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Deep convolutional neural networks (DCNNs) have attracted considerable interest as

useful devices and as possible windows into understanding perception and cognition

in biological systems. In earlier work, we showed that DCNNs di�er dramatically

from human perceivers in that they have no sensitivity to global object shape. Here,

we investigated whether those findings are symptomatic of broader limitations of

DCNNs regarding the use of relations. We tested learning and generalization of

DCNNs (AlexNet and ResNet-50) for several relations involving objects. One involved

classifying two shapes in an otherwise empty field as same or di�erent. Another

involved enclosure. Every display contained a closed figure among contour noise

fragments and one dot; correct responding depended on whether the dot was

inside or outside the figure. The third relation we tested involved a classification

that depended on which of two polygons had more sides. One polygon always

contained a dot, and correct classification of each display depended on whether

the polygon with the dot had a greater number of sides. We used DCNNs that had

been trained on the ImageNet database, and we used both restricted and unrestricted

transfer learning (connection weights at all layers could change with training). For

the same-di�erent experiment, there was little restricted transfer learning (82.2%).

Generalization tests showed near chance performance for new shapes. Results for

enclosure were at chance for restricted transfer learning and somewhat better for

unrestricted (74%). Generalization with two new kinds of shapes showed reduced but

above-chance performance (≈66%). Follow-up studies indicated that the networks

did not access the enclosure relation in their responses. For the relation of more or

fewer sides of polygons, DCNNs showed successful learning with polygons having

3–5 sides under unrestricted transfer learning, but showed chance performance

in generalization tests with polygons having 6–10 sides. Experiments with human

observers showed learning from relatively few examples of all of the relations tested

and complete generalization of relational learning to new stimuli. These results using

several di�erent relations suggest that DCNNs have crucial limitations that derive from

their lack of computations involving abstraction and relational processing of the sort

that are fundamental in human perception.
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1. Introduction

The perception of objects, spatial layouts, and events are crucial

tasks of intelligent systems, both biological and artificial. For these

tasks, information in reflected light affords the richest information.

Differences in material substances’ absorption and reflection of

light carry information about boundaries and shapes of objects and

surfaces, as well as their spatial location and relations, textures, and

material properties. The concentration of research effort on vision

in human and artificial systems is no accident, given the detailed

information available in reflected light, its spatial and temporal

precision, and its availability at a considerable distance from objects

and events themselves.

In human vision, research has identified specialized processes

and neural mechanisms that contribute to visual perception and

representation of objects, spatial layout, motion, and events. Among

these are processes that separate figure from ground and determine

border ownership (Rubin, 1915/1958; Koffka, 1935; Driver and

Baylis, 1996; Zhou et al., 2000), detect complete objects despite

fragmentation due to occlusion or camouflage (Michotte et al.,

1964; Kanizsa, 1979; Kellman and Shipley, 1991; Kellman and

Fuchser, in press), represent the shapes of contours, objects, and

surfaces (Wallach and O’Connell, 1953; Ullman, 1979; Marr, 1982;

Biederman, 1987; Lloyd-Jones and Luckhurst, 2002; Pizlo, 2008; Elder

and Velisavljević, 2009; Baker and Kellman, 2021), determine the

direction of motion (Adelson andMovshon, 1982), and use relational

information to perceive events (Michotte, 1954; Johansson, 1978).

All of these processes appear to involve computational processes

and dedicated neural machinery specialized to extract and represent

important structural properties of scenes and events.

A consistent hallmark of these and other aspects of human visual

processing is the importance of relations. Relations are crucially

involved in visual perception in two related but separable ways.

First, capturing important properties of the world involves relational

information in the optical input and perceptual mechanisms

that can extract it. Relevant relations as stimuli for vision

often involve considerable complexity (Johansson, 1978; Gibson,

1979; Ullman, 1979; Marr, 1982; Palmer et al., 2006; Baker

and Kellman, 2018). Second, the outputs of perception involve

explicit representations of relational properties—relations across

space, such as shape or arrangement (Koffka, 1935; Baker and

Kellman, 2018), or properties based on patterns across time,

such as causality or social intention (Heider and Simmel, 1944;

Michotte, 1954; Scholl and Tremoulet, 2000). Evidence indicates

the abstract nature of these and other perceptual representations

(e.g., Izard et al., 2009; Hummel, 2011; Baker and Kellman, 2018).

The representation of relational properties in the output allows

perceptual descriptions to subserve a wide variety of tasks and to

connect naturally to thought, action, and learning (Gibson, 1969;

Garrigan and Kellman, 2008; Klatzky et al., 2008; Kellman and

Massey, 2013).

Efforts in artificial vision have sought to develop algorithms for

extraction of information that might produce explicit representations

of contours, surfaces, spatial layout, objects, and shape (Marr, 1982).

For object recognition, these efforts have led to proposals for solving

the relevant computational tasks explicitly using information about

shape (Bergevin and Levine, 1993; Belongie et al., 2002; Pizlo, 2008;

Rezanejad and Siddiqi, 2013), local texture patterns (Lowe, 1999),

or surface feature segmentation (Shi and Malik, 2000; Shotton et al.,

2009).

Although these efforts have yielded important progress, they have

been overshadowed in recent years by results from a wholly different

approach: deep convolutional neural networks (DCNNs). DCNN

architectures have many applications, but one clear focus, and area

of conspicuous success, is in image classification. In DCNNs, object

recognition is not based on explicitly encoded contours, surfaces, or

shapes of objects present in images (Krizhevsky et al., 2012). Instead,

the networks learn to accurately classify many images depicting

various object categories from the weighted combination of the

responses of many small, local filters, the responses of which are

themselves learned.

The successes of deep networks in object recognition have

led to research questions flowing in the opposite direction from

many earlier efforts. Rather than starting with biological vision

phenomena, such as segmentation of figure from ground or

completion of partly occluded objects, and attempting to construct

computer vision models to perform these tasks, many researchers

are currently investigating similarities between deep networks trained

for object recognition and the human visual system. Node activity in

intermediate layers of deep networks correlates with activity of cell

populations in V4 (Pospisil et al., 2018) and some deep networks

have been found to be predictive of cell populations in IT (Yamins

et al., 2014). Deep networks trained for object recognition also appear

to predict human behavior in judging the similarity between objects

(Peterson et al., 2016), the memorability of objects (Dubey et al.,

2015), and the saliency of regions in an image (Kümmerer et al.,

2014).

At the same time, other research has suggested that deep

learning approaches have deep limitations. These limitations are

being studied in terms of the applicability of deep learning systems

as models of biological processing but also regarding their impact

in applications to consequential real-world tasks. Ultimately, such

inquiries may help to determine both the ways in which the

characteristics of deep learning networks are embodied in aspects of

biological vision and ways in which deep learning approaches can be

enhanced by incorporating specialized adaptations that are evident in

biological systems.

In earlier work, we reported that DCNNs that successfully classify

objects differ from human perceivers in their access to and use of

shape (Baker et al., 2018). Kubilius et al. (2016) had tested shape as

a cue for recognition and found that DCNNs can classify silhouettes

with about 40% accuracy and showed sensitivity to non-accidental

features of objects [e.g., parallel vs. converging edges (Biederman,

1987)]. In our research, we showed that DCNNs showed a clear lack

of sensitivity to global shape information. This conclusion rested on

multiple, converging tests. When texture and shape conflicted (as

in a teapot with golf ball texture), the networks classified based on

texture; glass ornaments readily recognizable by humans as animals

or objects were poorly classified by DCNNs; DCNNs showed poor

performance in classifying silhouettes of animals, and they showed

no ability to correctly classify outline shapes (Baker et al., 2018).

Examining error patterns led us to suggest a distinction between

local contour features and more global shape. DCNNs clearly access

the former but seem to have no access to the latter. We tested this

hypothesis with silhouettes of objects that DCNNs had correctly

classified, altered in two different ways in separate experiments.
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In one, we scrambled the spatial relations between object parts to

destroy their global shape features while preserving many of the

local edge properties present in the original stimulus. In the second,

we preserved global shape but altered local edge features by adding

serrations to the bounding contours of objects. Although human

recognition of part-scrambled objects was highly disrupted, DCNN

responses were little affected by scrambling. In contrast, the use of

local serrated edges to define overall shape had little effect on human

classifications but completely disrupted the network’s classification of

objects (Baker et al., 2018).

Subsequent work provided further evidence that DCNNs have

little or no sensitivity to global shape. Baker et al. (2020b) found

that networks they trained to discriminate squares and circles would

consistently classify as circles squares whose edges were comprised

of concatenations of curved elements. Similarly, circular patterns

made from concatenations of small corner elements were classified

as squares. These results were relatively consistent across a variety of

DCNNs (AlexNet, VGG-19, and ResNet-50), and for both restricted

and unrestricted transfer learning (Baker et al., 2020b).

These and other results pose clear contrasts with research on

human visual perception, in which shape is the primary determinant

of object recognition (Biederman and Ju, 1988; Lloyd-Jones and

Luckhurst, 2002; Elder and Velisavljević, 2009). Shape is represented

evenwhen itmust be abstracted fromdisconnected stimulus elements

(Baker and Kellman, 2018). In fact, the specific, directly accessible

local features from which shape is extracted are often not encoded

in any durable representation (Baker and Kellman, 2018) and may in

many cases be represented as statistical summaries rather than precise

records of features in particular positions (Baker and Kellman, in

press).

1.1. Motivation of the present research

It might be natural to interpret the limitations of DCNNs with

regard to global shape as deriving from the absence in these networks

of specialized shape extraction and representational processes that

have evolved and proven useful in human vision. Although we believe

aspects of that point of view are likely correct, we wondered whether

the limitations in capturing shape relations in DCNNs might be

indicative of a more general limitation regarding relations.

A basic reason for supposing that DCNNs might have a general

limitation with regard to relations involves the convolution operation

at the heart of much of DCNN processing. Convolution applied to

an image input is inherently a local process and a literal process.

The output of a convolution operator at the location of its center

is the weighted sum of image values of intensity in a neighborhood

of locations around the center. At later layers, convolution may be

applied to the values obtained by a prior convolution operation

or some kind of pooling operation, such as max pooling, which

reduces the size of the array by assigning to larger neighborhoods

the maximum value of operator outputs in that region. There is

little doubt that these operations have high utility and flexibility.

The convolutional kernels that develop through learning can assume

a vast variety of forms. Likewise, one or more fully connected

layers in a DCNN can allow the development, through changes

of weights in training, of sensitivity to a wide variety of relations

between even spatially separated locations. DCNNs can theoretically

capture an enormous number of potential relations in images,

many of which would defy easy verbal description by humans

and would never be designed in a priori attempts to capture

important properties.

Yet not all relations are created equal. There may still be

important limitations regarding most DCNNs and relations. In

particular, relations that require explicit representation or abstraction

may be problematic. This idea would fit with previously discovered

limitations regarding shape. As emphasized in classic work by Gestalt

psychologists (e.g., Koffka, 1935), shape is an abstract relational

notion. A square may be made of small green dots in particular

locations, but neither relations defined over green dots nor specific

locations are intrinsic to the idea of squareness. Any tokens will

do to define the spatial positions of parts of a square, and the

particular spatial positions do not matter. In the end, being a square

is neither local in requiring elements to occur in a particular place

nor literal in requiring green dots or any other specific kind of

local stimulus properties. What is crucial to squareness is the spatial

relations of the elements, not a concatenation of the pixel values of the

elements themselves. Research on human shape perception provides

evidence for the primacy of abstract, symbolic representations (Baker

et al., 2020a). With their roots in convolution operations, DCNNs

excel in leveraging relations of a concrete sort, involving specific

local features and color values, but they may lack mechanisms to

extract spatial relations, abstracting over the concrete properties

of elements (Greff et al., 2020); learning of this sort may require

dedicated computational machinery that separates the representation

of relations and their arguments (Hummel, 2011).

Some recent work has tested the capabilities of DCNNs to learn

visual relations, with particular consideration of their capacities to

solve same-different problems. Findings from these investigations

indicate that basic DCNNs, as well as some older well-established

DCNN architectures (e.g., AlexNet, VGG, LeNet, and GoogLeNet)

struggle with same-different tasks, while some newer networks (e.g.,

ResNets and DenseNets) perform better (Stabinger et al., 2016;

Kim et al., 2018; Messina et al., 2021). However, subsequent work

by Puebla and Bowers (2021) found that ResNet-50, a 50-layer,

enhanced version of earlier ResNets, failed to generalize same-

different relations when test images were dissimilar from training

images at the pixel level. So far, there is no compelling evidence

that deep networks learn relations such that they can apply them to

new displays.

In the present work, we aimed to test a variety of relations

in visual displays that human perceivers would notice and learn

with little effort from a small number of examples, and generalize

accurately to new examples. We attempted to replicate and further

explore the same-different relation in DCNNs and test two new

relations to look at overall characteristics of DCNNs and relational

generalization, while using human performance as a comparison.

1.2. Plan of the experiments

In Experiment 1, we investigated the learning and generalization

of same-different relations in pairs of displayed objects. In

Experiment 2, we investigated the relationship of enclosure; each

display had a dot that fell either inside or outside of the only closed

figure in the display. In Experiment 3, we tested a relationship

between color and an object property. Both deep networks and

humans were trained and tested in a two-alternative categorization

task with displays having two polygons. Whether the display fell
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into one category or the other depended on whether the polygon

with a red dot inside it had a greater or fewer number of sides

than the other polygon. For each relation, we trained DCNNs using

restricted and unrestricted transfer learning in separate studies.

After the completion of training, we tested for generalization to

members of the training set withheld during training. We then tested

for generalization with new displays that differed in some object

characteristics but embodied the same relation that had been the

focus of training. In parallel, we also carried out studies with human

observers to assess whether the relation in question could be quickly

discovered and used for classification and generalization.

2. Learning same-di�erent relations

2.1. Experiment 1a: Same-di�erent training

We first tested DCNNs’ ability to learn same-different

classifications. In this task, we placed two novel, closed contours

in a single image and tasked the network with learning to produce

a “Same” response when the shapes of both contours were the

same as each other, and a “Different” response otherwise. The

same-different task would be learnable if DCNNs can obtain a

feature description of two objects individually within an image

and then make a classification decision based on the relation

between these two feature descriptions. This differs from standard

classification tasks in which the feature descriptions themselves,

not the relations between feature descriptions, are pertinent to the

network’s classification decision.

2.1.1. Method
2.1.1.1. Network

All tests were conducted on AlexNet (Krizhevsky et al., 2012)

and ResNet-50 (He et al., 2016), pre-trained on ImageNet (Deng

et al., 2009). AlexNet is a high-performing DCNN with relatively few

convolutional layers, while ResNet-50 is a much deeper network that

represents the current state-of-the-art in feedforward DCNNs.

2.1.1.2. Training data

In each of the experiments presented in this paper, artificial

images were generated so that categorization by a DCNN required

sensitivity to the relationship being tested. Artificial images, rather

than digital images of natural scenes, were used for two reasons.

First, it would be difficult to find sufficient number and variety of

natural images, and second, it would be difficult or impossible to

assess whether classification was based on the relationship of interest,

or some other correlated, non-relational cue.

We generated 20 novel shapes by moving 10 control points

toward or away from the center of a circle, then fitting cubic splines

between these control points (see Baker and Kellman, 2018). Training

data consisted of images in which one of the 20 shapes appeared

twice in the image (“Same” trials) and in which two of the 20

shapes appeared in the image, once each (“Different” trials). In order

to prevent overfitting, we placed both shapes in random positions

within the image frame with constraints so that the two contours

did not overlap and did not touch the image boundary. Each shape

was randomly assigned one of 10 sizes, which varied between 20%

and 30% of the length of the image frame along the shape’s longest

dimension. In total, we created 10,000 “Same” and 10,000 “Different”

FIGURE 1

Sample images used during training in Experiment 1a. (Top) Two

“Same” images. (Bottom) Two “Di�erent” images.

training images. Figure 1 shows some sample “Same” and “Different”

images used in training.

2.1.1.3. Training

In order to assess whether DCNNs could learn the same-

different relation, we used two different types of transfer learning

on an ImageNet-trained AlexNet architecture. In one, we froze

all connection weights between convolutional layers in AlexNet,

allowing only the last set of connection weights between the

penultimate layer and the classification layer to update. We call this

restricted transfer learning. Restricted transfer learning tests whether

a sensitivity is already latently present from ImageNet training,

because the output or decision layer of a network is necessarily based

on some weighted combination of the activation of the 4,096 nodes in

the penultimate layer. If coding sufficient to detect the presence of two

objects of the same shape in a display had evolved in prior training

of a DCNN to classify objects, then restricted transfer learning

might learn to perform accurately this two-choice discrimination

by discovering appropriate combinations of node activations in the

penultimate layer.

The second form of transfer learning, unrestricted transfer

learning, also begins with a pre-trained network, but allows

connection weights at all layers to update during the learning of

the new classification task. Unrestricted transfer learning assesses

DCNNs’ more general capability of obtaining a particular sensitivity,

regardless of whether that sensitivity was previously present or not.

We trained with a minibatch size of 32 and an initial learning

rate of 1 × 10−5. We used 80% of our training data for training and

withheld 20% as a validation set. We trained for up to 10 epochs or

until error rates on the validation set increased six consecutive times.

For ResNet-50, based on our findings with AlexNet, we used only

unrestricted transfer learning. The training data were identical to the

data used to train AlexNet. We used a batch size of 50 and an initial

learning rate of 1 × 10−3. We began by training ResNet-50 for 10

epochs and then did a second training experiment with 70 epochs.
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2.1.2. Results
With restricted transfer learning, AlexNet reached criterion after

three epochs. Although error rates had increased six consecutive

times on the validation set, the network’s final classification accuracy

showed no evidence of sensitivity to the same-different relation.

Performance on the validation set was 54.4%, close to chance

performance for the binary classification task, and similar to accuracy

levels shown at the end of training. These results suggest that

the same-different relation is not something acquired or naturally

encoded during training on the ImageNet dataset.

With unrestricted transfer learning, AlexNet reached criterion

after 10 epochs. Compared to other transfer learning tasks that do

not require a relational comparison (Baker et al., 2020b), learning for

the same-different task was both slower and weaker, but the network

did eventually improve to 82.2% performance on the validation set,

well above chance responding.

After 10 epochs, ResNet-50 did not achieve above-chance

classification on the validation set (mean accuracy = 49.7% on the

validation set). To assess whether the network simply needed more

training iterations to achieve accurate classification, we repeated

training with 70 epochs. More extended training produced only a

modest improvement in classification accuracy, from 49.7 to 56.0%.

2.2. Experiment 1b: Generalization following
unrestricted transfer learning

When all connection weights were allowed to update, AlexNet

achieved well above chance performance on the same-different task.

Our key question here, however, involved what was learned? Did the

network learn to attach certain responses to certain images, allowing

it to achieve above-chance performance? Or did it come to classify

based on detecting sameness or difference between two objects in

each display? To test whether the network had learned the abstract

“Same” relationship or whether its accurate responses were specific

to the shapes we used during training, we generated new images with

pairs of shapes that included new shapes qualitatively similar to the

shapes used in training, and shapes qualitatively different from those

used in training. If the network had come to use the abstract relation,

its performance should generalize to new shape pairs.

2.2.1. Method
We used two generalization tests to assess the networks’

generalization of the same-different rule. First, we generated 30 new

“Same” and 30 new “Different” shapes using the same algorithm

previously used to generate the shapes used in training. As in training,

the pairs of shapes were given a random size and position in the

image frame with constraints to prevent them from overlapping and

extending out of the frame.

We also wanted to test the networks’ generalization to the same-

different relation using dissimilar shapes. For this test, we used pairs

of rectangles. We generated images with two rectangles. The ratio of

the minor to principal axis of the rectangles was randomized and

varied from 0.08:1 to 1:1. Both rectangles were placed in the image

with random size and position. In the “Same” trials, both rectangles

in the image had the same aspect ratio and differed only by size and

position. In the “Different” trials, the two rectangles differed in aspect

FIGURE 2

Example generalization test images in Experiment 1b. (Top) A “Same”

and a “Di�erent” image for the first generalization test. (Bottom) A

“Same” and a “Di�erent” image from the second generalization test.

ratio as well as by rigid 2D transformations. We generated 30 “Same”

and 30 “Different” rectangle pair stimuli. Examples of images from

both generalization tests are shown in Figure 2.

We tested both AlexNet and ResNet-50 trained with unrestricted

transfer learning on both new sets of stimuli. Because the networks

trained with restricted transfer learning never achieved above-chance

performance on the validation set, there was no reason to apply the

generalization tests to it.

2.2.2. Results
AlexNet’s performance was poor in both generalization tests. For

the test in which new shapes were generated from the samemethod as

in training, network performance fell from 82% to 58%. For the test

with rectangles, performance fell to 50%, with the network classifying

all pairs of rectangles as “Same.”

For ResNet, performance was already poor but fell fully to chance

on the generalization tests. The network trained with unrestricted

transfer learning classified 45% of the new shape stimuli correctly and

50% of the rectangle stimuli correctly.

2.3. Experiment 1c: Comparison with
humans

The results of our transfer learning experiment on DCNNs

suggests they have little ability to use the abstract same-different

relation in order to classify images. Humans’ registration of same-

different relations in perceptual arrays is rapid and automatic

(Donderi and Zelnicker, 1969). However, it is possible that our

specific paradigm does not elicit perception of sameness/difference

in humans. If this were true, then the lack of generalization we saw

in DCNNs might not point to a difference in perceptual processing

between networks and humans. We tested this by conducting the

same experiment we used on DCNNs on human participants.
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FIGURE 3

Human results in Experiment 1c. Proportion correct is shown by condition. Blue: performance in the training phase, separated into 50-trial blocks.

Orange: performance on the generalization tests. Error bars show ± one standard error of the mean.

2.3.1. Method
2.3.1.1. Participants

Six undergraduates (two female, four male, Mage = 21.0) from

Loyola University participated in this experiment as lab researchers.

All participants were naive to the purpose of the experiment before

completing it.

2.3.1.2. Design

The experiment consisted of a learning phase (150 trials) and two

generalization phases (40 trials each). The first generalization phase

tested whether classification based on sameness/difference would

generalize after learning to new shapes generated in the same way as

shapes in the learning phase. The second generalization phase tested

pairs of rectangles having the same or different aspect ratios.

2.3.1.3. Stimuli

All stimuli used in the human experiment were taken directly

from images used to train or test AlexNet in our DCNN experiment.

For the learning phase, we randomly selected 150 (75 same, 75

different) images used during transfer learning. For the generalization

tests, we randomly selected 20 same and 20 different images from the

same tests used on DCNNs.

2.3.1.4. Procedure

At the beginning of the experiment, participants were told that

they would be classifying images into two categories but that they

would not be told what defined the two categories. Their task was

to use accuracy feedback to discover how to classify images.

During the training phase, participants were shown an image

on the screen for 500ms, after which they were asked whether

the previous image belonged to Category 1 or Category 2. After

responding, participants were told whether they were correct or

incorrect and given the correct classification for the previous image.

The image was not shown again during feedback.

Following the training phase, participants completed two

generalization tests. They received no feedback during the

generalization phases but were told to continue using the same

criteria they had adopted during the training phase. In the first

generalization test, participants were shown images with the same

types of shapes they saw during training, but the actual shapes were

different. In the second generalization test, participants were shown

images of rectangles with the same or different aspect ratios.

2.3.1.5. Dependent measures and analysis

To assess learning in the learning phase, we separated trials into

three 50-trial blocks corresponding to the first, middle, and last

third of trials. Because we hypothesized that humans would readily

perceive abstract relations such as same vs. different, we predicted

that by the second 50-trial block, participants would have learned the

rule for categorizing images and should respond correctly for nearly

every image.

To assess learning in the testing phases, we simply measured

participants’ proportion correct and compared their performance

on the generalization tests with chance performance and with

performance on the final block of the learning phase.

2.3.2. Results
The results of the human experiment are shown in Figure 3.

Participants performed very well even in the first 50-trial training

block and reached ∼90% in each of the last two blocks. t-tests

confirmed that participants performed significantly better than

chance in all three training blocks [1st block: t(5) = 11.33, p < 0.001;

2nd block: t(5) = 16.60, p < 0.001; 3rd block: t(5) = 18.96, p < 0.001].

2.3.2.1. Generalization

Participants’ accuracy remained high in both generalization tests,

significantly exceeding chance levels [New Shapes: t(5) = 17.39, p <

0.001; Rectangles: t(5) = 12.48, p < 0.001]. Performance levels also

did not significantly differ between the last 50 trials of the training

phase and either of the generalization tests [New Shapes: t(5) = 1.10,

p= 0.32; Rectangles: t(5) = 1.65, p= 0.16].
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2.4. Discussion, Experiments 1a–c

Research has shown that DCNNs’ recognition of objects is

primarily driven by texture information, rather than the shape

information preferentially used by humans (Baker et al., 2018;

Geirhos et al., 2018). Whereas textures and local shape features

are composed of locally defined elements, global shape involves

relationships among spatially separated parts of object boundaries.

Considerable evidence indicates that thismore global notion of shape,

as opposed to local shape features, is not accessible to DCNNs, even

when texture is made non-informative for classification (Baker et al.,

2018, 2020b). When texture information is unavailable to DCNNs,

theymay still achieve above-chance classification accuracy using local

contour cues, but notmore global features of shape (Baker et al., 2018,

2020b).

We hypothesized that DCNNs’ insensitivity to shape may be

caused by a more general insensitivity to relational information. To

test this idea, we presented the network with a classification task with

class type defined by the relation “Same-Different.” With restricted

transfer learning, there was no indication that the network could

learn this classification. This result is perhaps not surprising, since

we did not expect that a DCNN trained for image classification

would have sensitivity to global shape. Interestingly, however, with

unrestricted transfer, AlexNet did learn to classify the trained shape

pairs as same or different (independent of their sizes and positions),

but the learning was specific to the trained shapes. Performance was

near chance for novel shapes, created through the same generative

procedure, and for rectangles. Humans trained with the same shapes

showed robust generalization in both cases.

The human visual system is highly flexible, able to represent

visual information differently depending on task and stimulus

constraints. In numerical cognition research, humans can flexibly

switch between perceiving individual objects (Piazza et al., 2011;

Cheng et al., 2021), ratios between object groups (He et al., 2009),

and objects as a texture field (Burr et al., 2017), depending on

stimulus constraints. Similarly, in shape perception, humans can

flexibly switch betweenmore local andmore global features of a shape

(Navon, 1977; Kimchi, 1998; Bell et al., 2007), although the global

percept is stronger in many cases. In contrast, DCNNs appear to be

much less flexible, making their classifications based only on a small

subset of the visual information considered by humans.

The inability of DCNNs to acquire and generalize the same-

different relation here is not a finding that arises predictably from

prior evidence of the lack of global shape encoding in DCNNs. As

mentioned, using unrestricted transfer learning, we did see evidence

of acquisition of above-chance performance with the training set.

More conceptually, the initial same-different learning task and the

first generalization task we posed to the networks could have been

accomplished to a high degree of accuracy by use of local shape

features without global shape encoding. The notion of same-different

can just as well apply to unstructured collections of local features

as to global shape. To give one example, in the amoeboid figures,

similarities in signs of local curvatures could be informative in

determining sameness (in contrast, the rectangles used in the second

generalization test may have fewer distinguishing local features;

hence all pairs were classified as “Same”). Where available, as in

the amoeboid figures, local shape information could have supported

the above chance performance on the training set in unrestricted

transfer learning. The crucial result regarding relations, however, is

that whatever was used to produce correct “Same” and “Different”

responses in training showed little or no generalization to new shapes,

indicating that whatever was learned, it was not the abstract relation

of sameness.

The idea that (somewhat) successful same-different classification

observed in training (but not in generalization) was based, not on

the relationship same-different, but on the development of sensitivity

to the co-occurrence of local features across specific shape pairs

aligns with recent work by Puebla and Bowers (2021), who found

that DCNNs could only generalize the same-different relation to

stimuli that matched training data at a pixel level. The result is

impressive, given that the positions and sizes of the shapes in each

pair were varied independently, and it underscores the massive

capacity for DCNNs to map many different feature combinations

onto discrete categories.

The fact that learning did not generalize beyond the trained set,

though, as evidenced by the lack of generalization to novel shapes,

similarly underscores a key limitation of the operation of these

DCNNs. One would expect that, following training, humans could

perform this classification on a limitless number of novel shape pairs,

provided the shapes themselves were not too complicated or the

differences between members of the pairs too subtle. With increased

complexity and sufficient training data, a network with this type

of architecture would likely be able to learn to successfully classify

a larger variety of shape pairs (up to limitations imposed by the

vanishing gradient problem), but it would still only be able to classify

novel shape pairs to the extent that they resembled pairs in the

training data.

In contrast, ResNet-50 never achieved better than near-chance

accuracy on the same-different task, even with unrestricted transfer

learning and many training epochs. It is puzzling that the deeper

network performed worse than AlexNet. Based on AlexNet’s poor

performance on the generalization tests, it seems likely that whatever

rule it was using to perform above chance in training was highly

stimulus-specific, not an abstract visual relation. One difference

between AlexNet and ResNet is that AlexNet has two fully connected

layers between the convolutional layers and the decision layer

whereas ResNet has only convolutional layers. These fully connected

layers might be important for relating widely spaced features in

an image, a process that may be important for the non-abstract

comparison furnishing above-chance performance in the training

data for AlexNet.

Issues relating to limitations of connectionist networks in

capturing or representing abstract relations have been recognized

for some time (e.g., Hummel, 2011). The architecture of DCNNs,

although more powerful than earlier connectionist approaches,

due to both hardware advances (e.g., leveraging GPUs for greater

processing power, more memory) as well as algorithmic changes

(convolutional layers, skip connections, pooling, etc.), share this

same limitation with their ancestors. That said, a more sophisticated

network might be able to exhibit some processing of relations, despite

these limitations, within a restricted domain. In fact, recent evidence

shows that activity in intermediate layers consistent withWeber’s Law

and sensitivity to the relative sizes of objects, properties that appear

to involve simple spatial relations, emerges spontaneously in DCNNs

trained for object recognition (Jacob et al., 2021). Our results show,

however, that even in this one restricted domain (same-different
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FIGURE 4

Example training images for Experiment 2a. (Top) Two “Inside” images.

(Bottom) Two “Outside” images. Category membership was

determined by the position of the small red square, either inside or

outside of a closed contour.

shape judgments on closed, 2-D contour stimuli), there was little

evidence the network could learn to classify based on relational

processing outside of the trained set.

It is possible that DCNNs could perform better for other sorts

of relational tasks. In Experiments 1a–c, we tested “Same-Different”

shape classification performance while allowing for changes in the

sizes and positions of the shapes in each comparison pair. Same-

different shape classification, while a very intuitive task for people,

might be a particularly challenging case for DCNNs. While the task

was made easier by not including rotations between the members

of a “Same” pair, the network still needed to handle considerable

variability both in the shapes themselves and their presentation

(i.e., position and size), and to learn to distinguish the features and

their relations within a single shape from those between shapes. In

Experiments 2 and 3, we consider other relational properties.

3. Learning an enclosure relation

In Experiments 2a–b, we investigated a relational property that

is perhaps a bit more constrained than abstracting sameness or

difference and applying those to novel shapes. We tested the relation

of enclosure, specifically, whether a small, locally-identifiable object

(a red dot) was inside or outside of a closed contour.

3.1. Experiment 2a: Enclosure training

A contour is closed if it has no gaps and its curvature integrates to

360◦. In humans, contour closure is a salient cue; it confers perceptual

advantages in detection (Kovacs and Julesz, 1993), search (Elder and

Zucker, 1993), and recognition tasks (Garrigan, 2012). Experiment

2 specifically aimed to test whether humans and DCNNs can learn

to classify images based on an abstract relation between a dot and a

closed contour. In one category of images (“Inside”), the dot is within

a region is surrounded by a closed contour while in the other category

(“Outside”) the dot is outside the region surrounded by the closed

contour. Each display had only one closed contour present, along

with open contours as noise fragments to eliminate certain possible

correlates of enclosure that might otherwise allowDCNNs to perform

successfully without detecting the enclosure relation.

3.1.1. Method
3.1.1.1. Network

As in Experiment 1, all tests were conducted on AlexNet and

ResNet-50 pre-trained on ImageNet.

3.1.1.2. Training data

For both image categories, we generated a closed contour by

moving 10 control points toward or away from the center of a circle

and fitting cubic splines between the control points. The shapes

were sized so that the greatest distance between two vertical or two

horizontal points was between 16.7% and 33.3% of the length of the

image frame. The contour was randomly positioned in a 227 × 227

pixel image with the constraint that the whole contourmust be within

the image frame.

In addition to the closed contour, we added 22 unclosed contour

fragments to the image in random positions. The unclosed contour

fragments were generated by forming contours in exactly the same

way as the closed contour, but selecting only 25–50% of the

full contour.

For “Inside” images, we placed a red probe dot in a random

position within the closed contour with the constraint that it could

not touch the closed contour’s border. For “Outside” images, a red

probe dot was placed somewhere in the image outside of the region

enclosed by the closed contour’s border.We constrained the positions

of the probe dots in the “Outside” images to be at least 23 pixels

away from edges of the full display because these probe positions

were unlikely for “Inside” images. We generated 1,000 “Inside” and

1,000 “Outside” images to use as training data for the DCNN. Sample

images are shown in Figure 4.

3.1.1.3. Training

As in Experiment 1, we trained AlexNet using both restricted

and unrestricted transfer learning. We trained with 90% of our

training data, withholding 10% as a validation set. All other training

parameters were the same as in Experiment 1. Training concluded

after 10 epochs or after the error rate on the validation set increased

in six consecutive trials.

Training of ResNet-50 also followed Experiment 1. We trained

for 10 epochs using unrestricted transfer learning.

3.1.2. Results
Training with restricted transfer learning ended after eight

epochs. The network’s accuracy on the validation set was 51.0% after

training, around chance levels for a binary classification task. As in

Experiment 1, the features learned through ImageNet training do not

appear to be usable for the inside/outside task.

Unrestricted transfer learning ended after 10 epochs, with an

accuracy of 74.0% on the validation set. These results align with

the findings of Experiment 1 and transfer learning in other tasks

(Baker et al., 2020b) in that performance was better with unrestricted

transfer learning.

Unlike in Experiment 1 where ResNet-50 performed much worse

than AlexNet in training, the deeper network performed significantly
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better in the inside/outside task. Performance reached 99.8% on the

validation set after 10 training epochs.

3.2. Experiment 2b: Generalization to other
enclosure tasks

Had the network learned the abstract enclosure relation? In order

to test this, we generated new stimuli in which the inside/outside

relation was unchanged, but certain irrelevant image properties

differed from the network’s training data. The first two generalization

tests we conducted tested whether changing contour properties of

the closed shape and the open contour fragments would affect the

network’s classification performance. First, we adjusted a parameter

in our generative method for producing shapes to see whether the

network generalized. Next, we changed the contours from amoeboids

to squares and parts of squares. Our final generalization test evaluated

a specific hypothesis that the network’s above-chance responding was

based on probe dot’s proximity to the closed contour boundary, not

enclosure of the probe dot. We hypothesized that if this were true,

then by making the contour bigger, network performance would fall.

3.2.1. Method
In our first generalization test, we generated shape contours by

fitting cubic splines through 16 control points moved away from

a circle’s boundary rather than the 10 control points used in our

training data. Both the closed contour and the contour fragments

were generated with 16 control points instead of 10. All other

parameters were the same as in the training data. We generated 30

“Inside” and 30 “Outside” images with the new parameter in our

generative method.

In our second generalization test, we generated shape contours

with squares instead of amoeboid shapes produced by fitting cubic

splines through control points. The squares were constrained to be

of approximately the same size as the shapes generated in training.

As in the training stimuli, open contour fragments were added by

randomly selecting 25–50% of square contours that were otherwise

matched with the closed contour. We generated 30 “Inside” and 30

“Outside” images with square contours.

In our final generalization test, we kept all parameters the same as

in training except that wemade the closed shape contour significantly

larger to increase the distance between the probe dot and the

boundary in “Inside” stimuli. We changed the closed shape’s size so

that the longest horizontal or vertical distance between any two points

on the shape’s contour was 80% of the length of one side of the image

frame rather than 16.67–33.33% as was used in the training data.

Sample images for all three generalization tests are shown in Figure 5.

3.2.2. Results
In all three generalization tests, network performance fell

considerably. For the generalization test with 16 control point

amoeboids, network performance fell from 74% to 63% for AlexNet

and from 99.8% to 76.7% for ResNet-50. For the generalization

test with square contours, network performance fell from 74% to

65% for AlexNet and from 99.8% to 59.7% for ResNet-50. For

the generalization test with larger contours, network performance

FIGURE 5

Example generalization test images for Experiment 2b. (Top) An

“Inside” and an “Outside” image for the first generalization test.

(Middle) An “Inside” and an “Outside” image from the second

generalization test. (Bottom) An “Inside” and an “Outside” image for

the third generalization test. Category membership was determined by

the position of the small, red square, either inside or outside of a

closed contour.

fell from 74% to 57% for AlexNet and from 99.8% to 60.0%

for ResNet-50.

3.3. Experiment 2c: Comparison with
humans

Once again, we found little evidence that the DCNN’s above-

chance performance in the enclosure task was due to apprehension

of the abstract inside/outside relation. Instead, DCNNs appear to be

using some kind of combination of cues about where in the image

the probe dot is positioned (independent of the location of the closed

contour) and the probe dot’s distance from contours. In Experiment

2c, we tested whether humans, when exposed to the same training

displays as networks, learned to use the abstract inside/outside

relation and if the use of this relation produced accurate responding

on generalization tests.

3.3.1. Method
3.3.1.1. Participants

Six undergraduate (three female, three male, Mage = 21.0) from

Loyola University participated in this experiment as lab researchers.

Five of the six participants were the same as in Experiment 1c. All
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FIGURE 6

Human results in Experiment 2c. Proportion correct is shown by condition. Blue: performance in the training phase, separated into 50-trial blocks.

Orange: performance on the generalization tests. Error bars show ± one standard error of the mean.

participants were naive to the purpose of the experiment before

completing it.

3.3.1.2. Design

Experiment 2c consisted of a learning phase with 150 trials

and three generalization phases with 40 trials each. The three

generalization phases were the same as those upon which the DCNNs

were tested after transfer learning.

3.3.1.3. Stimuli

All stimuli used in the human experiment were taken directly

from images used to train or test the DCNNs in Experiment 2a and

2b. We once again selected 150 (75 same and 75 different) images

used during the learning phase and 20 same and 20 different images

from the generalization tests used on DCNNs.

3.3.1.4. Procedure

The procedure was the same as Experiment 1c. The only

thing that differed was the images used during the learning and

generalization phases.

3.3.2. Results
The results of Experiment 2c are shown in Figure 6. Participants

performed significantly better in the second block of the learning

phase trials than the first [t(5) = 3.04, p = 0.03], but appear to have

reached ceiling by the second block and show little improvement

from the second block to the third [t(5) = 0.54, p= 0.61]. Participants

performed significantly better than chance in all three training blocks

[1st block: t(5) = 5.21, p = 0.003; 2nd block: t(5) = 23.63, p < 0.001;

3rd block: t(5) = 20.89, p < 0.001].

Participants showed robust generalization in all three of our tests,

performing significantly better than chance [16 control points: t(5) =

28.2, p< 0.001; Square contours: t(5) = 26.25, p< 0.001; Big contours:

t(5) = 20.44, p < 0.001]. Performance also did not significantly differ

from performance in the last block of the learning phase for any of

the three generalization tests [16 control points: t(5) = 0.94, p= 0.39;

Square contours: t(5) = 0.78, p = 0.47; Big contours: t(5) = 0.27, p

= 0.80].

3.4. Experiment 2a-c discussion

As in Experiment 1, the network was able to perform the

classification following unrestricted, but not restricted, transfer

learning. Unlike Experiment 1, however, the learning did show

some generalization to new conditions, including irregular closed

contours generated with a modified procedure (63% and 76.7% for

AlexNet and ResNet-50, respectively), and closed rectangles (65%

and 59.7%, respectively). We suspected, however, that the network

was classifying based on a simpler, more local, relationship—the

proximity of the probe dot to a part of any contour in the display.

This strategy would naturally account for classification performance

reliably above chance, but far from perfect.

To test this idea, we had the model perform the inside/outside

classification with larger closed contour shapes, creating displays

with more locations “Inside” the closed contour that were also

distant from the contour itself. Consistent with our hypothesis,

network training generalized the least in this condition (57 and

60%, for AlexNet and ResNet-50, respectively). We investigated

this idea more directly by examining the pattern of correct

and incorrect classifications for a specific image. In Figure 7, for

two stimuli (one isolated closed contour and the same closed

contour presented among open contour fragments), classification

performance is analyzed for all possible probe positions. In both

cases, for virtually all probe positions inside the closed contour,

AlexNet classified that position as “Inside.” The model’s behavior

for probe positions outside the closed contour, however, provides

more insight.

For the isolated contour, most probe positions outside the closed

contour were classified as “Inside,” and the errors make little sense
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FIGURE 7

“Inside/Outside” classification of sample images following unrestricted

transfer learning in Experiment 2. (Left column) Two sample input

stimuli are shown, including an isolated closed contour (left, top) and

the same contour presented among contour fragments, replicating

training conditions (left, bottom). In both cases, correct classification

of the image was “Inside” only if the probe dot (not shown) was

presented within the closed contour. (Middle column) Model

classification results are shown as binary images indicating the model’s

classification for various positions of the probe, with the input stimulus

superimposed (in red). White indicates probe positions classified as

“Inside;” black indicates probe positions classified as “Outside.” (Right

column) The same results are shown in the right column, but with p

(inside) indicated by grayscale values (black = 0.0, white = 1.0).

for a network sensitive to the actual spatial relationship “Inside.”

For example, it is hard to explain why a network that had learned

to encode this relationship would correctly classify a probe in the

far upper-right as “Outside,” but incorrectly classify probe positions

in the three other corners, despite being approximately the same

distance from (and not close to) the closed contour. A display

with a single, isolated, closed contour, while a useful exploratory

tool, is, however, very different from the actual displays used in the

training set.

For the closed contour presented among open contour fragments,

there was little evidence that proximity of the probe to any contour

in the display was driving “Inside” classifications. One might expect

errors at probe locations where the contour fragments “almost

close,” or where the image is particularly cluttered. However, there

is little to suggest this is the case. In Figure 7, middle panel in the

bottom row, consider the white region in the central, upper region.

Correct classifications of “Inside” are represented by the white region

approximately centered in the image, bounded by the red contour.

The other white regions represent areas misclassified as “Inside.”

The errors observed in these regions cannot be straightforwardly

explained by features of the contour fragments nearby them. In

fact, other parts of the image appear, by inspection, to have contour

fragments that more closely approximate a closed contour (e.g., on

the left side, middle).

While it is unclear what strategy the network uses for achieving

above chance classifications in the generalization conditions,

comparison with human performance strongly indicates that

any relational processing by the network is very different from

the strategy employed by humans. Humans learned quickly,

achieving near ceiling performance by trials 50–100, suggesting

that the inside/outside relationship was salient. Further, complete

generalization of learning was observed in all cases.

4. Learning higher-order relations

4.1. Experiment 3a: Network training for
higher order relations

In Experiments 1 and 2, we found that humans learn to use

perceived abstract relations to categorize images while networks

do not. The use of these relations allows human performance

to generalize to new stimuli. Networks, although they can learn

to classify training stimuli and validation displays similar to the

training stimuli, do not extract perceptual relations that allow for

generalization of a relation to other kinds of images. Both of the

previous experiments tested a simple relation between two image

features. For example, in Experiment 1, if the two shapes in the

image were the same, the image belonged to the “Same” category.

In Experiment 2, if the red dot was within the closed contour, the

image belonged to the “Inside” category. These could be called first-

order relations because they deal directly with the relation between

two properties of an image. A higher order relation would consider a

relation between two relations. In Experiment 3, we tested human and

DCNNs’ ability to classify based on one such higher-order relation.

The images we used in Experiment 3 were displays containing

two white polygons on a black background. One of the polygons

had a red dot in its center. If the polygon with a red dot had

more sides than the polygon without the dot, the image belonged

to the “More” category. If the polygon with a red dot had fewer

sides than the other, the image belonged to the “Fewer” category.

This classification requires the use of a second-order relation because

correct responding requires seeing which polygon has more sides, as

well as whether that polygon contains the dot.

4.1.1. Method
4.1.1.1. Network

As in Experiments 1 and 2, we trained and tested AlexNet and

ResNet-50, pre-trained on the ImageNet database.

4.1.1.2. Training data

Each image in our training data consisted of two polygons with

three to five sides. Images were constrained to always include two

polygons with a different number of sides. The size of the image was

227× 227 pixels. Polygons ranged in length from 22 to 42 pixels and

in orientation from 0 to 360◦. In each image, we placed a red dot at the

center of one of the two polygons. We created 10,000 images in which

the red dot was at the center of the polygon with more sides (“More”

trials) and 10,000 images in which the red dot was at the center of the

polygon with fewer sides (“Fewer” trials). Sample images are shown

in Figure 8.

4.1.1.3. Training

As in Experiments 1 and 2, we trained AlexNet using both

restricted and unrestricted transfer learning. We trained with 80%

of our training data, withholding 20% as a validation set. All other

training parameters were the same as in Experiment 1. Training

concluded after 10 epochs or after the error rate on the validation

set increased in six consecutive trials.

Training on ResNet-50 followed the same procedure

as Experiment 2.
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FIGURE 8

Sample training images for Experiment 3a. (Top) Two “Fewer” images.

(Bottom) Two “More” images. Category membership was determined

by the position of the small, red dot, placed on the polygon with either

more or fewer sides.

4.1.2. Results
Under restricted transfer learning, AlexNet trained to criterion

after three epochs and achieved a classification accuracy of

84.4% on the validation set. Under unrestricted transfer learning,

AlexNet took eight epochs to train to criterion and achieved a

classification accuracy of 99.7% on the validation set, whereas

ResNet-50 took 10 epochs to train to a final classification accuracy

of 100%.

4.2. Experiment 3b: Generalization to other
polygons

Despite testing a higher-order relation, network training in both

restricted and unrestricted transfer learning was more successful than

in either of our previous experiments. The crucial question, however,

is whether the network learned response labels for particular concrete

features of displays or whether the networks learned the abstract

relation between dot location and the relative number of sides of a

polygon. In Experiment 3b, we tested this question by generating new

test images with polygons with more sides than those to which the

network was exposed during training.

4.2.1. Method
In our generalization test, we created images with pairs of

polygons that had twice as many sides as those present in training

images.We replaced all three-sided polygons with six-sided polygons,

all four-sided polygons with eight-sided polygons, and all five-

sided polygons with ten-sided polygons. In all other respects, the

test images were identical to the training images. We produced 50

“More” images in which the dot was placed on the polygon with

more sides and 50 “Fewer” images in which the dot was placed

FIGURE 9

Sample images for the generalization test in Experiment 3b. (Left) A

“Fewer” image. (Right) A “More” image. Category membership was

determined by the position of the small, red dot, placed on the

polygon with either more or fewer sides.

on the polygon with fewer sides. Sample test images are shown

in Figure 9.

Because AlexNet trained with restricted transfer learning also

reached above-chance responding on the validation set, we tested

it on the generalization task as well as both networks trained with

unrestricted transfer learning.

4.2.2. Results
AlexNet trained with restricted and unrestricted transfer learning

had an accuracy of 51% and 50% respectively on the generalization

task. ResNet-50 trained with unrestricted transfer learning also

had an accuracy of 50% on the generalization task. When we

looked into how the networks were responding we found that the

network trained with unrestricted transfer learning classified all of the

“More” images correctly, but incorrectly classified all of the “Fewer”

images as “More.” The network trained with restricted transfer

learning did the same apart from classifying one of the 50 “Fewer”

images correctly.

4.3. Experiment 3c: Comparison with
humans

While DCNNs appear able to learn to do the Experiment 3 task

in a narrow sense, they showed no generalization whatsoever to other

shapes. Performance in the generalization test was even worse for

Experiment 3 than Experiments 1 or 2. One reason might be that

in Experiment 3, we tested a higher-order perceptual relation than

in previous experiments. In Experiment 3c, we tested humans on the

same task to see if humans are capable of learning the more abstract

relation between stimulus features required for accurate responding

in Experiments 3a and 3b.

4.3.1. Method
4.3.1.1. Participants

Twelve participants (seven female, five male, Mage = 21.0)

participated in Experiment 3c. Eight participants were recruited
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from Loyola University and completed the experiment for course

credit and four others were recruited from the University of

California, Los Angeles and completed the experiment as volunteers.

All participants were naive to the purpose of the experiment

before participating.

4.3.1.2. Design

Experiment 3c consisted of a learning phase with 150 trials and a

generalization phase with 40 trials.

4.3.1.3. Stimuli

Stimuli from the learning phase were randomly chosen from

the network training data (Experiment 3a). Stimuli from the

generalization phase were randomly chosen from the network

generalization test (Experiment 3b).

4.3.1.4. Procedure

During the learning phase, images were presented in the center

of the screen and participants were instructed to classify them into

two arbitrary categories (“Category 1” or “Category 2”) with no prior

instruction on how to categorize images. Participants were given

feedback after each trial and were told to try to discover the correct

way of classifying images.

The generalization phase was the same as the learning phase

except participants did not receive feedback after they responded.

4.3.2. Results
The results of Experiment 3c are shown in Figure 10. We found

no significant difference between the first block of the training phase

and either of the two subsequent blocks [t(12) < 1.91, p > 0.08].

Participants performed significantly better than chance in all three

training blocks [1st block: t(12) = 4.89, p < 0.001; 2nd block: t(12) =

5.91, p < 0.001; 3rd block: t(12) = 5.02, p < 0.001].

As in Experiments 1 and 2, participants’ learning during the

training phase generalized when tested with polygons with more

sides. Participants performed significantly better than chance in the

generalization task, t(12) = 4.59, p < 0.001. Performance on the

generalization task did not significantly differ from performance on

the third block of training, t(12) = 0.72, p= 0.48.

4.4. Experiment 3a–c discussion

As in Experiments 1a and 2a, the networks learned to classify

following unrestricted training. AlexNet also learned to classify well

above chance performance following restricted transfer learning.

Success in the restricted transfer learning case suggests that the

features necessary for correct classification of ImageNet exemplars

could be repurposed for the current classification task.

Still, neither restricted nor unrestricted transfer learning

generalized to a different set of polygons that could be classified by

the same rule. Specifically, the network failed to correctly classify

polygons with twice as many sides as the training set. Once again,

the data indicate that the network did not learn to classify based on a

relational property that would generalize to other objects.

The performance of the networks in this study, and to some

extent in the earlier studies, raises the interesting question of what

was learned by the DCNNs? This is both theoretically interesting

in its own right as well as relevant to distinguishing performance

that arises from relational encoding from other variables in training

displays that may allow powerful networks to exhibit behavior that

could naively be interpreted as evidence of relational encoding. In

general, it is hard to determine what properties DCNNs use in

their responses. Neural networks in general may be characterized

as carrying their knowledge in connection weights rather than in

explicitly encoded properties. Moreover, the size of contemporary

DCNNs allows for a vast array of stimulus variables to influence

responses, and even with probing of node responses at various

layers, there is no requirement that the properties captured in the

network will be intelligible to humans. With regard to the present

results, we consider one speculative hypothesis that illustrates how

the network achieved some success in training without capturing the

abstract relationship in the experiment-defined categorization task.

Consider first that the network did learn to classify the polygons in the

training set successfully, even following restricted transfer learning,

and without, apparently, developing any explicit sensitivity to each

polygon’s number of sides. If so, it could be that a local feature that

distinguishes the polygons, e.g., the internal angles of its vertices, was

used in part for the classification task. Sensitivity to a feature like

this would not be particularly surprising, given that the ImageNet

training set contains many classes of artifacts, including rigid objects,

for which the presence of vertices with specific angles might aid in

identification. Prior research suggests that DCNNs adeptly capture

local shape features (e.g., Baker et al., 2018).

In the initial training, with regular triangles, squares, and

pentagons, when the probe was close to a vertex with angle = 108◦

(regular pentagon), the answer was “yes” (more). When the probe

was close to a vertex with angle = 60◦ (equilateral triangle), the

answer was “no” (fewer). A small set of slightly more complicated

conjunctive rules allows for classification of the remaining cases

without explicitly encoding the relation more-fewer sides. This

learning would not, of course, generalize to a different set of polygons

with different internal angles.

We expected the more-fewer relationship to be salient to human

participants, leading to quick learning and full generalization. This

appeared to be the case for the majority of our participants,

who classified with >85% accuracy by the end of training and

in generalization to polygons with more sides. However, with the

added complexity of this classification, relative to Experiments 1

and 2, some participants may have found the perceptual more-

fewer judgment too challenging or applied an idiosyncratic strategy.

For example, one participant had high performance in training but

showed little generalization, a pattern of behavior consistent with

learning a complicated conjunctive rule (e.g., red dot in square +

triangle = category A, red dot in square + pentagon = category

B, etc.) that would have no utility for the different shapes. Another

participant had performance in training and generalization testing

well above chance, but below the level that would be expected had

the more-fewer rule been learned. This participant may have been

attempting to classify based on more-fewer sides, but never achieved

high performance either because the task was too difficult for them,

or perhaps due to poor attention or effort.

5. General discussion

The ability to extract abstract visual relations is crucial to

many of the most important perceptual processes in human vision,
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FIGURE 10

Human results in Experiment 3c. Blue: performance in the training phase, separated into 50-trial blocks. Orange: performance on the generalization tests.

Error bars show ± one standard error of the mean.

including encoding of shape, arrangement, and structure in scenes,

and perception of meaningful properties, such as animacy and

causality in events. The notion of abstraction has a range of possible

meanings (see Barsalou, 2003, for a useful discussion), but here, we

intend a logical sense in which an abstract visual relation is one

that involves a predicate that can be detected or represented despite

having variable arguments. In perception, this idea is implicit in

J.J. Gibson’s theorizing about the role of “higher-order variables” in

perception (e.g., Gibson, 1979), and more contemporary accounts of

abstraction in perception and cognition have emphasized this notion

(Marcus, 2001; Hummel, 2011; Kellman and Massey, 2013; Baker

et al., 2020a). For present purposes, the impact is that detecting

and utilizing abstract stimulus properties requires representations

in which the argument is distinct from the relation. For example,

a cluster of black pixels in between two clusters of white pixels is

a relation, but not necessarily an abstract relation. An alternating

ABA pattern of pixels irrespective of the pixel values would be an

example of an abstract relation. While deep convolutional neural

networks can evolve sensitivity to a vast array of possible “concrete”

relations, and these no doubt underwrite their high classification

accuracy in particular tasks, it is not clear that they have any access

to abstract relations.

In three experiments, we tested DCNNs’ ability to learn three

abstract visual relations: same-different, inside-outside, and more-

fewer. These certainly do not constitute an exhaustive test for all

abstract relations, but there are reasons to believe they give valuable

insight into DCNNs’ general capability of learning abstract relations.

First, each of the three relations we tested depends on a different

set of stimulus properties. Same-different depends on the comparison

of contours across scale and position, inside/outside depends on the

relative positions of the probe dot and a closed contour, and more-

fewer depends on the comparison of magnitudes–either a polygon’s

number of sides or the angular size of its corners. A deficiency in

processing any one of these stimulus features might account for

insensitivity to one particular abstract relation, but a deficiency in all

three relations points to a more general insensitivity to relations of an

abstract nature.

Second, the three relations we tested are generally simple and

are arguably relevant to systems that use visual information to

extract ecologically relevant information from scenes. Experiments

1 and 2 tested what we call first-order relations, or relations

between two image properties. Experiment 3 tested a second-order

relation between first-order relations. All three are likely to be

handled perceptually, given our brief exposure durations and rapid

acquisition by most participants from classification feedback alone,

and perception of relations in these cases is consistent with other

research indicating the perceptual pickup of meaningful relations in

scenes and events (Kellman and Massey, 2013; Hafri and Firestone,

2021). These relations all pick up on image features that could

be important for object recognition, the task these networks were

originally trained to perform. It is therefore reasonable to ask

whether relations involving them can be learned in ImageNet-trained

DCNNs. These are also the sorts of relations that may be useful in a

variety of contexts where meaningful descriptions of objects, spatial

layout, and events are to be acquired through visual perception.

The extraction of abstract relations as described heremay account

for discrepancies previously reported between successful DCNNs and

human processing of objects and shape. In human vision, global

shape is an abstract encoding in which relations are encoded but the

particular sensory elements that act as carriers for relations are often

transient, not surviving into more durable representations of objects

and shape (Baker and Kellman, 2018). That shape is an abstract,

configural notion accounts for the effortless recognition of similarity

of shape despite changes in size, orientation, or constituent sensory

elements. For example, a relatively small number of rectangles can

make an easily recognized giraffe provided that their relative sizes

and orientations are appropriate. Even for simple novel shapes,

the abstract relations between elements are more important than
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physical properties of the elements (Baker and Kellman, 2018). The

observed incapacity of DCNNs to classify objects based on global

shape information likely relates to the general absence of mechanisms

that can capture and generalize abstract relations.

We used two training paradigms to assess apprehension of

abstract visual relations. In restricted transfer learning, only the

weights between the last representational layer and the decision layer

weremodified by training on a new classification task. In Experiments

1 and 2, we found no improvement in DCNN classification after a

full 10 epochs using restricted transfer learning. This suggests that

no weighted combination of features learned in ImageNet training

could discriminate shapes based on sameness or enclosure. In

Experiment 3, AlexNet reached above-chance classification accuracy

with restricted transfer learning, indicating that certain features in the

image are detected using learned filters from ImageNet training and

can be used to discriminate between polygons with more sides and

polygons with fewer sides, at least up to 84% accuracy and as long as

shapes are within the distribution of polygons on which the network

is trained. One possibility is that the network is already sensitive to

local features like the angle of corners which can then be associated

with distance from the probe dot.

We also tested both AlexNet and ResNet-50 using unrestricted

transfer learning, in which all connection weights can be updated.

In unrestricted transfer learning, DCNNs can learn new features that

might be useful for a specific classification task. In all but one case,

unrestricted transfer learning allowed DCNNs to reach performance

levels significantly better than chance on the training task itself;

however, in the unrestricted transfer learning for Experiment 1,

ResNet-50 did not achieve above-chance performance even on the

training data.

Most crucial for the questions motivating the present work was

whether the networks had achieved training performance in each case

by extraction of abstract visual relations or by some other rule that

might not be intuitive to humans. We tested this by generating new

testing stimuli whose individual features differed from those upon

which the networks were originally trained, but could still be classified

by the same abstract visual relation. If the abstract relation had been

learned, then the network should have classified the new stimuli at

the same level of accuracy it had reached on the training data.

Instead, we found that both networks’ performance fell off

substantially–often to around chance levels–when presented with

new stimuli in which the same relations, if detected and used,

would have produced perfect performance. The networks’ lack of

generalization strongly suggests that their improved performance

on the training data was due to learning to classify based on a

set of stimulus features that were specific to the kinds of images

used during training (see Puebla and Bowers, 2021, for convergent

evidence). For example, in Experiment 3, theymay have learned some

conjunctive rule about the kinds of polygons used in training rather

than a rule about more or fewer sides that was divorced from the

relation’s arguments.

The lack of use of abstract visual relations was demonstrated

particularly starkly in Experiment 2, where we placed the probe dot at

all points within a single image and analyzed the network’s pattern of

responses. The network’s “Inside” responses appeared to depend very

little on the features of nearby contours or other relational properties

that are easily describable by humans.

This lack of generalization suggests that deep convolutional

networks are unable to disentangle relations from the arguments that

fill them. In other words, a network might learn to say “Same” when

two squares are on the screen, or when two circles are on the screen,

but it is doing so in a “conjunctive” manner (Hummel, 2011); the

learned relation binds the concrete stimulus features to the response,

such that the network will not automatically generalize to say “Same”

when two triangles are on the screen. Separating fillers from relations

might require symbolic computation, something that does not appear

to emerge spontaneously in the training of DCNNs.

We tested human participants with all of the relations presented

to DCNNs. In contrast to the networks, humans easily learned

all three of the abstract visual relations, often achieving ceiling

performance levels in the first 50 training examples. More

importantly, human performance was robust in generalization tests

with stimuli having features different from than the training data.

Across all three experiments, we found no significant difference

between human performance on any of the generalization tasks and

the last 50 trials in which they were training with feedback.

This difference between humans and networks points to humans’

remarkable ability to perceive and use abstract visual relations. It

has been argued that even what appear to be simple, basic visual

tasks in human visual perception involve abstraction (Kellman and

Massey, 2013; Baker and Kellman, 2018). The results presented here

show that there are alternative intelligent systems that can be very

successful at similar tasks (e.g., image classification) without human-

like sensitivity to abstract relations.

Differences between humans and DCNNs also provide a striking

example of the flexibility of human visual perception in contrast with

the relative inflexibility of processing in deep network architectures.

Whereas, humans were able to learn new visual tasks within a few

dozen trials of initial exposure, even after tens of thousands of

trials, DCNNs were incapable of learning them. Humans’ superior

flexibility is in one sense unsurprising because, unlike DCNNs,

humans are adapted to perform a variety of visual routines that

goes far beyond image classification. On the other hand, the case

of abstract visual relations is interesting because encoding relations

abstractly might crucially underpin our more general flexibility. For

example, consider the enclosure relation we examined in Experiment

2. Knowing whether a visual feature is intrinsic to an object or

merely correlates with the object can be partly determined by

whether it is enclosed by the object’s bounding contour. Binding

features to objects furnishes a great deal of flexibility in learning

about new objects, but it is hard to see how this flexibility

and transfer can be accomplished without some representation of

abstract notions such as object, boundary, figure vs. ground, etc.

Other work suggests that DCNNs do not naturally acquire such

representations, such as segmenting the image into figure and

ground when learning to classify novel objects (Baker et al., 2018,

2020b).

From the perspective of deep networks, an inability to learn

abstract visual relations might be predictive of poor performance on

a wide array of visual routines. Processes like segmenting figure from

ground (Peterson and Salvagio, 2008), completing an object behind

an occluder (Kellman and Shipley, 1991), judging the causality of an

event (Michotte, 1954), and representing the shape of objects (Koffka,

1935; Kubovy and Wagemans, 1995; Baker and Kellman, 2018) all

depend on access to abstract relations in human vision.

DCNNs may be able to learn appropriate responses in a training

set of displays, but without the ability to learn abstract relations, they

will perform them in a very different way from humans. An example
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of this can be seen in comparisons between human and DCNN shape

sensitivity. DCNNs do use some shape information (although to a

lesser extent than humans), but they use different aspects of shape

from humans (Baker et al., 2018, 2020b). These differences can lead

to surprising errors in DCNNs, as when an adversarial attack that

would be unnoticeable to humans completely changes a network’s

classification (Szegedy et al., 2013). In the same way, DCNNs might

be able to learn responses to other important visual tasks, but without

the use of relations. Consequently, we expect that DCNN learning

will in general be less robust, and vulnerable to errors that humans

would be unlikely to expect (and therefore, in high stakes domains,

potentially much more hazardous).

How might DCNNs be enhanced to retain their valuable

abilities to learn visual classifications but to also capture abstract

visual relations? This is a difficult question to answer because

the convolution operators underpinning DCNN operations may

be ill suited for the task. Recent ImageNet-trained recurrent

(Kubilius et al., 2019) and attention-based (Dosovitskiy et al., 2020)

architectures have shown better and more humanlike performance

on several tasks, but do not appear to be more sensitive to the

global shape of objects (Baker and Elder, 2022). It remains unknown

whether a new architecture paired with training data more targeted

toward apprehension of visual relations would produce the kind of

abstraction observed in humans.

In our view, a more extreme adjustment to these networks might

be needed. As argued by Hummel (2011), abstract visual relations

might require symbolic processing to separate roles from their fillers.

Animal studies have shown that many animals fail to complete same-

different tasks that depend on abstract relations (Gentner et al.,

2021). However, chimpanzees that are exposed to training with

symbolic systems are able to perform well on same-different tasks

that chimpanzees with non-symbolic training can not do (Premack,

1983).

Research into symbolic networks has demonstrated that they can

represent the spatial relations between parts to build up structural

descriptions (Hummel and Stankiewicz, 1996; Hummel, 2001) and

to generalize to novel instances of shapes based on their relations

(Kellman et al., 1999). It remains unclear how to combine symbolic

processing with deep convolutional networks. Some related work

on large artificial networks in linguistics (e.g., Vankov and Bowers,

2020; Jiang et al., 2021; Kim and Smolensky, 2021) suggests some

strategies for combining extensive associative training with symbolic

processing. In vision, capsule networks (Sabour et al., 2018) include

some relational coding and have been shown to increase configural

sensitivity in uncrowding effects (Doerig et al., 2020). Another recent

model adds external memory to a recurrent DCNN to allow for

explicit symbolic processing, resulting in rapid abstract rule learning

(Webb et al., 2021).

6. Conclusion

DCNNs are remarkably accurate image classifiers that, to

some degree, mimic human behavior and neurophysiology.

These similarities, however, distract from the fact that DCNNs

learn very different kinds of visual relations than humans.

While humans readily learn relations separable from their

arguments, we found no evidence that arguments and their

relations are separable in DCNNs. This difference is of

fundamental importance. While DCNNs have access to non-

abstract relational encoding sufficient for, e.g., human-like

performance levels of object recognition, they lack a critical

form of representation that supports more general visual perception

and reasoning.

Any apparent visual reasoning performed by a conventional

DCNN appears to rely on complex mappings among encodings

of relatively concrete stimulus properties, rather than any abstract

representation of visual information. We believe that this limitation

will become more apparent as DCNNs are trained to perform a wider

variety of human visual tasks, and may not be overcome with larger,

more complex networks. Instead, alternative architectures, possibly

ones that explicitly include symbolic computations, and/or modified

training regimes, will be needed for DCNNs to apprehend abstract

visual relations.
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