), SAG (severe-

atrophy group, OLGA III-IV group) and GC (gastric cancer)

groups. In the machine learning prediction process, we split

the results into gastric cancer (+) and non-gastric cancer (-).

We defined the NAG, MAG, and SAG groups combined as the

non-gastric cancer group and compared them the gastric cancer

(GC) group.

Training algorithm

Machine learning aims to make the learned functions

apply well to the “new sample,” defining that the ability to

use the intellectual process to a new sample is known as

generalization ability. These algorithms attempt to excavate

from many historical data implicit rules and are used to predict

or classify. XGBoost (eXtreme Gradient Boosting) (Chen and

Guestrin, 2016) was constructed with the Scikit-Learn package

in Python. The architecture of the XGBoost is shown in Figure 4.

XGBoost is an efficient algorithm based on the Gradient Boosted

Decision Tree (GBDT) (Safavian and Landgrebe, 1991), which

has attracted extensive attention because of its excellent learning

capacity and efficient training speed. Compared with the GBDT,

the proposed XGBoost algorithm mainly optimized objective

function through the following three steps:

• The second order Taylor expansion removes constant and

optimizes the loss function term.

• Regularization term expansion, removes constant term,

and further optimizes regularization term.

• The final objective function is obtained by combining the

first- and second-term coefficients.

The algorithm principle of XGBoost

There is a training dataset
{

DT = (x1, y1), (x2, y2), . . . , (xn, yn)
}

, parameter x means

the input feature part of the training dataset, and parameter

y represents the label (OLGA-I, II, III, and IV levels), sample

(xi, yi) ranks ith in the training dataset, the theory was as follows.

1. First, initialized the model and get a general expression for

the prediction:

ŷi =

K
∑

k=1

fk(xi)

Where fk (xi) is the initialized learner.

2. The overall objective function can be written as:

ζ (8) =
∑

i

l(yi, ŷi)+
∑

k

�(fk)

Where the loss l(yi, ŷi) and the regularization term �(f ):

�(f ) = γ T +
1

2
λ‖w‖2
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FIGURE 2

The ethical review process of subjects.

3. The quadratic Taylor expansion can

be obtained by substituting it into the

objective function:

L(t) =

n
∑

i=1

[l(yi, ŷ
(t−1)

i ) + gift(xi) +
1

2
hift

2(xi)] +
∑

k

�(fk)

Where gi and hi are, respectively, the first and second

derivatives of l(yi, ŷ
(t−1)
i ), removing constant term l(yi, ŷ

(t−1)
i ),

given the leaf node Ij = {i|q(xi) = j}, mapping the sample to the

leaf space (T) in order to get a quadratic function of ωj, obtained

the final objective function:

L̃(t) =

n
∑

i=1

[gift(xi) +
1

2
hift

2(xi)] + (γT +
1

2
λ

T
∑

j=1

ω2
j )

=

T
∑

j = 1

[(
∑

i∈Ij

gi)ωj +
1

2
(
∑

i∈Ij

hi + λ)ω2
j ]+γT

=

T
∑

j=1

[Gjωj +
1

2
(Hj + λ)ω2

j ]+ γT

4. Determined the optimal segmentation point and the

optimal objective value:

TABLE 2 Details of annual survey subjects and information collection.

Year 2017 2018 2019 2020 Amount

Survey samples 859 1,251 1,287 985 4,382

ω∗
j = −

Gj

Hj + λ

L̃(t) = −
1

2

T
∑

j=1

G2
j

Hj + λ
+ γT

5. The Segmentation Point With MaximumGainWas Found

by GL, HL, GR, and HR, and the Output Is the Split With

max Score:

Score = Max(Score,
G2
L

HL + λ
+

G2
R

HR + λ
−

G2

H + λ
)

Where G means the sum of the second derivatives of all the

samples, and H means the sum of the first derivatives of all the

samples, G= GL + GR and H= HL + HR.
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FIGURE 3

The process of inclusion and elimination.

Tuning parameters of XGBoost

The parameters of XGBoost consist mainly of general

parameter, booster parameter, and objective parameter. We set

the general parameters (nthread and silent) to a default value, the

objective parameter as “Linear,” and the reg_lambda parameter

to 0.4 to prevent model overfitting. The booster parameters were

tuned as follows:

• Booster parameters adopted default values of which the

max_depth=6 and min_child_weight=1. A GridSearch

was used to find optimum n_estimator and learning_rate to

search the maximum number of iterations and appropriate

learning efficiency.

• The n_estimator search range was set from 0 to 1,000. The

step was 100, the initial learning rate was 0.01, step of

0.02. We selected the optimal parameters with the highest

accuracy, and it was found that the n_estimator was 100

and the learning rate was 0.31 works optimal.

• Then performed, a further precise search for these

parameters, n_estimator was set from 0 to 100 and the

step was 1, the initial learning rate was 0.29, step=0.005.

While n_estimator=18 and learning_rate=0.305, XGBoost

algorithm reached higher accuracy.

• N_estimator was set to 18, and the learning rate was

0.305, fixed at this stage. GridSearch was be used to select

the optimum max_depth and sub_sample parameters to

find the maximum depth of the tree. The proportion of

random sampling, a finite set for grid search max_depth

was {3,4,5,6,7,8,9,10}, the search range of sub_sample was

set from 0.55 to 1, the optimal parameters of max_depth

and sub_sample were 5 and 0.9, which won the highest

accuracy and the parameter of optimal performance was

displayed in Table 3.
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FIGURE 4

The framework of extreme gradient boosting algorithm.

TABLE 3 Parameter presupposition of XGBoost algorithm.

Parameters Values Parameters Values

learning_rate 0.305 n_estimator 18

max_depth 5 min_child_weight 1

sub_sample 0.9 n_ jobs 48

reg_lambda 0.4 reg_alpha 0

Testing algorithm

After completing the training of the gastric cancer diagnostic

model training, a test set consisting of 726 subjects was applied

to evaluate the algorithm’s performance. The receiver operating

characteristics curve (ROC) was plotted by a threshold of 0.5. In

total, four common effect indicators were used to evaluate the

performance of different algorithms in GC diagnostic tasks:

Acc = TP + TN
TP + TN + FP + FN

Sens = TP
TP + FN

Spec = TN
TN + FP

PPv = TP
TP + FP

Where,

–True Positive (TP): Correctly predicted as positive.

–True Negative (TN): Correctly predicted as negative.

–False Positive (FP): Incorrectly predicted as positive.

–False Negative (FN): Incorrectly predicted as negative.

Result

Statistical analyses of baseline
information

As shown in Table 4, 3,630 subjects were finally enrolled

in this study. Of these subjects, 56.1% (2,034/3,630) were

men and 43.9% (1,596/3,630) women, with an average age of

54.76±11.24 (years) and sex ratio of 1.276:1 (men/women).

There were 2,983 samples in the NAG group (82.2%), 446

in the MAG group (12.3%), 77 in the SAG group (2.1%),

and 124 in the GC group (3.4%), while the infection rate

of H. pylori was 68.9%. The pepsinogen I (PGI) levels were

statistically significantly lower in men than women in the

OLGA-II and OLGA-III groups (p<0.05), and the levels of

pepsinogen II (PGII) in the OLGA-IV group was statistical

significantly higher than OLGA-I, OLGA-II, and OLGA-III

groups (p < 0.05).

We performed multivariate analysis by selecting variables (p

< 0.05) in Table 4 and found statistically significant differences

in age, family history, vegetables, fruits, alcohol, smoking, high

salt diet, H. pylori, and PGII (Table 5).

Themodel was constructed according to the beta coefficients

obtained for the independent characteristics. The clinical
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TABLE 4 Characteristics of the subjects.

Characteristics Total NAG group

(n = 2,983)

AG/GC group (n = 647) P&

Total MAG SAG GC

Sex 0.408

Male, n (%) 2,034 1,662 (55.7) 372 (57.5) 251 (56.3) 46 (59.7) 75 (60.5)

Female, n (%) 1,596 1,321 (44.3) 275 (42.5) 195 (43.7) 31 (40.3) 49 (39.5)

Age (years) <0.001

<45 760 659 (22.1)ac 101 (15.6) 63 (14.1)b 20 (26.0)a 18 (14.5)

45-65 2252 1863 (62.5)a 389 (60.1) 298 (66.8)a 46 (59.7)a 45 (36.3)

>65 618 461 (15.5)ac 157 (24.3) 85 (19.1)ab 11 (14.3)a 61 (49.2)

Family history 0.024

Yes, n (%) 433 339 (11.4)c 94 (14.5) 68 (15.2) 11 (14.3) 15 (12.1)

No, n (%) 3,197 2,644 (88.6) 553 (85.5) 378 (84.8) 66 (85.7) 109 (87.9)

Vegetable <0.001

Occasional, n (%) 1,019 843 (28.3)ab 176 (27.2) 120 (26.9) 27 (35.1)a 29 (23.4)

Regular,±n (%) 2,611 2,140 (71.7)b 471 (72.8) 326 (73.1)b 50 (64.9)a 95 (76.6)

Fruits 0.011

Occasional, n (%) 2,508 2,088 (70.0)ac 420 (64.9) 266 (59.6)a 50 (64.9)a 114 (91.9)

Regular, n (%) 1,122 895 (30.0)ac 227 (35.1) 180 (40.4)a 27 (35.1)a 10 (8.1)

Alcohol 0.023

Yes, n (%) 2,805 2,301 (77.1) 504 (77.9) 349 (78.3) 57 (74.0) 98 (79.0)

No, n (%) 825 682 (22.9) 143 (22.1) 97 (21.7)b 20 (26.0) 26 (21.0)

Smoking 0.025

Yes, n (%) 2,756 2,266 (76.0) 490 (75.7) 328 (73.5) 64 (83.1) 98 (79.0)

No, n (%) 874 717 (24.0)b 157 (24.3) 118 (26.5)b 13 (16.9)a 26 (21.0)

H. pylori <0.001

Positive, n (%) 2,501 1,930 (64.7)abc 571 (88.3) 376 (84.3) 71 (92.2) 124 (100)

Negative, n (%) 1,129 1,053 (35.3)abc 76 (11.7) 70 (15.7)ab 6 (7.8)a 0 (0)

Milk 0.251

Regular, n (%) 500 420 (14.1) 80 (12.4) 52 (11.7)b 12 (15.6) 16 (12.9)

Occasional, n (%) 3,130 2,563 (85.9) 567 (87.6) 394 (88.3) 65 (84.4) 108 (87.1)

Bean 0.006

Regular, n (%) 1,094 928 (31.1)ab 166 (25.7) 114 (25.6)ab 53 (68.8) 96 (77.4)

Occasional, n (%) 2,536 2,055 (68.9)ab 481 (74.3) 332 (74.4)ab 24 (31.2) 28 (22.6)

High-salt diet 0.024

Yes, n (%) 381 329 (11.0)bc 52 (8.0) 30 (6.7)a 5 (6.5)a 17 (13.7)

No, n (%) 3,249 2,654 (89.0) 595 (92.0) 461 (93.3) 72 (93.5) 107 (86.3)

PGI(ng/ml), mean (SD) 118.9 (98.0) 119.5ab

(76.5)

115.8 (76.0) 110.1a

(74.9)

102.7a (61.8) 144.6

(81.3)

0.261

PGII(ng/ml), mean (SD) 11.5 (9.7) 11.3a

(9.5)

12.3 (10.4) 11.7

(9.6)

10.5a (8.5) 15.1

(13.5)

0.022

PGR, mean (SD) 13.6 (13.5) 13.8

(12.7)

13.0 (16.9) 12.9

(19.6)

12.8 (8.9) 13.2

(7.5)

0.201

GC, gastric cancer; SAG, severe atrophic; MAG, mild–moderate atrophic; NAG, non-atrophic.

Regular (≥ 3 times/week) and occasional (<3 times/week).
a(MAG, SAG, and NAG) group compared with the GC group, p < 0.05.
b(MAG and NAG) group compared with the SAG group, p < 0.05.
cNAG group compared with the MAG group, p < 0.05.

P& Total of AG/GC group vs. NAG group (p-value).
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TABLE 5 Multivariate logistics regression analysis of influencing factors of gastric cancer.

Characteristic OR 95%CI P value β

Age(years) <45 Reference

45–65 3.172 1.786–5.629 0.379 1.154

>65 4.199 2.716–6.495 0.043 1.435

Family History No, n (%) Reference

Yes, n (%) 1.118 0.605–2.067 0.026 0.111

Vegetable Occasional,n(%) Reference

Regular, n (%) 0.384 0.255–0.583 0.031 −0.959

Fruits Occasional,n(%) Reference

Regular, n (%) 0.156 0.113–0.287 <0.01 −1.873

Alcohol No, n (%) Reference

Yes, n (%) 2.951 2.398–4.650 <0.01 1.082

Smoking No, n (%) Reference

Yes, n (%) 1.547 0.840-3.791 0.038 0.438

H. pylori Negative, n (%) Reference

Positive, n (%) 4.039 2.641–6.207 <0.01 1.396

PGII(ng/ml) <9.2 Reference

≥9.2 1.758 1.324–4.016 <0.01 0.564

TABLE 6 Clinicopathologic characteristics of subjects in the training and test dataset.

Characteristic Training dataset (n = 2,904,%) Test dataset (n = 726,%)

Age (years) <45 657 (22.6%) 103 (14.2%)

45–65 1,713 (59.0%) 539 (74.2%)

>65 534 (18.4%) 84 (11.6%)

Family History No, n (%) 351 (12.1%) 82 (11.3%)

Yes, n (%) 2,553 (87.9%) 644 (88.7%)

Vegetable Occasional, n (%) 817 (28.1%) 202 (27.8%)

Regular, n (%) 2,087 (71.9%) 524 (72.2%)

Fruits Occasional, n (%) 2,064 (71.1%) 444 (61.2%)

Regular, n (%) 840 (28.9%) 282 (38.8%)

Alcohol No, n (%) 663 (22.8%) 162 (22.3%)

Yes, n (%) 2,241 (77.2%) 564 (77.7%)

Smoking No, n (%) 703 (24.2%) 171 (23.6%)

Yes, n (%) 2,201 (75.8%) 555 (76.4%)

H. pylori Negative, n (%) 913 (31.4%) 216 (29.8%)

Positive, n (%) 1,991 (68.6%) 510 (70.2%)

PGII (ng/ml) <9.2 1,328 (45.7%) 323 (43.6%)

≥9.2 1,576 (54.3%) 403 (56.4%)

Gastric cancer No, n (%) 2,805 (96.6%) 701 (96.5%)

Yes, n (%) 99 (3.4%) 25 (3.5%)

characteristics of the training and test dataset are shown in

Table 6.

Performance of machine learning

Summarized evaluation results (test set for prediction) of

the XGBoost algorithm and the other three machine learning

algorithms are presented in Table 7. The corresponding training

and test sets receiver operating characteristics curves of binary

classifications (non-cancer as negative GC group and gastric

cancer as positive GC group) were shown in Figure 5. The

extreme gradient boosting algorithm achieved the optimal effect

with an AUC of 0.891 (95% CI: 0.875–0.907), with a sensitivity

of 0.787, specificity of 0.769, and positive predictive value of

0.738 at the operating point determined by the maximum
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Youden Index (Youden, 1950). The XGboost algorithm achieved

significantly higher both AUC (0.891) and accuracy (0.857)

compared with the other three machine learning algorithms

(all P < 0.01). Compared with the random forest and logistic

regression algorithms, the mean value of AUC in the decision

tree algorithm was significantly different (P < 0.01), while no

significant difference in AUC between random forest and logistic

regression (P = 0.17).

The algorithm of the decision tree had the highest score

of 0.566 in terms of the maximum Youden Index (sensitivity

+ specificity-1) among four algorithms, followed by XGBoost

(0.556), logistic regression (0.542), and random forest (0.513)

algorithm. Interestingly, the XGBoost algorithm performed the

least specificity but the optimal sensitivity compared with the

other three (all P < 0.01). Discrimination of the mean sensitivity

between the XGBoost algorithm and the second highest one was

4.2%. In comparison, the discrimination of the mean positive

predictive value of the XGBoost algorithm and the second one

was 4.9%. Compared with XGBoost (73.8%), random forest

(66.3%), and decision tree (68.9%), a baseline comparison

logistic regression had the lowest PPV of 53.1%.

Feature importance of variables among
algorithms

We further analyzed the feature importance of these eight

variables among the four machine learning algorithms by

calculating the feature score (F-score) of each variable for the

predicted results, the higher the feature score is, the more

contribution a variable makes to the detective of gastric cancer,

and the relative contribution of each characteristic vector

for mean AUC was quantified by the normalization of F-

score. Figure 6 presented the variable rankings among different

algorithms, although some discrepancies did exist, XGBoost

and decision tree were very similar in variable rankings.

Of these four algorithms, H. pylori, smoking, and age were

considered as top-ranked variables while PGII had the least

contribution to gastric cancer prediction. Compared with the

other three algorithms, logistics regression model paid more

attention to age (31%) and family history (14%) variables,

ranked 1st and 3rd, respectively, while the smoking variable

had a smaller influence on accurate prediction of the gastric

cancer status (ranked 4th). We selected the XGBoost model

(performed optimal in test set) for further analysis, and found

that H. pylori was the most reliable variable, closely followed

by smoking, age, vegetable intake, alcohol consumption, family

history of GC, fruits, and PGII, which is similar to the

previous study (Bornschein et al., 2012; Wang et al., 2014).

Whereas further studies are required to explain the effectiveness

of PGII in the decision tree-based algorithm gastric cancer

prediction model.

Discussion

The majority of patients with early GC are curable by

appropriate treatments.With the progressmade in radiotherapy,

chemotherapy, and endoscopic resection, the 5-year survival

rate of early GC can reach at least 95% (Song et al., 2017;

Tan, 2019). Hence, early diagnosis plays a vital role in reducing

the fatality rate (Karimi et al., 2014). Stomach endoscopic

visualization is the only method available currently to detect

gastric neoplasia and its precursors (Fernandes and Devis,

1994). However, despite the growing body of evidence on the

practicability of endoscopic diagnostic for GC, the evidence

remains poor, for it is based on studies other than randomized

controlled trials (Hamashima, 2016). In addition, endoscopic

diagnosis has the limitation of infection, invasiveness, and

expensiveness. Thus, there is a crying demand to develop a safe,

non-invasive, and cheap gastric cancer prediction diagnostic

method with high accuracy for the early GC stage population.

This study found that age, family history, smoking, alcohol,

fruits, vegetables, H. pylori infection, and PGII(ng/ml) were

statistically significant factors for GC diagnosis. The multiple

logistic regression analysis (Table 4) showed that age was one

of the risk factors for the AG/GC group, especially subjects

older than 65 years (OR = 4.20). Other risk factors included

family history (OR = 1.12), alcohol (OR = 2.95), smoking (OR

= 1.55), H. pylori infection (OR = 4.04), and PGII (OR =

1.76), while the intake of fruit (OR = 0.16) and vegetable (OR

= 0.38) were two potential protective factors for the gastric

carcinoma. A 20-year prospective cohort study in a Japanese

population reported that the combination of serum pepsinogens

(PGs) levels and H. pylori antibody was a powerful indicator

of GC risk (Ikeda et al., 2016). Kikuchi et al. (1994) found

serum pepsinogens could reflect the morphology and function

of the gastric mucosa. Combining high-pepsinogen II levels

with low-pepsinogen I/II ratios may be an efficient diagnostic

method for gastric cancer in populations at increased risk.

Shin et al. (2010) found that individuals with one first-degree

family member with GC (OR = 2.7, 95% CI: 1.7–4.3) had

a higher risk of gastric cancer. Furthermore, individuals with

at least two first-degree family members with gastric cancer

(OR = 9.6, 95%CI: 1.2–73.4) were at higher risk than single

first-degree relatives. A meta-analysis study (Poorolajal et al.,

2020) consisting of 232 studies demonstrated that H. pylori

infection (OR = 2.65, 95%CI: 2.23–3.14) and current smoking

(OR = 1.61, 95%CI: 1.49–1.75) were the first and second

most important risk factors for gastric cancer, while fresh fruit

(OR = 0.48, 95%CI: 0.37–0.63) and green vegetable (OR =

0.62, 95%CI: 0.49–0.79) intake were the top one and top two

protective factors for GC. Our findings were consistent with

previous reports.

Some researchers use tissue biomarkers (TFF2, mir-124a-3p,

etc.), innovative blood biomarkers, and other low-cost markers

(CEA, CA19-9, MUC16, etc.) to predict and evaluate the risk
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TABLE 7 Performance among algorithms on the diagnosis of gastric cancer.

Algorithm AUC

mean (SD)

Accuracy

mean (SD)

Sensitivity

mean (SD)

Specificity

mean (SD)

PPV

mean (SD)

XGBoost 0.896 (0.005) 0.857 (0.008) 0.787 (0.010) 0.769 (0.011) 0.738 (0.009)

Random forest 0.786 (0.019) 0.724 (0.015) 0.559 (0.003) 0.983 (0.010) 0.663 (0.011)

Logistic regression 0.782 (0.017) 0.715 (0.010) 0.628 (0.019) 0.885 (0.013) 0.531 (0.004)

Decision Tree 0.833 (0.018) 0.784 (0.021) 0.745 (0.010) 0.821 (0.015) 0.689 (0.006)

AUC, area under the receiver operating characteristic curve; SD, standard deviation; PPV, positive predictive value; XGBoost: extreme gradient boosting.

FIGURE 5

Receiver operating curve for algorithms.

of gastric cancer. The comparison between other studies and

our research results is shown in Table 8. For example, Kuo

et al. (2017) found that serum TFF2 levels were associated

with the degree of SPEM and the risk of GC. However,

tissue biomarkers have the disadvantages of being invasive, the

risk of adverse events (stress reaction), and the performance

depend to some extent on the sampling site. Innovative blood

biomarkers such as cell-free DNA and RNA (miR-25, miR-

486-5p, etc.) achieve high accuracy in early diagnosis and can

be obtained through minimally invasive methods. Zhu et al.

(2014) found that a combination of plasma miR-92a, miR-16,

and miR-25 indicated as a potential biomarker for diagnosing
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FIGURE 6

Characteristics ranking among di�erent algorithms.

non-cardia gastric cancer, with an AUC of 0.812. Liu et al.

(2011) showed that the performance of machine learning using

plasma miR-20a, miR-1, miR-423-5p, and miR-34 reached an

AUC of 0.867. Unfortunately, innovative blood biomarkers are

not available inmanymedical institutions due to complexity and

expensiveness. Non-invasive gastric cancer markers researcher

Zhu et al. (2020) proposed a gastric cancer diagnosis method

using the GBDT algorithm based on subjects’ non-invasive

characteristics (CEA, CA19-9, etc.), with an accuracy of 0.83.

Nevertheless, conventional serum tumor biomarkers such as

carcinoembryonic and carbohydrate antigen (CA) 19-9 are

unsuitable for early gastric cancer diagnosis due to insufficient

specificity and sensitivity.

The prevalence rate of gastric cancer is 3.4% (124/3,630)

in this study, there is a problem of imbalance in training

samples. We simulated 500 positive samples of gastric cancer

by SMOTE algorithm (Blagus and Lusa, 2013), then set the

scale_pos_weight parameter to 0.178 (positive sample/negative

sample), the purpose is to over-sample few sample categories

and under-sample the various sample categories to balance the

learning degree of the two types of labels. In the unbalanced

problem, the value of AUC has a higher priority than accuracy,

and the positive predictive value is more relevant in a clinical

setting because it assesses the probability that patients who

test positive will develop the target cancer. The sensitivity

of diagnostic tests is more important than specificity in

the early diagnosis of cancer-related diseases (Pinsky, 2015).

Whereas the low prevalence in the gastric cancer diagnostic

environment resulted in a very high negative predictive value,

which was useless in rare disease to assess the performance

of the model for providing less information (Pinsky, 2015).

Compared with the other three models, the XGBoost model

performed optimal in sensitivity (78.7%) and positive predictive

value (73.8%). Logistic regression (Marill, 2004) is commonly

applied to medical statistical analysis of the influencing factors.

The main reason logistic regression in terms of AUC and
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TABLE 8 Comparison of di�erent studies.

Studies Characteristics used for

prediction

Weakness Accuracy,%

Kuo et al. (2017) serum TFF2, serumTFF3, etc. Invasive (bleeding,

stress reaction, etc.)

73.4

Zhu et al. (2014) miR-(16, 25, 92a, etc.) complexity and expensiveness 78.2

Liu et al. (2011) miR-(20a, 34, 423-5p, etc.) 84.9

Zhu et al. (2020) CEA, CA19-9, CA-125, NLR, Hb,

Alb, etc.

unsuitable for early diagnosis 83.1

Ours PGII, H. pylori, smoking, etc. Subjectivity 85.7*

TFF, trefoil factor; CEA, carcinoma embryonic antigen; CA, carbohydrate antigen; NLR, neutrophil-lymphocyte ratio; Alb, albumin; Hb, hemoglobin; PGII, Pepsinogen II; H. pylori,

Helicobacter pylori.
*The maximum accuracy obtained.

positive predictive value is lower than XBGoost is that the

characteristics of logistic regression of each dimension are

independent, so it only has the ability to the existing feature

space segmentation (Hou et al., 2020). Moreover, XGBoost does

not raise the dimension of the feature space and seeks the

split-point with the smallest residuals, so it will automatically

seek other features that can minimize residuals under the

current split subtree (Li et al., 2021), and in this manner,

it will automatically have the performance of finding good

feature combinations and give essential elements according to

the residuals decrease. The decision tree is used usually in feature

selection or classification problems with a significant difference

in data attribute range and sparse data. It is widely used

in financial sub-control (Nobre and Neves, 2019), medically

assisted diagnosis, and other fields with satisfactory results.

However, compared with the decision tree, the random forest

has higher stability, the prediction results are obtained by

referring to multiple decision trees, which reduces the influence

of outliers. In this study, random forest and decision tree

algorithms have obtained AUC of 0.79 and 0.83, respectively.

The better effect of decision trees may be due to the inaccurate

prediction of some decision trees due to the influence of outliers.

Early studies have shown that XGBoost works better in low-

dimensional data, XGBoost has better generalization ability and

stability when dealing with unbalanced data sets. Small changes

in hyperparameters of the random forest will affect almost all the

decision trees and change the prediction results, while XGBoost

pays more attention to functional space and can achieve stable

and efficient prediction with very few parameters (Li et al.,

2018). Random forest is an ensemble classifier method based

on a decision tree with strong noise resistance and robustness.

Compared with the XGBoost algorithm, the random forest

performs better in high-dimensional data with more noise

(Kong et al., 2017).

The most significant highlight of the current study is that

this is the first study to develop a GC-predictive model based

on lifestyle behavior and non-invasive characteristics using

machine learning methods. In addition, the medical cost of

this study is acceptable, and similar information of subjects is

procurable in many digestive system departments of medical

institutions. Nevertheless, limitations also existed in this study.

A significant disadvantage of this study is that the sample

size of gastric patients with gastric cancer is limited, leading

to differences in the learning degree of different types of the

training process so that the learning degree of patients with

non-gastric cancer is easy to overfit but still under-fitting for

patients with gastric cancer. Second, there would be some

subjective bias involving the variable assignments and the survey

of lifestyle behavior, which may influence the prediction results.

In addition, a limitation of this approach was not the part of

a clinical trial and cannot be used to diagnose gastric cancer

clinically until further investigation and approval of authorities.

At last, the results require further validation because of the

relatively imbalanced small sample size.

Conclusion

The study aimed at working out the problem that

the prediction accuracy and the generalization performance

of proposed methods are not satisfied in the field of

predicting the risk of suffering from gastric cancer. The

gastric cancer status of random samples was predicted based

on the personal information, eating habits, family history of

the included population surveyed, and several non-invasive

biochemical data collections. Our research has shown that the

novel machine-learning algorithm XGBoost achieved better

discriminatory precision in identifying individuals’ gastric

cancer status than the other three algorithms, which is the

optimal choice for developing a GC diagnosis model using

a combination of non-invasive clinical characteristics and

lifestyle behaviors factors. We will better estimate the risk

of potential patients with gastric cancer and provides new
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ideas for intelligent prevention of gastrointestinal diseases in

the future.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding authors.

Ethics statement

The studies involving human participants were reviewed

and approved by Nos. 2015-082 and 2019-132, authorized by

the Second Affiliated Hospital of Zhejiang University. The

patients/participants provided their written informed consent to

participate in this study.

Author contributions

SJ, HG, JS, and JW: conceptualization. JS, SJ, and HG:

methodology. JS and SJ: software. JS and HG: validation. SJ

and HG: formal analysis and visualization. JW: resources and

supervision. YT and SJ: data curation. SJ: writing—original

draft preparation. SJ and JW: writing—review and editing.

YT and JW: project administration and funding acquisition.

All authors have read and agreed to the published version of

the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Bao, Y., and Liu, Z. (2006). “A Fast grid search method in support vector
regression forecasting time series,” in Intelligent Data Engineering and Automated
Learning? IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol. 4224,
eds E. Corchado, H. Yin, V. Botti, and C. Fyfe (Berlin; Heidelberg: Springer).
doi: 10.1007/11875581_61

Blagus, R., and Lusa, L. (2013). SMOTE for high-dimensional class-imbalanced
data. BMC Bioinf. 14, 106. doi: 10.1186/1471-2105-14-106

Bornschein, J., Selgrad, M., Wex, T., Kuester, D., and Malfertheiner, P.
(2012). Serological assessment of gastric mucosal atrophy in gastric cancer. BMC
Gastroenterol. 12, 10. doi: 10.1186/1471-230X-12-10

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal,
A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68,
394–424. doi: 10.3322/caac.21492

Chen, T., and Guestrin, C. (2016). “XGBoost: a scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’16) (New York, NY: Association for Computing
Machinery), 785–794. doi: 10.1145/2939672.2939785

Correa, P. (2013). Gastric cancer: overview. Gastroenterol. Clin. North Am. 42,
211–217. doi: 10.1016/j.gtc.2013.01.002

Deo, R. C. (2015). Machine learning in medicine. Circulation. 132, 1920–1930.
doi: 10.1161/CIRCULATIONAHA.115.001593

Dixon, M. F., Genta, R. M., and Yardley, J. H. (1996). Classifcation and
grading of gastritis. The updated Sydney System. International Workshop on the
Histopathology of Gastritis. Houston 1994. Am J Surg Pathol. 20, 1161–1181.
doi: 10.1097/00000478-199610000-00001

Fernandes, E., and Devis, G. (1994). Endoscopic examination of the operated
stomach: a review and a systematic approach. J. Gastroenterol. 29, 792–796.
doi: 10.1007/BF02349290

Hamashima, C. (2016). Benefits and harms of endoscopic diagnostic for gastric
cancer.World J. Gastroenterol. 22, 6385–6392. doi: 10.3748/wjg.v22.i28.6385

Handelman, G. S., Kok, H. K., Chandra, R. V., Razavi, A. H., Lee, M. J., and
Hamed, A. (2018). eDoctor: machine learning and the future of medicine. J. Intern.
Med. 284, 603–619. doi: 10.1111/joim.12822

Hou, N., Li, M., He, L., Xie, B., Wang, L., Zhang, R., et al. (2020). Predicting 30-
days mortality for MIMIC-III patients with sepsis-3: a machine learning approach
using XGboost. J. Transl. Med. 18, 462. doi: 10.1186/s12967-020-02620-5

Ikeda, F., Shikata, K., Hata, J., Fukuhara, M., Hirakawa, Y., Ohara, T., et al.
(2016). Combination of Helicobacter pylori antibody and serum pepsinogen as a
good predictive tool of gastric cancer incidence: 20-year prospective data from the
Hisayama study. J. Epidemiol.26, 629–636. doi: 10.2188/jea.JE20150258

Karimi, P., Islami, F., Anandasabapathy, S., Freedman, N. D., and
Kamangar, F. (2014). Gastric cancer: descriptive epidemiology, risk factors,
diagnostic, and prevention. Cancer Epidemiol. Biomarkers Prev. 23, 700–713.
doi: 10.1158/1055-9965.EPI-13-1057

Katzke, V. A., Kaaks, R., and Kühn, T. (2015). Lifestyle and cancer risk. Cancer J.
21, 104–110. doi: 10.1097/PPO.0000000000000101

Kikuchi, S., Wada, O., Miki, K., Nakajima, T., Nishi, T., Kobayashi,
O., et al. (1994). Serum pepsinogen as a new marker for gastric
carcinoma among young adults. Research group on prevention of
gastric carcinoma among young adults. Cancer. 73, 2695–2702.
doi: 10.1002/1097-0142(19940601)73:11<2695::aid-cncr2820731108>3.0.co;2-o

Kong, Q., Gong, H., Ding, X., and Hou, R. C. (2017). “Classification application
based on mutual information and random forest method for high dimensional
data,” in 2017 9th International Conference on Intelligent Human-Machine Systems
and Cybernetics (IHMSC) (Qingdao).

Kuo, H. Y., Chang, W. L., Yeh, Y. C., Tsai, Y. C., Wu, C. T., Cheng, H. C., et al.
(2017). Serum level of trefoil factor 2 can predict the extent of gastric spasmolytic
polypeptide-expressingmetaplasia in the H. pylori-infected gastric cancer relatives.
Helicobacter 22, 12320. doi: 10.1111/hel.12320
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