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In this study we provide an in-depth review and analysis of the impact

of artificial intelligence (AI) components and solutions that support the

development of cutting-edge assistive technologies for children with special

needs. Various disabilities are addressed and the most recent assistive

technologies that enhance communication and education of disabled

children, as well as the AI technologies that have enabled their development,

are presented. The paper summarizes with an AI perspective on future assistive

technologies and ethical concerns arising from the use of such cutting-edge

communication and learning technologies for children with disabilities.
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Introduction

According to the WHO (2021), more than a billion people worldwide experience

some form of disability including almost 240 million children whose well-being is

endangered. As also highlighted in a report of UNICEF (2021), the ageing of the world

population, new illnesses and an escalating trend of chronic diseases further increase the

amount of disabled people. They just need a little help to live and work independently

and with dignity.

Aiming to assist loved ones, and often themselves, people started designing low-tech

devices many centuries ago (Robitaille, 2010). Since the early sixteenth century, people

with mobility difficulties have been using the walking cane as a tool that assists them

to walk and stand stably (Amato, 2004). Although wheeled seats and furniture have

been used for transporting disabled people since sixth century BCE, mass production of

wheelchairs started in 1933, when the paraplegic Everest and his friend Jennings designed

a metal foldable wheelchair that used the X-brace design they patented as a “construction

for collapsible invalids’ wheelchairs” (Woods and Watson, 2004).
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Glasses for partially sighted people were invented in the

seventeenth century (Rosenthal, 1996; Lee, 2013). At the same

time, ear trumpets, passive amplifiers that collect sound waves,

and direct them into the ear channel, replaced the cupped hand,

the popular method for hard of hearing used since Roman

Emperor Hadrian’s era (Valentinuzzi, 2020). These two sensory

tools are the origins of modern assistive devices and technologies

that support a more independent life for people with disabilities

(Robitaille, 2010).

Blind people were unable to independently learn and study

until the beginning of the nineteenth century. At that time, Louis

Braille, who was blind since his early childhood, modified the

military purpose language created by Charles Barbier de la Serre

and invented the Braille alphabet, which is still among the most

widely used reading media for the blind (Jiménez et al., 2009).

In 1935, Agatha Christie’s novel The Murder of Roger Ackroyd

was recorded, initiating the transition of the printed toward the

so called talking books (Philips, 2007). Electronic text-to-speech

synthesizers were unveiled just a few years later, enabling blind

people to consume written content by leveraging their enhanced

hearing ability (Ohna, 2010).

The first electronic assistive technology ever developed

was the Akouphone, a portable hearing device with carbon

microphone and earphones (Kenefick, 2009). Although

communication based on hand movements is mentioned in

Plato’s Cratylus, a Socratic’ dialogue from his middle period as

early as the fifth century BCE (Cratylus, 2022), the first sign

language in wide use was the Old French Sign language, which

originated in the eighteenth century and became the basis of

American Sign language (Reagan, 2021).

All these developments and tools significantly improved

the condition of people with disabilities in their daily

communications, although their comprehensive education was

still challenging. To ensure the fundamental human right to

education and avoid the discrimination due to disability, in 2018

WHO launched the global cooperation on assistive technology

(GATE) initiative (Boot et al., 2017). The only goal of GATE is

“to improve access to high-quality affordable assistive products

globally” (WHO, 2018).

Artificial Intelligence (AI) is the driving force of most

assistive products, supporting people with different disabilities

to keep and improve their education and everyday activities

(Zdravkova, 2022). It enabled the creation of simulated

environments that also include augmented and virtual reality.

AI-supported tools improve visual tracking skills, help students

with social disabilities and improve time-management skills.

The advantage of AI technologies over non-AI technologies

used to date is the speed and precision they provide in

analyzing and deciphering complex communication, expression,

and visual behaviors. For example, applications that incorporate

gesture-based text prediction in conjunction with AI are very

useful for categorizing the most likely words from gestures

and transforming them into meaningful sentences that support

people with hearing impairments (Cheng and Lai, 2020).

Other examples include machine and deep learning, which

can improve substantially EEG-based brain-computer interfaces

that help people who are unable to move gain independence

(Sakti et al., 2021).

In this study, we present the findings of a narrative literature

review that collected relevant literature published during the

last ten years (Baumeister, 1997). The first step in this method

pertains to conducting a preliminary search of the literature.

For this reason, we constructed a search string to query the

Scopus research database. In this endeavor, we have included

papers only written in English that highlight evidence related

to the impact of AI on modern assistive technologies for

children with disabilities. As a next step, we analyzed and refined

the explored topics from the relevant papers by subsequently

identifying the employed AI technique to support and enhance

the functionality of the assistive technologies. After a careful

review, we classified the AI techniques into four different

clusters, namely, augmentative and alternative communication

(AAC), machine and deep learning (ML and DL), natural

language processing (NLP), and Conversational AI.

The remainder of the paper is organized as follows: in the

next section, a variety of disabilities will be explored and the

cutting-edge assistive technologies that support communication

and education of young children will be announced in line

with AI technologies that enabled their creation. This section

will be followed with a brief explanation of AI algorithms

and techniques behind the announced assistive technologies

including the futuristic ones. The paper will conclude with an AI

perspective of future assistive technologies and ethical concerns

that arise from the use of cutting-edge communication and

learning assistive technologies intended for disabled children.

Cutting edge assistive technologies

Unhindered communication is the key prerequisite of

quality education (Dhawan, 2020). If a student cannot listen

to what a teacher presents and school mates talk about, or

cannot see the visual content that supports the lectures and the

assignments, then the effect of instructional behavior exhibited

even by the most skilled teachers is reduced. Lack of attention,

cognitive and intellectual preparedness to comprehend the

school curriculum is an additional problem. Sometimes, perfect

sight, hearing and intellectual abilities are obstructed by motor

disabilities, which slow down or disable students’ ability to write.

Cutting-edge assistive technologies can mitigate many of the

above-mentioned problems (Shinohara and Wobbrock, 2011).

According to American Speech-Language-Hearing

Association (ASHA), communication disorders cover

the impairments “in the ability to receive, send,

process, and comprehend concepts or verbal, non-verbal
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and graphic symbol systems” (American Speech-

Language-Hearing Association, 1993). They are classified

into speech disorders, language disorders, hearing

disorders, and central auditory processing disorders

(American Speech-Language-Hearing Association, 1993).

The modern assistive technologies empowered by AI can

significantly contribute to achieving important goals to support

and provide new possibilities for children with disabilities.

In Figure 1 we illustrate such goals, which include improved

communication, inclusive education, enhanced accessibility,

intellectual preparedness, and culminating with independent life.

As mentioned earlier, the AI techniques were classified

into four broad clusters: AI methods and algorithms that

support AAC; ML and DL; NLP; and Conversational AI

– speech and voice recognition, which are further divided

into silent speech interface (SSI), speech recognition (SR),

visual speech recognition, and voice recognition. These

four clusters should not be mixed with the AI goals that

according to Russel and Norvig (http://aima.cs.berkeley.edu/)

embrace: problem solving; reasoning; knowledge representation;

planning; machine learning; communication, perceiving and

acting. Deep learning and natural language processing are

important AI subsections and tools, while conversational AI

is an umbrella term of so called affective computing, which

is an interdisciplinary field that relies on AI. AAC is not AI

per se. Similarly to affective computing, it heavily relies on

sophisticated AI. Although AI heterogeneous, the division was

made according to the needs of assistive technologies, thus

they are a symbiosis of AI methods and major trends in

assistive technologies.

Table 1 lists on the first column the senses or the human

ability being affected. For each sense then a disorder is listed

(column two) followed by the appropriate assistive technologies

(column three) designed to easier overcome the challenges

associated with the disorder. In the table’s last two columns, we

list AI techniques and AI algorithms and methods respective

of the listed assistive technologies. The main criteria when

selecting the listed disorders was their impact on impaired

communication and the availability of Scopus studies describing

the appropriate assistive technologies. If multiple studies

introduced the same assistive application, priority was given to

the one that in more detail represents an implementation of the

AI technologies, algorithms, and methods.

The following AI algorithms and methods were used

to develop the assistive technologies shown in the table:

adaptive optimization based on artificial neural networks

(AOANN), augmented reality (AR), Bayesian learning,

Bidirectional Encoder Representations from Transformers

(BERT), Bidirectional long short-term memory (BLSTM),

Convolutional neural networks (CNN), Deep neural networks

(DNN), Gausian Markov model, Haptic communication (HC),

Hidden Markov model (HMM), Hybrid CNN and RNN,

k-Nearest Neighbors, Multi-layer perceptron (MLP) classifier,

Naïve Bayes, Pronunciation verification, Recurrent neural

network (RNN), Spatiotemporal convolutional neural network

(SCNN), Speaker recognition (SpR), Speech-to-Braille, Speech-

to-text (STT), Support vector machines (SVM), TensorFlow,

Text-to-speech (TTS) and Voice activity detection (VAD).

AI algorithms presented in the table were selected in

three stages:

a) Determination of the most frequent communication

disorders covered by American Speech-Language-Hearing

Association (ASHA, https://www.asha.org), mental disorders

from World Health Organization (https://www.who.int), as

well as learning difficulties listed in the UNESCO learning

portal (https://learningportal.iiep.unesco.org/);

b) Selection of the relevant scholar articles that present

AI-based assistive technologies created to support this

communication and learning disorders;

c) Thorough examination and extraction of AI methods,

algorithms and techniques and their clustering.

Next subsection introduces them briefly by presenting a

short explanation of each of the implemented AI algorithms and

the assistive technologies that were developed by implementing

those algorithms. Then, AI-based assistive technologies from all

four clusters are also introduced and illustrated.

AI algorithms and assistive technologies
for communication and learning
impaired students

The list of the algorithms in the previous section was

alphabetically ordered. The introduction of AI algorithmswithin

the subsectionwill start with artificial neural networks, which are

the most widely used computational model in machine learning

and the heart of deep learning. The list will continue with

the learning algorithms, then it will introduce speech and text

conversions and end with haptic technology.

Since the mid 1980s, artificial neural networks have become

a very powerful model that enables excellent prediction and

learning of many patterns that cannot be explicitly presented.

According to Pai (2020), three types of neural networks

contribute to deep learning: artificial neural networks (ANN),

CNN, and RNN. ANNs are feedforward networks capable of

learning nonlinear functions. Their limitations can be overcome

by creating building blocks (CNN) or by adding a recurrent

connection on the hidden state (RNN). CNNs are particularly

valuable for image processing, while RNNs solve problems with

time series, text and audio data (Pai, 2020). Combination of

CNNs and RNNs, sometimes called hybrid CNN and RNN

proved its efficiency for word prediction (Goulart et al., 2018).

Spatiotemporal convolutional neural networks are a special type

of CNNs capable of extracting spatial-temporal features. They
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FIGURE 1

AI enabled goals to support children with disabilities.

are very efficient for sign language recognition (Li et al., 2022).

More complex neural networks with many hidden layers that

employ more sophisticated mathematical models belong to deep

neural networks.

Bidirectional Encoder Representations from Transformers

(BERT) is a language representation model that is trained

on unlabeled data over different pre-training tasks using

multi-layer bidirectional transformer encoders (Devlin et al.,

2018). BERT is embedded into Google Search for over 70

languages. It has been successfully used in several assistive

technologies, particularly for speech recognition (Brunner et al.,

2020) and speech completion (Tsunematsu et al., 2020). Model

performance of classification problems of sequential data can

be improved by BLSTM. It is particularly useful for developing

assistive technologies for people with visual impairment

(Wahidin et al., 2018).

Artificial neural networks adaptive optimization is an

effective classifier that was used to predict the disfluencies in

speech signals of people with stuttered speech (Manjula et al.,

2019). It adaptively optimizes network architecture using the

artificial fish swarm optimization method, which implements

stochastic search (Manjula et al., 2019).

k-Nearest Neighbors is non-parametric, supervised learning

classifier, which is widely used for computing the distances from

the test example to all stored examples. It was abundantly used

for classification and regression in the voice recognition systems

(Ali et al., 2021).

Support vector machines are supervised learning models

used for pattern classification (Cortes and Vapnik, 1995).

They were used for developing the smart voice conversational

assistant (Lokitha et al., 2022).

The term Bayesian learning has been interchangeably used

with Bayesian inference. It produces a probability distribution

using the Bayes’ theorem to predict the value of an unknown

quantity (Neal, 2012). Naïve Bayes classifiers are a simple

class of Bayesian networks capable of efficient classification

and prediction. Bayesian learning and naïve Bayes have been

successfully used to develop BridgeApp, an assistive mobile

application that assists communication between people that are

deaf and mute (Samonte et al., 2019).

Hidden Markov model is a statistical Markov model that

supports modeling of an observable process using unobservable

states. Gausian hidden Markov models expect that the

observation probability distribution is Gausian (or normal).

These two finite-state models establish correlations between

adjacent symbols, domains, or events, which is crucial for

speech recognition.

Speaker, speech and text recognition are crucial to enable

smooth communication with and among people with more

severe hearing and visual impairment. Speaker and speech

recognition identify words spoken aloud and convert them

into readable text presented with written or Braille alphabet

(Benzeghiba et al., 2007). They implement almost all AI

algorithms to develop various assistive technologies, such as

AVA, Jaws or RogerVoice (Zdravkova and Krasniqi, 2021).

Assessment of speech in TabbyTalks (Shahin et al., 2015)

implements (VAD, Sohn et al., 1999).

Augmented reality (AR) is an umbrella term that embraces

interactive experience by integrating 3D virtual objects into

a 3D environment in real time (Azuma, 1997). AR has

been widely used in various assistive technologies, including

the popular live captioning system AVA (https://www.ava.

me/), which enables deaf and hard-of-hearing to read the

spoken lectures.

People with dual sensory loss can rely on haptic

communication (HC), that enables tactile communication

and interaction via the sense of touch (Ozioko et al., 2018).

Many assistive technologies use the open source software library

TensorFlow library (www.tensorflow.org), which was developed

by Google.

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2022.970430
https://www.ava.me/
https://www.ava.me/
http://www.tensorflow.org
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Zdravkova et al. 10.3389/frai.2022.970430

TABLE 1 Assistive technologies aligned to impaired communication disorders.

Affected ability Disorder Assistive technology AI techniques AI algorithms/

methods

Speech Apraxia of speech Tabby Talks for administration of speech

therapy (Shahin et al., 2015)

AI based AAC NLP

Conversational

AI (SRVR)

MLP classifier

PVer

VAD

Dysarthria Italian project (under construction),

Vivoca (Mulfari et al., 2021; Lokitha et al.,

2022)

AI based AACML

Conversational

AI (SR)

CNN

SVM

TensorFlow

Mutism BridgeApp (Samonte et al., 2019) AI based AAC Bayesian inference

Stuttering

(stammering)

Fluent (Manjula et al., 2019) AI based AACML

and DL

AANAO

Articulation disorder LipNet, MIT Media Lab and SottoVoce (Li

et al., 2022)

ML and DL

Conversational AI

(SSI, SR, VR, VSR)

CNN

DNN

LSTM NN

RNN

SCNN

Sight Blindness JAWS,

Electronic Braille,

Emacspeak, ORCA, VoiceOver,

Windows-Eyes (Wahidin et al., 2018)

NLP ML and DL BLSTM

HMM

Hybrid CNN and

RNN

RNN

Hearing Deafness AVA, Live Transcribe, Rogervoice, Signly

(Ridha and Shehieb, 2021; Kumar et al., 2022)

AI based AACML

and DL NLP

AR

BERT

CNN

HMM

GMM

RNN

Hearing and Sight Dual sensory loss

(Deafblindness)

Communication gloves, Tactile boards

(Ozioko et al., 2018; Theil et al., 2020)

AI based AACML

and DL NLP

Conversational AI

(SpR, SR, VoR)

HC

STB

Speech and Writing

Understanding

spoken and written

language

Aphasia Voice recognition system (Ali et al., 2021) AI based AACML

and DL NLP

Conversational

AI (VR)

k-Nearest Neighbors

Naïve Bayes

Navigation Spinal cord injury ColorCode (Daly, 2022) AI based AAC Bayesian learning

AI-based assistive technologies

In all the presented assistive technologies, AI has

been abundantly used. Augmentative and alternative

communication methods proved their significant role in

at least half of them. Assistive technologies related to hearing

or visual deficiency are developed using neural natural

language processing algorithms, which are a symbiosis

between natural language processing and deep learning.

The predominance of neural and deep networks is also

obvious, proving that new assistive technologies are machine

learning powered.

AAC is the best assistive remedy for intelligibility, which

is mildly or more severely disrupted by speech disorders,

including: aphasia, apraxia of speech, articulation disorder,

cluttering, dysarthria and stuttering (Kent, 2000). It can also

be affected by cognitive problems, such as autism spectrum

disorder (ASD), dyslexia and Down syndrome (Deb et al.,

2022; Krasniqi et al., 2022), and by motor disabilities, for

example cerebral palsy, multiple sclerosis, and Parkinson’s

disease (Stipancic and Tjaden, 2022). Assistive devices and

technologies that are used to improve intelligibility are among

the most prominent AAC devices and technologies (Norrie

et al., 2021). Although the success of high-tech AAC is still

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2022.970430
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Zdravkova et al. 10.3389/frai.2022.970430

limited, mainly due to “infrastructure, policy, and recruitment

deficits”, their advancement is inevitable and they will soon

“serve as mediator between teacher, aided communicator, and

their assistive technology” (Norrie et al., 2021). It is expected

that in the near future, AAC devices will be combined

with non-invasive methods of access to the brain-computer

interface, which will revolutionize communication (Luo et al.,

2022). However, without powerful machine learning and neural

imaging technology, this transformation will never become true.

Within most of the reviewed devices and technologies,

machine learning is developed alongside deep learning. It is

particularly powerful in the technologies related to speech and

sound production, as well as with spoken and written language

understanding (Jobanputra et al., 2019). Neural network brain-

computer interfaces (NNBCI) have a potential to reduce

disability by translating neural activity into control of assistive

devices (Schwemmer et al., 2018).

Speech and voice recognition will never be possible without

artificial intelligence (Singh et al., 2018). All modern deep

learning techniques, including BERT (Brunner et al., 2020)

contribute to better speech, voice and speech recognition

(Amberkar et al., 2018). Non-invasive brain-computer interfaces

emerge in this area, leading to much better performance

compared to traditional systems that process auditory and

visual information (Brumberg et al., 2018). United with deep

learning methods and architectures, they “boost classification

performance” of algorithms for computer vision and natural

language processing (Singh et al., 2018).

Most of the tools introduced in this section have been

developed to accommodate the needs of students starting from

elementary education to the college level. On some occasions,

they can be applicable even for elderly people. While the concept

of AI technologies presented so far was mainly related to

applications in the education sector, AI has also the potential

to improve health and well-being of elderly people. Some

forms of AI assistive technologies such as autonomous robots,

AI-enabled health applications, voice-activated devices and

intelligent homes could tackle the key aging related challenges.

Cutting-edge technologies should be carefully designed and

should consider privacy and content. While children with

disabilities are more familiar with the use of phones, which

facilitate the design and implementation of AI technologies,

more mature people need assistance for an independent life.

To provide AI technologies to elderly people, designers and

programmers of these technologies should implement some

considerations tailored to their needs: ensure the participation

of elderly people for development of AI technologies, cross-age

data collection, investments in digital infrastructure, increased

research to understand new uses of AI and how to avoid bias

(WHO, 2022).

To conclude, cutting-edge technologies significantly

improve communication and learning of people with

disabilities, and particularly of young children who were

born with technology and do not hesitate to use them without

any effort and resistance. Next section will try to prove this claim

by researching more thoroughly the four clusters announced in

the introduction of this section.

AI technologies that support
communication and learning
assistive technologies

Augmentative and alternative
communication

Certain people with disabilities cannot use speech as their

primary means of communication and need therefore to find an

alternative way or specific techniques to express themselves. The

idea of Augmented and Alternative Communication (AAC) is

to use all the abilities that a person has, in order to compensate

for the impairment of the verbal communication capacity

(Chirvasiu and Simion-Blândă, 2018). In other words, the AAC

system provides effective communication to maximize quality

of life. There exist various types of AAC that can be chosen

depending on the individual’s skill and communication needs

(Beukelman et al., 2013). The ACC systems are classified as

unaided and aided. Unaided systems do not require a physical

aid or tool (e.g., facial expressions, sign language). Aided

systems, on the other hand use materials or tech devices which

are categorized as:

– Low -tech devices (symbol boards, choice cards,

communication books)

– High-tech devices (AAC apps on mobile devices, speech-

generating devices or communication devices)

The rapid development of AI has recently opened up new

ways to address more and more complex challenges, such as for

instance, helping people with complex communication needs to

overcome barriers (Delipetrev et al., 2022).

AI powerful tools have the capability of transforming AAC

systems such as low-tech with words and symbols and high-

tech with computers that employ a human voice for output

(Beukelman et al., 2013). Below, AI technologies embedded in

the AAC are presented with an analysis of how these tools are

being developed and deployed tomeet the diverse needs of users.

As part of the UNICEF’s Innovation Fund Investments in

Skills and Connectivity (OTTAA Project: AI Algorithms for

Assistive Communications, 2022) a platform (OTTAA project)

is developed, which is considered to be the first augmentative

and alternative communication (AAC) platform that uses

a combination of powerful AI algorithms (NLP and ML)

and pictogram-based communication code to create sentences

and communicate effectively. OTTAA platform allows speech-

impaired people to communicate and express themselves using
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a simple three-tap interaction. Using appropriate pictogram-

based communication and AI algorithms children with

disabilities will have the opportunity to communicate better and

faster (OTTAAProject: Accessible Communication for Children

with Disabilities, 2022). In order to encourage more diversity

and options for users, the algorithm is trained constantly by

analyzing more than 1.8 million sentences previously created by

other users. OTTAA is an open source platform that encourages

people to participate in improving the source code, in this

way it creates an environment where everyone feels that they

are contributing.

Image recognition technologies are considered pivotal in

inclusive education to make learning accessible and effective.

GoVisual app is a program converting photos and videos into

literacy and communication opportunities on an iPhone or

iPad (GoVisualTM, 2022). This innovative approach combines

computer vision using the image recognition technology

(collecting photographs and videos), the NLP tools to help

in story creation, and finally the ML to help identify objects

and shapes for ease of programming (Tintarev et al., 2016).

Combination of these three techniques creates a potential

of independence and self-determination for children with

disabilities in their school environment.

HearMeOut app is an application which incorporates

both gesture-based text prediction and pictogram-based

augmentative and alternative communication using AI. The

application uses Natural Language Conversation (Srivastava,

2021) enabling the disabled users to engage in conversation

using Speech Recognition. It also uses a word level sign language

dataset (Li et al., 2022) to categorize the most probable words

from the gestures of the impaired person captured using a

camera and then transforms them into the most meaningful and

possible sentence using state-of-the-art algorithms. Another

positive aspect to this approach is the security concerns;

the application does not store the user data because of the

continuous process of input and output without storage, which

minimizes the chances of any data leakage.

“Fluent” is an AI Augmented Writing Tool which assists

persons who stutter to identify words that they might struggle

pronouncing and presents a set of alternative words which

have similar meaning but are easier to pronounce. The overall

landscape of AI-based writing tools is typically comprised of

NLP based software systems (Ghai and Mueller, 2021) as in this

app but in addition it uses AL (active learning, that is the subset

of machine learning; Settles, 2011) to identify whether it can

help learn the unique phonetic patterns that an individual might

struggle pronouncing. The app does not intend to improve the

stutter condition but helps camouflage it.

Machine and deep learning

The recent increase in computing capabilities has enabled

ML algorithms to further enhance the functionalities of assistive

technologies. The incorporation of ML into eye tracking

technology can contribute to the development of smarter

assistive systems for people with disabilities (Koester and

Arthanat, 2018; Yaneva et al., 2020).

In a study conducted by Valliappan et al. (2020), ML

is leveraged to demonstrate accurate smartphone-based eye
tracking without any additional hardware. The study results

highlight the utility of smartphone-based gaze for detecting

reading comprehension difficulty and confirms findings from
previous studies on oculomotor tasks. Another work was
conducted by Deepika and Murugesan (2015) to facilitate the

interactions between computers and people with special needs

using eye tracking technology. The performance accuracy of the
proposed system under good lightning conditions was 97%.

Additional research efforts are concentrated on people

with motor disabilities for a hands-free computer interaction

(Šumak et al., 2019), to measure the variation between fixations

and saccades using K-means analysis (König and Buffalo,

2014), and for training purposes to control eye gaze via VR

(Zhang and Hansen, 2019).

Research advances in machine and deep learning have also

contributed to improved electroencephalogram (EEG) decoding

and target identification accuracy. In this perspective, visual

evoked potential (VEP) based brain-computer interface (BCI)

systems are widely explored, mainly due to low user training

rate (Waytowich et al., 2016). One research involving people

with motor and speech disabilities to evaluate a new monitor

for generating VEP for daily BCI applications is conducted by

Maymandi et al. (2021). The target identification in this study

was performed using DNN. Moreover, DNN have become a

useful approach to improve classification performance of BCI

systems using EEG signals (Kwak et al., 2017; Craik et al., 2019).

A framework for brain electrical activity-based VEP

biometrics is proposed by Palaniappan and Mandic

(2007). In this work, in order to improve the classification

accuracy, authors utilized k-Nearest Neighbors (kNN),

Elma Neural Network (ENN) classifiers and 10-fold cross

validation classification.

Video accessibility is of paramount importance for blind

and visually impaired individuals for education and other

purposes. Computer vision applications show promising results

on removing the accessibility barriers, especially toward helping

blind people to better sense the visual world. The most recent

applications of ML in computer vision are object detection

and classification and extraction of relevant information from

images or videos.

A machine learning based approach to video description

by automating video text generation and scene segmentation

is proposed by Yuksel et al. (2020). The quality of the video

descriptions generated through this system compared to the

human-only condition resulted in being rated higher by blind

and visually impaired users. A multimodal comprehensive

accessibility framework to generate accessible text and

tactile graphics for visually impaired people is suggested by
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Cavazos Quero et al. (2021). The framework uses machine

learning, i.e., image classification technique to classify various

kinds of graphics and applies simplification methods to the

graphics category. Recently, interactive machine learning (IML)

is utilized to support interface design through workshops with

disabled users (Katan et al., 2015). This work demonstrates

IML’s potential significance as a design tool, expediting the

design process by allowing the swift mapping of participant

observations into prototypes.

Natural language processing techniques

Screen and text magnifiers are very useful solutions for

low vision people, enabling them to read and adjust text.

They zoom in the whole screen or a selected section of the

screen without any AI techniques utilized. On the other hand,

screen readers, Braille displays, and speech recognition software

assistive technologies for blind people are completely AI based

(Choi et al., 2019).

Screen readers are a compulsory part of all the popular

learning management systems: Blackboard Learn, Brightspace

D2L, Canvas LMS and Moodle (Zdravkova and Krasniqi, 2021).

JAWS is embedded in all of them with Chrome, NVDA,

TalkBack, ORCA and VoiceOver as alternative text-to-speech

plugins (Oh et al., 2021). As a standalone application or

part of Web applications, screen readers support image and

touchscreen accessibility (Oh et al., 2021). Apart from speech,

they enable non-speech audio, vibration, tactile and force

feedback (Oh et al., 2021).

Screen readers consist of two components: optical

character recognition (OCR) that recognizes text, images and

mathematical expressions; and text-to-speech (TTS), which

delivers that content in the form of speech (Suzuki et al., 2004).

They can be additionally enhanced by a machine translator

enabling language localization (Suzuki et al., 2004).

OCR passes through several phases, three of which are

AI-powered: image pre-processing that removes the potential

distortions and transforms the image into light and dark

areas; intelligent character recognition that compares scanned

characters with the learned ones; and post-processing that

corrects the errors (Chaudhuri et al., 2017). Past OCR algorithms

for text recognition were realized with pattern recognition

and ML techniques (Rao et al., 2016). Recent algorithms

unite the following soft computing constituents: fuzzy sets,

artificial neural networks, genetic algorithms, and rough sets

(Rao et al., 2016).

Image recognition is enhanced by image captioning tools,

which generate textual description of visually presented objects

using template-based, retrieval-based and neural networks-

based methods (Wang et al., 2020). Template-based method is a

statistical modeling method that uses HMM,Maximum Entropy

Markov Models, and Conditional Random Fields to recognize

and machine learn the patterns (Wang et al., 2020). The

retrieval-based method measures the visual similarity between

a new image and an already interpreted image and generates a

human-level sentence (Wang et al., 2020).

Recognition of mathematical expressions and formulas,

including the handwritten ones consists of character recognition

and structure recognition (Veres et al., 2019). Both recognition

tasks depend on various ML methods, such as Bayesian

inference, fuzzy logic, and neural networks (Veres et al., 2019).

At the end of the OCR part, information is stored as data or

text waiting to be converted into voice. The conversion is done

by TTS systems, which is a pure natural language processing task

(Mache et al., 2015). It consists of text analysis, phonetic analysis,

prosodic analysis, followed by speech synthesis (Adam, 2020).

Deep neural networks are the most frequently used methods

of modern TTS systems that successfully predict the acoustic

feature parameters for speech synthesis (Adam, 2020).

Screen readers, which deliver content into speech or

auditory signals, are not suitable for deafblind people. The

best alternative are text to Braille translators, which “interpret

letters and figures through a tactile display” (Gote et al., 2020).

Refreshable Braille displays are fully supported by Blackboard

Learn and partially supported by Brightspace D2L (Hsu, 2020).

They use AI techniques and methods only during OCR phase

(Gote et al., 2020). In contrast, AI is the key factor in the

opposite direction: from Braille to text (Hsu, 2020). The system

presented in this paper employs a convolutional neural network

model for converting a line of Braille into text; a ratio character

segmentation algorithm to enable image segmentation; and

optical Braille recognition to convert Braille images into text

(Hsu, 2020). AI impact for speech recognition will be in more

detail explored in the next subsection.

Non-signers, i.e., people who are not familiar with sign

language can communicate with deaf people who speak

using the translators of sign language into text or speech

(Truong et al., 2016). These translators predominantly use

ML algorithms to find the correct sign, like convolutional

and recurrent neural networks (Bendarkar et al., 2021) or

deep learning (Bantupalli and Xie, 2018). A very promising

human-machine interface (HMI) device are communication

gloves, which have sensors that interpret the motions of

sign languages into natural language combining virtual and

augmented reality with AAC (Ozioko andDahiya, 2022). Ozioko

and Dahiya (2022) review many of them, for example, Robotic

Alphabet (RALPH), CyberGlove, PneuGlove, 5DT Data Glove

and Cyberglove, the last two achieving a recognition accuracy

higher than 90%. Apart from purely mechanical interpretation

of sign language, several research teams started interpreting

facial expressions of people using sign language (Cardoso

et al., 2020; Silva et al., 2020). A standard CNN and hybrid

CNN+LST were successfully used to translate facial expressions

in Brazilian Sign Language Libras (Silva et al., 2020). All these

technologies abundantly use almost all the AI algorithms and
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methods, including NLP essentials, which are their driving force

(Cardoso et al., 2020).

Text-to-speech and speech-to-text system preferences and

extensions, for example Mercury Reader, Voice Typing and Co-

Writer Universal are designed for different operating systems

and are compatible with different browsers, including (Dawson

et al., 2019). They are frequently used by gifted students who

are frustrated due to their dyslexia (Dawson et al., 2019). Mobile

applications like ReadandWrite and Speak It! Voice Dream

Weaver and libraries, such as Bookshare, Audible are helpful

to students with reading and writing disorders like dyslexia

(Dawson et al., 2019). They benefit from word prediction too.

Word prediction is completely AI powered and it implements

various approaches. For example, assistive technology for

children with cerebral palsy is based on hidden Markov

models (Jordan et al., 2020), a successfully commercialized

mobile on-device system that applies deep learning (Yu et al.,

2018), whereas context-based word prediction is achieved

with naïve Bayes that incorporates latent semantic analyses

(Goulart et al., 2018).

Although the effect of AI-based conversational agents on

people with disabilities or special needs is rather controversial,

they are “widely used to support people services, decision-

making and training in various domains” (Federici et al., 2020).

Voice and speech recognition

As in many other scenarios that involve people with

disabilities, AI and various machine learning algorithms show

promising results in challenges associated with voice and

speech recognition, speech identification, and speech-to-text

service applications.

One type of speech disability is the childhood apraxia

of speech (CAS), which treatment involves direct therapy

sessions with a speech language pathologist. Such sessions must

happen during longer periods, which put high demand on time

allocation of pathologists. Moreover, many children needing

such one-on-one sessions live in rural areas and expenses

associated with therapy sessions prevent many children from

getting the required support early on Theodoros (2008) and

Theodoros and Russell (2008).

Technology in general, and AI and ML in particular, help

in enabling children with challenges to receive satisfactory

treatment in their home, which makes it a time- and cost-

effective solution. One such solution is shown in a study by

Parnandi et al. (2013), where a child’s progress is assessed

through the therapist assigning speech exercises to the child,

which then are analyzed using AI algorithms and an assessment

is given back to the therapist. In a similar study, further

details show how the AI automatically identifies three types

of anomalous patterns that are associated with CAS: delays

in sound production, incorrect pronunciation of phonemes,

and inconsistent lexical stress (Shahin et al., 2015). Especially

issues related to measuring the inconsistent lexical stress are

addressed using deep neural network-based classification tools

(McKechnie et al., 2021). Such a tool is beneficial for both

diagnosis and treatment by using the Convolutional Neural

Network (CNN) model to identify linguistic units that affect

the speech intelligibility (Abderrazek et al., 2020) and voice

recognition and production (Lee et al., 2021). The latter study

also utilized techniques to acquire bio signals from muscle

activity, brain activity, and articulatory activity in order to

improve the accuracy.

Deep-learning algorithms are also used with people who

stutter, which is a speech disorder that is manifested by an

addition of involuntary pauses or repetition of sounds (Sheikh

et al., 2021). Using a real-time application, the system records

a person’s voice, then it identifies and removes stammers by

improving speech flow, and then finally produces a speech

that is clean from stuttering. The speech flow is improved by

implementing an amplitude threshold produced by the neural

network model (Mishra et al., 2021).

One type of technology that helps with voice and speech

disorders is the STT service. Such services help in maintaining

a satisfactory conversation between people living with such

disabilities, by capturing their voice and transcribing it into

written text that can be read by another person (Seebun and

Nagowah, 2020). A form of such disability is also the Functional

Speech Disorder (FSD), which is the inability to correctly learn

to pronounce specific sounds, such as “s, z, r, l, and th”. Study

by Itagi et al. (2019) shows how Random Forest Classifier

performs better than other algorithms, such as, Fuzzy Decision

Tree and Logistic Regression, when detecting and correcting

in real-time FSD cases. These services benefit from the

Natural Language Processing (NLP) applied in the STT, which

utilizes Google Speech API to convert spoken words into text

(Seebun and Nagowah, 2020).

AI-based assistive technologies and
remote education

COVID pandemic was a great challenge for all the students,

particularly those who have some communication and learning

disabilities. Urgent need to transform traditional in-class

education to remote education was an inspiration for many AI

researchers to start creating cutting-edge assistive technologies

and support massive inclusiveness at all levels of education.

AI-based assistive technologies played a significant role in

supporting them to learn and study remotely (Zdravkova and

Krasniqi, 2021; Zdravkova et al., 2022).

The most widely used operating systems: Windows,

MacOS, Android, Linux and Ubuntu provide some or all

accessibility features, among which: screen readers, personal
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assistants, switch controls and voice access and control

(Zdravkova et al., 2022).

Learning management systems, such as: Blackboard Ally,

Brightspace D2L, Canvas and Moodle have full or partial

conformance with WCAG 2.1 (WCAG, 2018). WCAG 2.1,

abbreviated from Web Content Accessibility Guidelines version

2.1, is a referenceable ISO technical standard in the form

of guidelines and resources that ensures web and mobile

accessibility. All LMSs have various embedded screen reader

tools, JAWS being common for all, increasing their WCAG

2.1 compliance. Blackboard Ally enables speech recognition via

screen reader Read Speaker, while Brightspace D2L uses Dragon

Inspection. These two learningmanagement systems provide the

opportunity to present learning content with a Braille display

(Zdravkova and Krasniqi, 2021).

Video-teleconferencing tools, including the most widely

used Zoom, Google Meet, MS Teams, BigBlueButton and

Blackboard Collaborate have many features supporting students

withmotor, vision and hearing impairment. They all incorporate

screen reader JAWS, as well as different AI-based plugins

(Zdravkova and Krasniqi, 2021).

Massive open online courses (MOOCs), for example

Coursera, edX, MIT OpenCourseWare, and OpenLearning

offer various accommodations for students with hearing

impairments in the form of multilingual subtitles, and

transmission of page text toward a Braille display device

(Zdravkova and Krasniqi, 2021).

Socially responsible universities in the developed countries

have abundantly used most of the assistive features intended for

hearing and visually impaired students for decades (Zdravkova

and Krasniqi, 2021).

AI perspective of future assistive
technologies

Many children with speech, hearing, and cognitive

challenges have limited communication and access to speech-

activated gadgets. However, rapidly advancing AI research is

opening the way for the creation of new tools to aid in the

resolution of these communication issues.

AI has already shown that it has the ability to transform

special education and improve results for students with

impairments in a variety of ways. Children with ASD who

have trouble understanding others’ emotions have benefited

from AI-driven applications and robots that assist them practice

emotion identification and other social skills. Moreover, AI

has influenced the creation of algorithms that can aid in the

identification of ASD, specific learning difficulties (dyslexia,

dysgraphia, and dyscalculia), and attention-deficit/hyperactivity

disorder in students (ADHD). For students with disabilities,

AI-enhanced therapies have included error analysis to inform

instruction and tailored feedback in spelling and maths.

Despite these gains, gaps in AI research for children with

impairments, such as AI for students with intellectual and

developmental disabilities, remain to be persistent. Because

many of these children have numerous disabilities and/or major

health concerns, this is an especially vital area of future work.

Children with intellectual and developmental disabilities who

also have hearing loss or vision impairment, for example, have

additional difficulties. Hearing loss and other health difficulties,

such as heart issues, are common among Down syndrome

students. AI allows for the integration of health data across

multiple applications, hence improving the quality of life for

these children by promoting independence. This constellation of

solutions can aid in the management of student information and

the communication of health information among instructors,

physicians, and caregivers.

AI algorithms using big data struggle to deal with the

individual uniqueness of disabled people (Wald, 2021). There

are currently two major issues that prevent the AI use in clinical

decision-making in such cases, i.e., a finite amount of labeled

data to train the algorithms, and deep neural network models’

black-box nature.We believe these issuesmay be solved in one of

two ways. To begin with, self-supervised representation learning

has lately been applied to the development of meaningful

dense representation from small chunks of data. Furthermore,

reinforcement learning paradigms can learn to optimize in

any defined environment using an exploration-exploitation

paradigm. Second, explainable artificial intelligence methods

can be used to enhance the decision-making transparency and

trust by creating meta-information that elucidate why and

how a decision was reached, while also recommending the

factors that influenced the decision the most. This will allow

researchers to concentrate on precision in intervention studies

and tailored treatment models, while AI algorithms handle the

data collection and analysis process.

Moreover, BCI systems for vision impaired people that

use steady state visual evoked potentials to stimulate brain

electrical activity that enables communication with or without

gaze shifting are already a reality. Electronic retinal implants

have already restored sight of few patients with degenerative

retinal diseases. Cochlear implants successfully provide a sense

of sound to hard of hearing and even to deaf people. New

brain implants enable people to formulate words and sentences

by using their thoughts supporting simple communication.

Few years ago, these achievements seemed to be science

fiction. With the current pace of technological development,

BCI and brain implants that enhance human senses will

soon become a reality enabling better inclusivity of people

with disabilities.

Nevertheless, every cutting-edge technology is a double-

edged sword. To paraphrase Norberg Winner (Bynum, 2017),

new technologies, particularly brain implants “may be used

for the benefit of humanity”, but they “may also be used to

destroy humanity.”
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First challenge of cutting-edge communication devices is

undoubtedly their rather high price. For example, JAWS and

ZoomText and ZoomText Fusion, which are the most widely

used accessibility magnifiers and screen readers, have an annual

price ranging from 80 to 160 US$ (Zdravkova, 2022). Assistive

tools for hearing impaired students AVA and RogerVoice are

slightly cheaper, but still not affordable to many (Zdravkova,

2022). On the other hand, the price of DaVinci Pro HD OCR

and Logan ProxTalker exceeds 3000 US$, making them available

to few highly privileged students (Zdravkova, 2022). If assistive

tools are selectively used, they will amplify economic inequality,

i.e., the gap between rich and poor. In some wealthier societies,

the gender and racial gap might also increase, sacrificing girls

and minority groups.

Second challenge is their impact on patients’ physical

and mental health. Still insufficiently tested communication

devices might worsen the state of already feeble hearing or

vision sensory organs risking to cause incorrigible deafness or

blindness (Shanmugam and Marimuthu, 2021). Such problems

might be a result of various reliability problems. This challenge

raises the question of liability (Zdravkova, 2019). Although

promising, deep brain stimulation reflects the “invasive nature

of the intervention” (Cagnan et al., 2019). Another problem

related to deep brain stimulation is related to anatomical and

pathophysiological differences of people who will undergo the

intervention, which can result in inconsistent clinical outcomes

(Cagnan et al., 2019).

Next challenge is privacy. Many communication devices

are wirelessly connected to medical institutions, either as part

of research studies or for health monitoring purposes. The

increasing trend of cyber-security threats during COVID

pandemic disrupted healthcare institutions worldwide

(Muthuppalaniappan and Stevenson, 2021). They affected

many hospitals, medical research groups, and healthcare

workers, but also the World Health Organization and national

authorities of many countries (Muthuppalaniappan and

Stevenson, 2021). To avoid data leaks, very strict legal privacy

frameworks should be created to significantly increase the level

of data protection in public health (WHO, 2021).

Final challenge is related to the social acceptability of new

technologies (Koelle et al., 2018). According to this research

novel technologies and applications “might create new threats,

raise new concerns and increase social tension between users and

non-users” (Koelle et al., 2018). Many societies are technology

skeptical and their first reaction to cutting-edge technologies is

full resistance. If officially approved, there will be many disabled

people who will be concerned with their impact making a vicious

circle, which might worsen the situation instead of improving it.

In order to avoid all the challenges mentioned above,

innovation in research should be very responsible. All potential

ethical and legal challenges should be anticipated on time, and

their remedies should be carefully included into new cutting-

edge assistive technologies by design.
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