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Because deep learning has various downsides, such as complexity, expense,

and the need to wait longer for results, this creates a significant incentive

and impetus to invent and adopt the notion of developing machine learning

because it is simple. This study intended to increase the accuracy of

machine-learning approaches for land use/land cover classification using

Sentinel-2A, and Landsat-8 satellites. This study aimed to implement a

proposed method, neural-based with object-based, to produce a model

addressed by artificial neural networks (limited parameters) with random forest

(hyperparameter) called ANN_RF. This study usedmultispectral satellite images

(Sentinel-2A and Landsat-8) and a normalized digital elevation model as input

datasets for the Sana’a city map of 2016. The results showed that the accuracy

of the proposed model (ANN_RF) is better than the ANN classifier with the

Sentinel-2A and Landsat-8 satellites individually, which may contribute to the

development ofmachine learning through newer researchers and specialists; it

also conventionally developed traditional artificial neural networks with seven

to ten layers but with access to 1,000’s and millions of simulated neurons

without resorting to deep learning techniques (ANN_RF).

KEYWORDS

artificial neural networks (ANN), random forest (RF), Sana’a city, neural-based,

object-based

1. Introduction

Artificial intelligence (AI) has piqued the interest of many academics, researchers,

and people working in various industries the efforts and inventions will propel the

techniques of AI to success (Alshari and Gawali, 2022a). Machine-learning approaches

include neural networks as a subset. They are essentially artificial intelligence systems

that mimic connected “neuron units,” loosely modeled depending on the way neurons in

the brain interact (Yuan et al., 2009). Computational models based on neural connections

have been studied since the 1940’s.

As computer processing power has increased, large sets of training data have been

used to analyze computational models of input data based on neural connections.

Since neural networks consist of many (“deep”) layers of simulated connected neural-

based neurons, AI practitioners refer to these techniques as “deep learning.” Before

the emergence of deep learning (machine-learning approaches), neural networks
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typically consisted of three to five layers and dozens of neurons

(Girma et al., 2022). There are seven to 10 layers in a deep

learning network, each housing thousands of artificial neurons

(Alqadhi et al., 2021), and the neural networks work on a

feedforward basis. This form of an artificial neural network is

the most frequent (Ramdani et al., 2021). This arrangement

only passes through the “hidden” levels from the input to

the output. There are no loops in the network. In 1958,

AI pioneer Frank Rosenblatt proposed the first single-neuron

network (Kuemmerle et al., 2013). While the concept is not

new, advances in processing power, training methodologies, and

data availability have enabled better performance (Alshari and

Gawali, 2021a).

A random forest (RF) classifier is a collection or group

of classification and regression trees created through random

resampling (Alqadhi et al., 2021) of the preparation set on

datasets of comparable size to the preparation set, known as

bootstraps (Rindfuss et al., 2004; Verburg et al., 2011). When

a tree is built as the test set without a specific record from the

initial dataset, several bootstraps are used (Shi et al., 2020). The

speed of all test sets is developed to measure the speculation

error (Alshari and Gawali, 2021b). It is resistant to overfitting

and is expected to be more robust in the presence of anomalies

and extremely high-dimensional boundary spaces than other AI

algorithms (Singh et al., 2021). The SAGAGIS programwas used

in this study. It is freely available, open-source software. It has

an intuitive user interface with various display options and a

growing array of geoscientific approaches (Paul et al., 2021).

For the proposed approach (ANN_RF), there are several

samples for only sixmain parameters of class LULC classification

for creating model classes. The six parameters are as follows:

high land, mountains, land area, built-up (vegetation and

agriculture area), and bare land. The ANN classifier parameter

for sample classes is limited in terms of parameters for

sample classes since only samples are trained. The RF

classifier’s parameter for sample classes is a hyperparameter

since classifying depends on several trees. Every tree contains

several sub-trees, and every sub-tree has several sub-trees;

hence, RF builds giant trees for identifying classes LULC in

the region.

This study developed traditional artificial neural networks

with seven to 10 layers using the proposed approach, ANN_RF,

with access to thousands and millions of simulated neurons

without resorting to deep learning techniques (Khwarahm,

2021). In this study, the neurons consisted of five inputs

and three hidden layers. The output was 15 multi-classes

from ANN, which was input for implementing the RF

classifier that applied big number classes for each parameter

of the LULC parameters. Because deep learning has various

downsides, such as complexity, expense, and the need to

wait longer for results, this creates a significant incentive

and impetus to invent and adopt this notion to develop

machine learning because it is simple. This study intended to

increase the accuracy of machine-learning approaches for land

use/land cover classification using Sentinel-2A, Sentinel-2B,

and Landsat-8 satellites.

2. Literature review

Several pieces of literature on classifying changes in

land use using machine learning methods were reviewed. As

demonstrated by earlier research, machine learning is employed

(Makwinja et al., 2021) because it is simpler, more adaptable,

faster, and less expensive than deep learning and all other

artificial intelligence techniques (Alshari and Gawali, 2022b).

Deep comprehension problems and algorithms may be complex

(Sarif and Gupta, 2021). The combination of object-based and

neural-based ANN and RF classifiers has never been addressed,

according to the survey results from this study (Xie et al., 2021).

2.1 ANN Classifier

This study covered the literature review about ANN classifier

from previous studies as follow: (Mishra et al., 2017; Kadavi

and Lee, 2018; Dibs et al., 2020; Dixit and Agarwal, 2020;

Ekumah et al., 2020; Hamad, 2020; Kaya and Görgün, 2020;

MohanRajan et al., 2020; Navin and Agilandeeswari, 2020; Rojas

et al., 2020; Saddique et al., 2020; Xu et al., 2020; Angessa

et al., 2021; Bhattacharya et al., 2021; Dede et al., 2021; Ghayour

et al., 2021; Sang et al., 2021; Xie et al., 2021; Yusof et al.,

2021; Ambinakudige and Intsiful, 2022; Fantinel et al., 2022;

Gogumalla et al., 2022; Rizvon and Jayakumar, 2022; Theres and

Selvakumar, 2022).

The literature review proved that Artificial Neural Network

(ANN) is a supervised classification from machine learning

based on traditional neural networks that contain limited hidden

layers. It has been developed in deep learning using unlimited

hidden layers called deep neural networks.

A previous study discovered that employing ANN is limited

because of its subpar performance and that the results of

applying ANN for classification accuracy vary. It suggests that

ANN performs poorly in comparison to other algorithms.

For instance:

In their research using SVM, SAM, and ANN in Yusof

et al. (2021), indicated that ANN produced the worst results

(Dixit and Agarwal, 2020).

SVM was superior to ANN when Kadavi and Lee (2018)

applied it.

Mishra et al. (2017) comparedMLC, RF, SVM, andANN and

found that RF and SVM produced the best results.

Implemented SVM and ANN (Ambinakudige and Intsiful,

2022), with SVM having better results than ANN.
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2.2. RF Classifier

This study covered the literature review about RF classifier

from previous studies as follow: (Na et al., 2010; Wang et al.,

2011, 2019; Rodriguez-Galiano et al., 2012; Eisavi et al., 2015;

He et al., 2015, 2022; Ming et al., 2016; Sonobe et al., 2017;

Nguyen et al., 2018; Thanh Noi and Kappas, 2018; Xu et al.,

2018; Zhang et al., 2018; Abdullah et al., 2019; Gašparović et al.,

2019; Márquez et al., 2019; Ge et al., 2020; Ghayour et al., 2021;

Loukika et al., 2021; Rejith et al., 2021; Tan et al., 2021; Tassi et al.,

2021; Vignesh et al., 2021; Behera et al., 2022; Girma et al., 2022;

Huang andWang, 2022; Karijadi and Chou, 2022; Matosak et al.,

2022; Mwabumba et al., 2022; Sudhakar and Reddy, 2022).

The literature review indicated that the Random Forest

algorithm had been widely used in classifying land changes,

especially recently. It was superior in most studies in

classification accuracy. The classifier’s efficiency is due to it being

based on an object-based technique. In object-based techniques,

due to RF’s excellent performance, this study determined that

its use is significant, even though its classification accuracy

results vary. Nevertheless, all results showed that the RF

algorithm is the best machine-learning LULC classifier among

the many researched algorithms. In the future, more testing in

various climatic conditions will be necessary. Additionally, the

findings showed that RF produced trustworthy and extremely

accurate land cover maps over large areas with diverse and

complicated geomorphologies and little human contact. We

classified land use and land cover by comparing RF, ANN, and

other classifiers. They discovered that RF performed better than

ANN classifiers. For instance, the RF results are better than those

from SVM and MLC, according to there and others in 2022

(Tan et al., 2021).

According to research conducted by Tan et al. (2021),

RF outperforms the decision tree classifier, SVM, and ANN

(Ghayour et al., 2021).

In their study published in Wang et al. (2019), discovered

that the classification accuracies of RF, SVM, and k-NN were

86.61, 79.96, and 77.23%, respectively (Xu et al., 2018).

In Loukika et al. (2021), discovered that RF is the best

classifier among SVM, RF, and CART in terms of overall

accuracy using Landsat-8 and Sentinal-2A (Ge et al., 2020).

2.3. Multiple (hybrid) classifier
approaches

This study covered the literature review about the hybrid

classifier approach from previous studies as follows: (Malinverni

et al., 2011; Wang et al., 2011; Kumar et al., 2013; Márquez et al.,

2019; Munthali et al., 2020).

Previous research proved the originality of the hybrid

work described in this study, although the ANN_RF was

not previously visible. This study examined several hybrid

techniques for classifying land change between 1970 and

2022. However, articles that combined object-based and neural

computing (RF) could not be found.

For instance, a paper by Karijadi and Chou (2022), presented

a hybrid technique based on the Complete Ensemble Empirical

Mode that combines random forest (RF) with Long Short-Term

Memory (LSTM; Wang et al., 2011).

Furthermore, He et al. (2022), carried out research on a

hybrid deep-learning-based recurrent model (DGRN) to map

the water clarity of worldwide lakes using Landsat-8 Operational

Land Imager (OLI) pictures (Malinverni et al., 2011).

Huang and Wang (2022) created hybrid landscapes

(Munthali et al., 2020) with enough cooling intensity to reduce

the UHI effect successfully.

Wang et al. (2011) completed their work (Márquez et al.,

2019) of using a hybrid technique combining supervised

classification and principal component analysis (PCA) to

identify dandified land changes.

Malinverni et al. (Kumar et al., 2013) presented a hybrid

classification method. Compared to traditional pixel-based

approaches, the suggested hybrid methodology allows for

extracting additional LULC classes while significantly increasing

classification accuracy. However, it is challenging to combine

many classifiers. The limited literature indicates that more

research on hybrid tactics is needed. It has been noted that the

efforts to use mixed techniques are insufficient (Lo and Choi,

2004; Schepaschenko et al., 2011; Mahiny and Clarke, 2012;

Singh et al., 2014; Vigneshl and Thyagharajan, 2014; Vignesh

et al., 2016, 2022; Sturari et al., 2017; Vignesh and Thyagharajan,

2017; Mishra et al., 2018; Thyagharajan and Vignesh, 2019; de

Deus et al., 2021; Regasa et al., 2021; Wambugu et al., 2021;

Behera et al., 2022)1,2.

After 2000, hybrid approaches gained popularity. It was

frequently used for classifying land cover. Research into

hybrid classifiers is still needed to maximize the categorization

accuracy of Landsat-8 pictures. They are regarded as more

involved methods of classifying land cover. Because each

classification system has benefits and drawbacks, choosing the

best one can be challenging. For instance, the performance of

supervised algorithms like maximum likelihood will improve

with sufficient training points and normally distributed image

data. However, such methods cannot yield reliable results in

complex environments, necessitating additional methods like

hybrid approaches. Early hybrid techniques, which began in

the 1980’s, soon after the development of supervised and

unsupervised classification, were built using Landsat-8 images.

However, the hybrid system has become more adaptable and

potent because of enhanced classifiers.

1 https://ai.stackexchange.com/questions/5728/what-is-the-time-

complexity-for-training-a-neural-network-using-back-propagation

2 https://www.quora.com/What-is-the-time-complexity-of-a-

Random-Forest-both-building-the-model-and-classification
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3. The proposed approach

First, although this study used a multi-layered ANN, the

initial neural networks only included five input levels and

three hidden layers, and they only produced results for a

single class. There were six fundamental parameters, each of

which had several types. There were 5,000 samples and 100

trees for constructing model classes for six primary parameters:

high land, mountains, land area, built-up vegetation, and bare

area land.

By training data on land categories, ANN will identify the

classes of land. It will compete with deep learning approaches.

Typical artificial neural networks with seven to 10 layers are

traditionally constructed with access to millions of simulated

neurons in this study. An input layer was included in the neural

network. There were two layers: a concealed layer and an output

layer. The input layer received the input signals and passed them

on to the next layer, which then deliverd the final prediction to

the output layer.

The task at hand, perceptron, was a multi-layered

perception system. A perceptron is made up of numerous

neurons, which are the fundamental building blocks of

the brain. Each circle symbolizes a neuron in simple

terms. Perceptrons are a dense layer of vertically arranged

neurons. One can now see each neuron in the image from a

detailed perspective. Weights (w1, w2, w3) and biases were

assigned to each neuron, and computations were carried out

as follows:

(F = w1∗x1 + w2∗x2 + w3∗x3), combination = bias +

weights ∗ input.

The input layer received the data first and then sent it

to the hidden layers, where the interconnection between the

two layers assigned weights to each input randomly. After

bias was applied to each input neuron, the weighted total, a

combination of weights and preferences, was conveyed through

the activation function. The activation function determined

which node should be used for feature extraction and then

computes the output. The model weights were adjusted, and the

prediction process was finished. The input node converted the

data into numerical form. Each node was allocated a number,

which denoted an activation value. The higher the number, the

more intense the action.

The activation value was transferred to the next node based

on weights and the activation function. Each node calculated

and updated the weighted total (activation function) depending

on the transfer function. It then performed a process called

activation. This neuron was the only one that can perform this

function. These nodes then chose whether or not to transmit the

signal. The ANN adjusted the weights, which determined the

signal extension. The activation traveled across the network until

it reached the destination node.

Afterward, the RF classifier received the output ANN. The

steps in the random forest approach were as follows: A random

forest selected n random records from a dataset of output ANN

records at random. Individual decision trees were created for

each sample. Each decision tree generated a result. The simplest

random forest with random features was made by randomly

splitting a limited set of input variables at each node. Combining

the work ANN classifier with the work RF classifier, the study

concluded that ANN_RF and worked hyper-parameters yield

the best split.

Finally, the suggested method sought to merge RF

hyperparameters with ANN hyperparameters. Figure 1 shows

hybrid artificial neural networks (ANN_RF).

Because of the merging of the two neural-based and object-

based approaches, the number of layers in ANN_RF accessed

thousands and millions of simulated neurons. The input to the

RF classifier was the implementation of this novel method in

software SAGA via the outputs of the artificial neural network.

Then, rather than a single tree, each tree was built individually

using the features of packing and randomness to produce a forest

unrelated to what the trees expected.

4. Implementation of hybrid artificial
neural networks (ANN_RF)

The process was conducted for LULC classification using the

proposed classifier ANN_RF. It was provided at the outset of the

study area data and was obtained afterward from multispectral

satellites, Landsat-8 and Sentinel-2A satellites. This stage of

preprocessing will be described in depth in the following

section. LULC classification was done with SAGA software

using the proposed classifier (ANN_RF) following its accuracy

assessment. We used a change matrix with a polygon/grid

in this study. We found LULC classification for Sana’a city

with Landsat-8 resolution 30m following in the down and

sentimental-2A satellite. The fundamental parameter used in

this study included six parameters: rocky area, mountains and

high land, roads and land area, built-up area, vegetation, bare

land, and agricultural area (see Figure 2).

4.1. Study area

Sana’a is Yemen’s capital, the Sana’a governorate. It is

situated at the height of 2,150 meters above sea level, on the

equator’s north line (15–21) and Greenwich’s longitude (12–

44) east (Bhattacharya et al., 2021). It is surrounded by two

mountains (Jabal Naqum on the east and Jabal Eiban on the

west) and the province (Bhattacharya et al., 2021). The city

offers a unique environment around 2,200meters above sea level

(Angessa et al., 2021). Sana’a is Yemen’s largest city and the

administrative capital of the governorate. It is 2,300m in height

(7,500 ft). It is probably the most elevated capital close to the

Sarawat Mountains. With an entire area of 21,084.06 km2 (49
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FIGURE 1

A workflow diagram for proposed work hybrid artificial neural networks (ANN_RF).

sq mi), it has a population of around 3,937,500 (2012) (Alshari

and Gawali, 2022b), as shown in Figure 3 of the cleared location

case study.

4.2. Data collection

Images from a scientific agency in the Sana’a region

were utilized in this investigation. The base map (Navin and

Agilandeeswari, 2020) was created from survey pictures of the

toposheet at a scale of 1:50,000. The data used in the current

study were collected from the Landsat-8 satellite, which was

launched in 2016. The calibration and comparison procedure

for modifying land was made possible due to the 2016 data

collected in December. In this study, the Landsat-8 satellite

dataset contained 12 images, as shown in Table 1. Photos

from a scientific agency in the Sana’a region were used in

this investigation.

4.3. Preprocessing for LULC classification

The preprocessed data were separated into images inWGS84

or WGS84/UTM coordinate systems. Figure 4 identifies the

information accurately after it was investigated using Google

Maps and remote sensing technologies.
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FIGURE 2

Workflow diagram for proposed methodology.

FIGURE 3

Location map of the case study.

For the case study, multispectral pictures from Sentinel-

2 and Landsat-8 were available (Figures 5, 6), demonstrating

the preprocessing corrections for band 432. Valid data with

geometric and radiometric corrections were included in the

preprocessing. These processes improved satellite imagery for

categorization and corrected degraded images to produce amore

accurate scene representation.

4.4. LULC classification

This section explains the methodology applied in the

general-level LULCC land use planning for Sana’a city and the

specific findings derived using multispectral medium-resolution

satellite data. Our analysis suggested that the LULC in Sana’a

saw significant changes in 2016. This data source can be

utilized to containerize the city sizes of Sana’a and, in the

long term, contribute to territorial and global environmental

models. In the database, there was a categorization model for

LULC 2016. The RGB 432 band categorization was employed

in this investigation—the ANN_RF. The neural networks used

in this study had five input layers and three hidden layers. The

output had six basic parameters and was only for one class.

Each parameter had several different types. Table 2 shows 5,000

samples and 100 trees for six critical factors used to create model

classes: high land, mountains, land area, built-up vegetation,

and bare area land, with many subclasses, i.e., notes on SAGA

software parameters. The categorization in these models was
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TABLE 1 Data collection frommultispectral satellites.

Date acquired Sentinel-2A

satellite

Landsat-8 satellite

Sensor Sentinel-2A. The sensor is Operational Land Imager

(OLI) and Thermal Infrared Sensor

(TIRS).

Spatial of resolution 10m 30 m

The time of the

season

December December

FIGURE 4

Sana’a area on the Google Maps.

seven, but the processing and results in the parameter were six

because merging area vegetation with farmed land created six

classes. We created samples based on RGB color composites of

Sentinel-2A photos, such as the vegetation class (red pixels in

RGB = 432), which showed detailed changes in the region. For

the proposed (ANN_RF) approach, numerous samples (hyper-

parameter samples) of only six main parameters of the LULC

classification were used to create model classes with detailed

changes in the region. Figures 7, 8 are two different views of the

same place.

The types of hyperparameters used in this proposed model

are max_sample and bootstrap. It improved the algorithms of

machine learning (ANN and RF) with the help of the ANN_RF

model, where types of hyperparameters of RF are as follows:

max_depth in a random forest, the longest path between the root

node and the leaf node was defined as the tree’s maximum depth,

min_sample_split, a random forest decision tree’s minimum

needed the number of observations in each node specified by this

parameter; default= 2, max_leaf_nodes. These hyperparameters

limited the tree’s growth by requiring the splitting of nodes in

the tree, min_samples_leaf. After splitting a node, this random

forest hyperparameter set the minimum number of samples in

the leaf node. Default= 1, estimators, the forest’s total number of

trees, max_sample; themax samples hyperparameters controlled

how much of the original dataset was allocated to each tree,

max_features; this was comparable to the maximum number

of features offered to each tree in a random forest, the data

point sampling method with or without replacement, and the

criterion, the function for assessing the split’s quality. The

criteria “Gini” for Gini impurity and “entropy” for information

gain were supported.

5. Evaluation of the ANN_RF model’s
performance

The proposed model’s temporal complexity evaluated the

ANN_RF model’s performance. This study demonstrated that

the proposed use of ANN_RF is a means to improve

performance (both speed and accuracy). The time complexity of

the (ANN_RF)model has three stages: First, the time complexity

for ANN is calculated by the formula in Equation 1 (see text

footnote1). It shows the training time (in seconds) with ANN.

As a result, the focus of ANN enhancement was on parameters

and layers.

Mij∗MjkMij∗Mjk is simply O(i∗j∗k) O (i∗j∗k) (1) (time

complexity for ANN) (see text footnote1).

Then, it showed the time complexity in the case of RF. The

time complexity for RF of constructing a complete unpruned

decision tree was governed by Equation 2 (see text footnote2),

where n was the number of nodes in the tree: O (v ∗ n log(n)) (2)

(time complexity for RF) (see text footnote2).

In the proposed technique, we merged the limited parameter

(ANN) + hyperparameter (RF) = hyperparameter (ANN_RF)

model in the proposed approach. It showed the time complexity

of the proposed model, ANN_RF, with improved accuracy as

0.2 s, 0.3 s, 0.4 s, and 0.5 s. In the best case, the ANN_RF model

had better time complexity than Equation 3, which was derived

from Equations 1, 2, as shown below:

We explained the driven equation time complexity for

(ANN_RF) model using a common extract factor between

Equation 3 (time complexity for combination ANN± RF).

[O(v∗nlog(n)))∗(O(i∗j∗k)O(i∗j∗k)] (1)

[O(v∗nlog(n)))∗(O((i∗j∗k)(i∗j∗k))] (2)

[O(v∗nlog(n)))∗(O((i∗j∗k)2)] (3)

O[(v∗nlog(n)∗((i∗j∗k)2] (4)

O((v∗nlog(n)((i∗j∗k)2). (5)
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FIGURE 5

Dataset of Sentinel-2A satellite sensor with selection and clipping of area study in composite band 432.

FIGURE 6

Dataset of Landsat-8 satellite sensor with selection and clipping of area study in composite band 432.

On the other hand, a random forest randomly selected the

rows and characteristics of the dataset using a bootstrapping

technique. This randomization allowed a tree to have only

a few samples and features while ensuring that all models

and elements were considered in the other trees, restricting

overfitting. The field determined the algorithm’s output with the

most votes in the event of a category variable and the average

of all possible outcomes in the case of a numerical variable

after generating several trees with different characteristics

and samples.

It trained the model with many trees (for example, 1,000

trees) and then chose the best subset of trees to adjust the

number of layers available to the ANN_RF trees. It was

unnecessary to train a fresh random forest with different tree

numbers each time. Slower learning is associated with higher

accuracy. We reduced the number of estimators and increased

the number of trees in the model to speed up the random forests.

6. Results

Tables 3–5 showed that the (ANN_RF) approach

outperformed an ANN classifier using two satellites, Sentinel-

2A and Landsat-8, better than the ANN classifier. This study

successfully implemented the novel technique (ANN_RF). The

result showed that improved classification accuracy for land use

and land cover is possible. This study also found the proposed

work for building machine learning with the overlap of entering
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ANN output into object-based approaches through the RF

classifier to be practical. It was judged to be a high-accuracy

TABLE 2 Description of LULC classes in the study area.

LCLU

classes

Description

High land High land may be remote settlements and clans with a long

history and profound loyalties.

Mountains A mountain is a raised section of the Earth’s crust with steep sides

and exposed bedrock.

Land area The area in square kilometers of the land-based portions of

conventional geographic regions is referred to as land area, which

is the population of people. Not contains buildings, maybe streets,

parks, roads or buildings crashed down, like this.

Builtup Built-up maybe large buildings, small buildings, settlements,

transportation land or places contain population people like

banks, schools, hospitals, etc.

Vegetation Space containing crops, fields, sparse grassland, a Temperate

steppe, and a Temperate meadow.

Bare land Bare soil, bare rocks, and land do not contain the population of

people like the desert.

classifier that enhanced ANN when it was single. Tables 4,

5 showed that ANN gave zero value in some classes, while

(ANN_RF) gave some value to them. Further, the percentage of

identified types in (ANN_RF) was better than in ANN.

There are elements affected by the results of land change

classification and three factors:

i) Type of resolution satellite.

ii) Type of artificial intelligent classifier.

iii) Region types from the land use and land cover of the

land selection. The processing stage is different from one

classifier to another.

Every classifier in AI for land change classification has a

process for running the algorithm.

7. Accuracy assessment

The confusion matrix and the A kappa coefficient were

used for accuracy evaluation. A confused matrix of perplexity

(sometimes called an error matrix) indicated how well a

classification model or a classifier performed on a set of test data

with known appropriate values (Ge et al., 2020). A confusion

FIGURE 7

Classification of land use land cover with ANN classifiers alone.
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FIGURE 8

Classification of land use/land cover with the proposed work (ANN_RF).

TABLE 3 Overall accuracy and Kappa coe�cient for ANN and proposed work (ANN_RF).

Sentinel-2A-2016 Landsat-8-2016

No Classifier Overall accuracy Kappa co-efficient Classifier Overall accuracy Kappa co-efficient

1 ANN 61.69% 0.736954 ANN 62.07% 0.434411

2 ANN_RF 82.52% 0.588419 ANN_RF 80.00% 0.719060

matrix was a tool for comparing the differences between two

raster datasets. An errormatrix was themost common technique

for expressing the precision of the characterization result,

the correctness of consumers and producers, and the insights

acquired through mistake lattices (Abdullah et al., 2019). In

the confusion matrix’s columns, the classes to which pixels

in an array corresponded for validation (ground truth) were

employed. This study used SAGA GIS software to create a

confusion matrix. The confusion matrix’s results were divided

into four groups. Tables 6–9 show that each group encompasses

five categories of 2016 results. In this study, the SAGA GIS

software used for LULC classification automatically created a

confusion matrix and kappa coefficient with Excel for statistical

computing values and overall accuracy, and the LULC image’s

kappa coefficient is shown in Table 3.

8. Discussion

Feature extraction from multispectral satellites is varied,

such as being cheap, being free, covering a large region, and

being more readily available. Additionally, the spectral bands
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TABLE 4 Area and percentages LULC for ANN and (ANN_RF) to Sentinel-2A satellite.

No Name ANN ANN_RF

Area km2 Percentage % Area km2 Percentage %

1 Highland 120,003 01.00% 1,123,110 03.00%

2 Mountains 8,915,261 31.43% 148,753,130 39.14%

3 Land area 5,729,899 30.48% 130,431,000 04.69%

4 Vegetation 1,200,010 02.00% 287,400,010 03.15%

5 Bare land 3,614,288 03.00% 376,240,400 10.00%

6 Agricultural area 5,374,410 2.86% 311,200,010 09.00%

7 Built-up area 232,110 29.23% 11,098,100 31.02%

Total= 18,796,889 100.00% 187,968,880 100.00%

TABLE 5 Area and percentages LULC for ANN and (ANN_RF) to Landsat-8 satellite.

No Name ANN ANN_RF

Area km2 Percentage % Area km2 Percentage %

1 Highland 129,800 02.00% 11,230 03.00%

2 Mountains 166,805,000 40.65% 101,668,050 33.69%

3 Land area 558,233,100 06.00% 475,654,500 02.00%

4 Vegetation 217,905,300 10.86% 227,799,900 11.35%

5 Bare land 214,587,000 10.68% 1,003,420 10.85%

6 Agricultural area 21,189 02.00% 98,710 01.00%

7 Builtup area 62,217,018 27.81% 108,622,170 38.11%

Total= 2,007,405,900 100.00% 210,840,680 100.00%

TABLE 6 Confusion matrix for ANNmethod of Sentinel-2A satellite 2016.

Class Highland Mountains Land area Vegetation Bare land Agricultural area Builtup area SumUser AccUser

Highland 0 0 0 0 0 0 0 0

Mountains 0 786 4 0 27 114 19 950 82.73684

Land area 444 33 518 203 68 210 1 1,477 35.07109

Vegetation 0 0 0 0 0 0 0 0

Bare land 3 62 35 3 1,593 20 11 1,727 92.24088

Agricultural 0 24 2 0 6 43 0 75 57.33333

Builtup area 0 0 0 0 0 0 0 0

Unclassified 0 0 0 0 0 0 0 0 0

SumProd 447 905 559 206 1,694 387 31

AccProd 0 86.85083 92.66547 0 94.03778 11.11111 0

in each image captured by multispectral satellites, as well as

the spectral bands deduced from them, enabled us to access

“hidden” data about features or objects that are used for

image preprocessing, such as land use treatment, land cover

classification, and more; however, it could not be detected.

The features obtained from this study from the supplied

satellite images—spatial, spectral, and spatial-spectral features—

were retrieved.

An efficient method for analyzing texture features is

the local binary pattern (LBP) method. It combines the

advantages of statistical and structural approaches for texture

analysis. Further, it increases the accuracy of machine learning
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TABLE 7 Confusion matrix for (ANN_RF) proposed work method of Sentinel-2A satellite 2016.

Class Highland Mountains Land area Vegetation Bare land Agricultural area Builtup area SumUser AccUser

Highland 0 0 0 0 0 0 0 0

Mountains 446 859 350 188 114 380 10 2,347 36.59992

Land area 1 0 179 11 7 0 0 198 90.40404

Vegetation 0 0 6 6 3 0 0 15 40

Bare land 0 46 24 1 1,570 7 21 1,669 94.0683

Agricultural 0 0 0 0 0 0 0 0 0

Builtup area 0 0 0 0 0 0 0 0

Unclassified 0 0 0 0 0 0 0

SumProd 547 907 659 306 2,694 487 41

AccProd 0 94.91713 32.02147 2.912621 92.68005 0 0

TABLE 8 Confusion matrix for ANNmethod of Landsat-8 satellite 2016.

Class Highland Mountains Land area Vegetation Bare land Agricultural area Builtup area SumUser AccUser

Highland 0 0 0 0 0 0 0 0 0

Mountains 90 413 20 0 1 0 993 1,517 27.22479

Land area 0 16 443 0 5 10 8 482 91.90871

Vegetation 0 0 6 135 0 115 4 260 51.92308

Bare land 0 0 1 0 1,078 0 0 1,079 99.90732

Agricultural 0 0 0 0 0 0 0 0 0

Builtup area 0 0 0 0 0 0 0 0 55.45814

Unclassified 0 0 0 0 0 0 0 0 0

SumProd 90 429 470 135 1,084 125 1,005

AccProd 0 96.2704 94.25532 100 99.44649 0 0

TABLE 9 Confusion matrix for (ANN_RF) proposed work method of Landsat-8 satellite 2016.

Class Highland Mountains Land area Vegetation Bare land Agricultural area Builtup area SumUser AccUse

HighLand 0 0 0 0 0 0 0 0 0

Mountains 0 0 0 0 0 0 0 0 65.45814

Land Area 0 16 443 0 5 10 8 482 91.90871

Vegetation 0 0 6 135 0 115 4 260 51.92308

Bare Land 0 0 1 0 1,078 0 0 1,079 99.90732

Agricultural 0 0 0 0 0 0 0 0 0

Builtup Area 90 413 20 0 1 0 993 1,517 65.45814

Unclassified 0 0 0 0 0 0 0 0 0

SumProd 90 429 470 135 1,084 125 1,005

AccProd 0 0 94.25532 100 99.44649 0 98.80597

approaches for land use/land cover classification using

Sentinel-2A, and Landsat-8 satellites because deep learning

has various downsides, such as complexity, expense, and

the need to wait longer for results; this creates a significant

incentive and impetus to invent and adopt the notion

of developing machine learning approaches because it

is simple.

We compared the outcomes of our suggested model with

various other combinations, such as RF+SVM, MLC+SVM,

and ANN+SVM, to assess the performance of the proposed

method. We used two distinct satellite photos in this study. For

our experiments, we specifically used Sentinel-2A and Landsat-

8 satellite pictures. The Gabor filter extracts the crucial texture

features from the raw image during the feature extraction stage.
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For the supervised classification algorithm (object based)

to classify data into various land use and land cover classes

with ease during the classification phase. It was discovered

that our suggested method produces results with greater

accuracy than other methods. Finally, a clever edge detection

algorithm separated the classes of land use and land cover from

the LULC.

We discovered that combinations of classifiers had

been discovered. However, we could not locate an ANN-

RF classifier combination in the land use and land cover

classification field. This shows that the scientific gap that was

studied in this study has not yet been filled (Vigneshl and

Thyagharajan, 2014; Vignesh et al., 2016, 2022; Vignesh

and Thyagharajan, 2017; Thyagharajan and Vignesh,

2019).

9. Conclusion

This study concluded that the suggested study successfully

implemented the novel technique—ANN_RF. It showed a

significant result in classification accuracy for land use and

land cover with Sentinel-2A and Landsat-8 satellites with the

proposed approach, ANN_RF. Despite the advent of advanced

technologies that have appeared over time for increased

classification accuracy outcomes, this study recommends

that future users and researchers continue research into

the development of machine learning approaches. Further,

it is recommened that researchers continue experimenting

with merging these RF and ANN algorithms with other

satellites and other time and environmental conditions.

Through the aforementioned clarification, it is evident that

this study’s findings differ significantly from those of the

earlier studies described in the literary survey part; this

shows that the scientific gap studied here has not yet

been bridged.
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