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Machine learning applications have become ubiquitous. Their applications

range from embedded control in production machines over process

optimization in diverse areas (e.g., tra�c, finance, sciences) to direct user

interactions like advertising and recommendations. This has led to an increased

e�ort of making machine learning trustworthy. Explainable and fair AI have

already matured. They address the knowledgeable user and the application

engineer. However, there are users that want to deploy a learned model in a

similar way as their washingmachine. These stakeholders do not want to spend

time in understanding the model, but want to rely on guaranteed properties.

What are the relevant properties? How can they be expressed to the stake-

holder without presupposing machine learning knowledge? How can they be

guaranteed for a certain implementation of a machine learning model? These

questions move far beyond the current state of the art and we want to address

them here. We propose a unified framework that certifies learning methods

via care labels. They are easy to understand and draw inspiration from well-

known certificates like textile labels or property cards of electronic devices.

Our framework considers both, the machine learning theory and a given

implementation. We test the implementation’s compliance with theoretical

properties and bounds.

KEYWORDS

trustworthy AI, testingmachine learning, certification, probabilistic graphical models,

care labels

1. Introduction

Machine learning (ML) has become the driving force pushing diverse computational

services like search engines, robotics, traffic forecasting, natural language processing, and

medical diagnosis, to only mention a few. This has led to a more diverse group of people

affected by ML.
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Placing the human in the center of ML investigates the needs

of the user and the interaction between developer and user.

Many approaches refer—possibly indirectly—to a pairing of a

developer and a deployer, interacting for a certain application.

Typical examples are from ML in sciences, where the physicist,

biologist, or drug developer interacts with the ML expert to

establish a reliable data analysis process. In the long run, others

may benefit from this without ever accessing the ML process.

Patients, for instance, take for granted that diagnosis methods or

drugs are approved by a valid procedure.

Other applications involve further parties. A vendor

company, its online shop, the company that optimizes the

click rate, a recommendation engine, and the customers

buying the products are all playing their part in modern sales

ecosystems. Modern financial business processes, like money

laundry detection, involve a network of stakeholders who need

to know the reliability of the ML classifications. Companies

apply diverse MLmethods, and some have employees who know

ML well. For them, to inspect a learned model is important and

explainable AI is serving them. In contrast, the customers are

affected by the process but do not face the ML system directly

nor do they interact with its developers. They rely on tech

companies to have done their job in a trustworthy manner.

In an even broader context, societies establish regulations

that protect individual rights, e.g., regarding privacy of data and

fair business processes. Moreover, the goals of sustainability and

the fight against climate change demand regulations on energy

consumption ofML processes. Now the regulating agencies need

valid information about ML processes.

We see the diversity of stakeholders who need valid

information in order to accept or not accept a certain ML

process. Some of them know the ML theory and are experienced

in evaluating models. Some of them will interpret the models

directly if they are nicely visualized. Some of them will find the

time for an interactive inspection of models. All these needs have

raised considerable attention in the AI community and paved the

way for explainable AI (XAI). However, methods that inform

users who do not want to spend time in learning about ML

method are missing— this is the type of user we want to address.

We consider this user type a customer of ML who wants

the product to fulfill some requirements. Whether a method

meets the expectation is partially given by theoretical properties.

However, such statements are scattered across decades of

scientific publications, and finding and understanding them

requires years of studies. Of course, our ‘customers’ who do

not want to invest time into considering a particular model

will have even less interest in visiting courses. The necessity

of communicating theoretical insights more easily has led to

the concept of care labels (Morik et al., 2021), which we adopt

here. This concept moves beyond individual man-machine

interaction toward a public declaration of a method’s properties.

It is closer to certification than to XAI and would allow for

specific regulations, for instance, regarding energy consumption.

The design of ML care labels requires defining the set of

relevant properties. Robustness in the sense that small changes

to data should not deteriorate the model too much is a property

that is studied intensively. Runtime and memory bounds

are straightforward. Communication needs are important for

applications in the area of the Internet of Things. Energy

consumption is important due to the potentially high impact

on our environment (Strubell et al., 2020). As an example,

the state-of-the-art NLP model “BERT” has an average power

consumption of 12 kW, with training alone consuming 1MWh

(as much as a single-person household consumes in 8 months1).

Most classes of ML methods, like exponential families, offer

a range of algorithms for training and inference. Consider the

choice of algorithm for performing inference on probabilistic

graphical models, which leads to totally different theoretical

properties, runtimes, and CO2 footprints. The marginal

probabilities are often under- or overestimated by using the

approximative loopy belief propagation (LBP) algorithm instead

of the exact junction tree (JT) algorithm, which on the downside

has high asymptotic runtime complexity. If the implications

of choosing among both algorithms is indicated clearly by a

care label, even an inexperienced user can decide whether the

particular application requires exact JT or resource-friendly LBP

inference. In general, different ML methods may need different

categories, and even the same category may need different

criteria to be tested. Hence, if we take a more detailed look at

the overall ML field, there is not one single set of categories with

test criteria for all. Instead, an expert database should store the

specific instances of the categories for ML methods.

Moreover, considering static characteristics of a method

does not suffice. Worst-case asymptotic time and memory

bounds are given by theory, but can vary by orders of magnitude

across compute platforms, even if they implement the same

abstract method. A convolutional neural network (CNN), for

example, may be trained on a resource-hungry GPU system

consuming several hundred Watt, or on a microcontroller

which usually consume less than W (e.g., Arduino or field

programmable gate array (FPGA)). The latter, on the other hand,

may be severely constrained with respect to the number of layers,

or input data types: An FPGA may work best using only integer

arithmetic, or the Arduinomay only have 256 kB of RAM, which

limits the model’s number of parameters. In general, the same

method can be implemented on different hardware architectures

and particular implementations might vary. Hence, the more

dynamic behavior of ML execution environments must be

covered by the labels, as well.

For each property, ranges of values need to be defined

that will then be expressed by symbols similar to those on

the paper slips found in clothes and textiles. Since we want to

1 Based on the average power consumption per capita in

Europe https://ec.europa.eu/eurostat/statistics-explained/index.php/

Electricity_and_heat_statistics.
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validate the properties, we need criteria which classify a certain

instance of a method into the appropriate value range. Where

static properties may be listed based on theoretical results, the

dynamic properties of a particular implementation on particular

hardware demand tests on specific data sets. Overall, for the

set of properties with their value ranges, a certification process

needs to be implemented.

In this work, we propose a novel means of communication

between ML scientists and stakeholders that goes beyond

logical, visual or natural language descriptions of single models.

We instead aim at providing a framework for certifying ML

methods in general, as schematically displayed in Figure 1. Our

contribution comprises the following points:

1. We present an easy-to-understand care label design, serving

as a single graphical certificate (Figure 2) forMLmethods and

their implementations.

2. We devise a rating system, drawing from an expert knowledge

database created, maintained and continually expanded by

the research community.

3. We introduce categories under which we bundle criteria,

which represent important properties of ML methods. They

are stored in the expert knowledge base.

4. We suggest to certify a given implementation against its

underlying theory with the help of reliability and performance

bound checks on profiling data sets, and reporting resource

consumption.

5. We define badges that are awarded to ML methods that fulfill

certain noteworthy criteria.

6. We present a concept for aCertification Suite that accesses the

expert knowledge database and certifies a method together

with its implementation.

We start by giving an overview of good standards that

have already been achieved for ML certification, and identifying

their shortcomings. Next up, we introduce our novel care label

concept and its constituting parts in Section 3. In Section 4 we

put our concept into practice for Markov random fields (MRFs),

a class of probabilistic graphical models with a wide range of

applications. MRFs constitute a powerful probabilistic tool with

a rich theoretical background, serving to illuminate all aspects of

our care label concept. We conclude our work with a summary

of our investigations, and outline future work in Section 5.

2. Related work

The importance of trustworthy AI methods is increasing,

especially because decision-making takes data-based models

more and more into account (Bellotti and Edwards, 2001;

Floridi et al., 2018; Lepri et al., 2018; Houben et al., 2021).

In her comprehensive book, Virginia Dignum addresses AI’s

ethical implications of interest to researchers, technologists,

and policymakers (Dignum, 2019). Another recent book

brings together many perspectives of AI for humanity

and justifies the urgency of reflecting on AI with respect

to reliability, accountability, societal impact, and juridical

regulations (Braunschweig and Ghallab, 2021). Brundage et al.

(2020) and Langer et al. (2021) summarized important aspects

of developing trustworthy learning systems. Their reports

emphasize that institutional mechanisms (e.g., auditing, red

team exercises, etc.), software mechanisms (e.g., audit trails,

interpretability, etc.) and hardware mechanisms (assessing

secure hardware, high precision compute management, etc.)

are required for obtaining trusted systems, and that the

diversity of stakeholders needs to be taken into account. This

brings the issue of certification and testing to the foreground

(Cremers et al., 2019). Miles Brundage and colleagues argue

that descriptions must be verifiable claims (Brundage et al.,

2020). Verification methods have been applied for trustworthy

deep neural networks (Huang et al., 2020) and for investigate

verification of probabilistic real-time systems (Kwiatkowska

et al., 2011).

Where privacy-preserving data mining (e.g., Atzori et al.,

2008) on the side of data analysis methods and the European

General Data Protection Regulation (GDPR) on the side of

political regulation successfully went together toward citizen’s

rights, a similar strategy for ML models and regulations in

concert is missing.

2.1. Inherent trustworthiness

From its beginning, the machine learning community aimed

at offering users understandable machine learning processes and

results. Interpretability guided the development of methods,

their combination and transformation enabling users to inspect

a learned model (Rüping, 2006). Recently, Chen et al. (2018)

investigated interpretability of probabilistic models. Inductive

logic programming (ILP) assumed that relational logic, and

description logic in particular, is easily understandable (Morik

and Kietz, 1991; Muggleton, 1991). Particular methods for

interactive inspection and structuring of learned knowledge

and given data offered a workbench for cooperative modeling

of an expert with the ILP system (Morik, 1989). This close

man-machine interaction in building a model creates common

understanding of system developers and users. However, it does

not scale to larger groups of affected stakeholders.

Decision trees were promoted as inherently understandable.

However, feature selection and very deep trees quickly outgrow

human intuition, and subtleties are only recognized by experts.

For instance, the weights of redundant features are not

appropriately computed in decision trees, whereas in support

vector machines, they are (Mierswa and Wurst, 2005). Statistics,

even if expressed in natural language, is not easy to understand

correctly, as has been shown empirically (Wintle et al., 2019).
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FIGURE 1

Proposed framework for certifying machine learning methods with care labels. For a given implementation, the certification suite generates a

label that informs both on aspects of underlying theory (fetched from the expert knowledge database) as well as practical performance

implications (based on profiling data sets).

2.2. Explainable AI

Explainable AI aims at offering an easy understanding

of complex models for inspection by stakeholders. They

investigate particular tasks, e.g., recommender systems (Nunes

and Jannach, 2017), or particular ML families, e.g. Deep Neural

Networks (Samek et al., 2019; Huang et al., 2020), or survey

the needs of diverse stakeholders (Langer et al., 2021). Agnostic

explanation routines are to explain a variety of learned models

(Ribeiro et al., 2016; Guidotti et al., 2018). Given the large

amount of research in this field, it has become a necessity in

its own right to describe explanation methods along a proposed

schema (Sokol and Flach, 2018). For model inspection by a

domain expert or application developer, these methods are of

significant importance.

2.3. Resource-aware machine learning

The approaches mentioned so far also do not consider

resource usage (e.g., power consumption), even though it is

crucial information for users (Henderson et al., 2020) and

allows for discussing the environmental ethical impact of ML

methods. Often, there is a trade-off between two important

properties, such as higher runtime in exchange for lower

energy consumption, which might influence the customer’s

decision on which model to choose. As an example, FPGAs

offer unique performance and energy-saving advantages, but

the software engineering part is challenging (Omondi and

Rajapakse, 2006; Teubner et al., 2013). The challenges faced

when deploying machine learning on diverse hardware in

different application contexts (Hazelwood et al., 2018) even

gave rise to a new conference, bridging the gap between

machine learning and systems researchers (Ratner et al., 2019).

The current increase in awareness regarding CO2 emissions

foregrounds these properties even more for users who want to

design ML systems responsibly. Indeed, the amount of CO2

emitted during training and deployment of state-of-the-art

machine learning models has increased drastically in recent

years (Schwartz et al., 2019; Strubell et al., 2020). To give more

insight into this issue, Schwartz et al. (2019) urge researchers

to provide a price tag for model training alongside the results,

intending to increase visibility and making machine learning

efficiency a more prominent point of evaluation. In Henderson

et al. (2020), the authors provide a framework to measure

energy consumption ofMLmodels. However, they only measure

specific model implementations, mostly disregarding theoretical

properties and guarantees. We argue that a proper framework

also needs to consider known theory, ideally stored as a database.

2.4. Description of methods and models

Modern machine learning toolboxes like RapidMiner,

KNIME, or OpenML (Mierswa et al., 2006; van Rijn et al., 2013)

are oriented toward knowledgeable users of ML or application

developers. They and others (Brazdil et al., 2003; Falkner et al.,

2018) use meta-data which offer a descriptive taxonomy of

machine learning. In this sense, the ML processes are carefully

described and documented. The user may click on any operator

to receive its description and requirements. RapidMiner, in

addition, recognizes problems of ML pipelines and recommends

or automatically performs fixes. It enhances understandability
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by structuring ML pipelines and offering processes in terms of

application classes.

Moving beyond the direct interaction between system

and application developer aims at accountable descriptions of

models and data. The approaches for FactSheets from IBM

(Arnold et al., 2019) and Model cards from Google (Mitchell

et al., 2019) are closely related to our approach. They give

impetus to document particular models for specific use cases in

the form of natural language and tabular descriptions, and even

suggest to include them with ML publications.

In a recent user study, most interviewees found the idea

of model-specific FactSheets helpful in understanding the

methodology behind the model creation process (Hind et al.,

2020). Another line of work aims at automatically tracking and

visualizing the training process, including computed metrics as

well as model architecture (Vartak et al., 2016; Schelter et al.,

2017).

While these approaches are an important and necessary call

for participation in the endeavor of describing learned models,

we argue that natural language descriptions and empirical results

alone are not enough to enhance trust in the model. They do

not account for whether or not the theoretical properties of the

model are fulfilled in the specific implementation at hand. This

was stunningly shown by Dacrema et al. (2019), where baseline

heuristics were able to beat top-tier methods, and many results

could not be reproduced at all.

A summary of related work is shown in Table 1, highlighting

which aspects of ML certification the authors cover, and where

they fall short. What we find missing in the current state-of-

the-art is a unifying concept to certify ML methods and their

implementation on diverse hardware in terms of adherence to

known theoretical properties and resulting resource demands.

We argue that a method’s properties need to be classified

independently from a specific use case or data set. Additionally,

this information needs to be accessible for non-experts, thus

complicated theory has to be concealed through appropriate

levels of abstraction. This is where our proposed care labels

come into play, offering a comprehensive and easy to interpret

TABLE 1 Our proposed care label approach in comparison to other methods trying to certify certain aspects of the machine learning process.

Arnold et al.

(2019)

Mitchell et al.

(2019)

Schwartz et al.

(2019)

Henderson et al.

(2020)

Care labels (this

work)

Certify trained model

Test compliance with theory

Consider different hardware ( )

Comprehensible for non-experts

Additional remarks – – No practical application Only focus on energy –

To the best of our knowledge, our approach is unique in combining practical measurements (like energy consumption) with checks of theoretical properties on different computing

architectures. Brackets denote proposed methods that are not put into practice.

FIGURE 2

Design of machine learning care labels, consisting of theory and implementation segments.
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overview of methodological properties, both theoretical and

given the particular implementation at hand.

3. Machine learning care labels

We now introduce our care label concept for certifying ML

methods, addressing all aforementioned issues. With “method,”

we refer to a combination of “components” for performing a

specific machine learning task, such as training or applying a

model. Most components are customizable, resulting in wildly

varying properties. We later show this in practice for different

probabilistic inference algorithms. Implementation and choice

of hardware add yet another layer of complexity. Our care labels

produce relief by hiding all underlying complexity behind a user-

friendly façade. In the following sections, we discuss the details

of our concept, following the structure of our contribution list

from Section 1.

3.1. Care label design

Evidently, our proposed care labels need to take manifold

theoretical and practical insights about ML methods into

account, and compile them into a single short comprehensive

document, similar to an index card. Our design is shown

in Figure 2 and consists of two segments: The upper-left

segment contains information about the method’s theoretical

properties, while the bottom-right segment also considers the

given execution environment. As methods can be implemented

in various ways and on various compute architectures, we

designed this segment to “attach” to its theory. This is analogous

to different brands of refrigerators: While the abstract task stays

the same (keeping food and beverages cool), manufacturers

use different components and circuits, and their specifics (e.g.,

lowest possible temperature, noise level, energy consumption)

vary. In the same way, different ML implementations perform

the same abstract task, but have their specific strengths and

weaknesses.

Both segments contain a name and short description in their

upper left corner. The theoretical segment displays the method’s

rating for five important categories (cf. Section 3.3) on the right,

represented as colored hexagons. By restricting the care label

to simple color-based ratings introduced in Section 3.2, we

allow for a high-level assessment without the need for deeper

understanding of the underlying theory. On the left, white

hexagonal fields provide space for badges, which we describe in

Section 3.5.

The segment contains three checkbox fields on the right

that connect to three theoretical categories, indicating whether

the theoretical properties are verified for the implementation.

For a refrigerator, this could be a test whether the temperature

reliably stays below the point where bacteria grow quickly. For

ML methods, we can check if theoretical bounds about result

quality, runtime or memory consumption hold.

Additionally, three white hexagonal fields with colored

symbols at the bottom show measurement results for runtime,

memory, and energy consumption (for more details see Section

3.4). In short, our design accomplishes the following:

• Provides general information about the ML method at a

glance.

• Shows simple ratings for important categories, trading

complexity and detail for simplicity and user-friendliness.

• Clearly highlights the interplay of theory and

implementation by showing whether the implementation

fulfills all theoretical properties.

• Is understandable for users without scientific background,

allowing for easy comparison between ML methods.

• Highlights noteworthy properties that stakeholders may

need for their particular application.

3.2. Expert knowledge database for
method ratings

The theory behind machine learning methods is manifold,

with different model classes having their own intricacies that

can only be fully understood by experts. Consequently, they are

required to assess important properties, identify to what extent

a method exhibits them, and convey that knowledge to less

informed users.

We propose to assemble a database with criteria that

describe theoretical properties of ML methods, independent

of their implementation. By bundling criteria into few concise

categories, we allow for easier comparability between methods.

We further propose to assign a rating to each category,

consisting of four levels A—D, each represented by a color from

a gradient ranging from green (A, best rating) to red (D, worst

rating). This is inspired by similar certification concepts, e.g.,

the EU energy labeling framework (Council of European Union,

2017), which rates energy efficiency of electronic devices, or

Nutri-Score for nutrient content in food (Julia et al., 2018).

The ratings represent an expert assessment of how strongly the

method at hand fulfills the respective criteria, as listed in Table 2.

Asmentioned before, customizable components of amethod

can lead to quite different properties: While a basic model

class may fulfill most criteria and consequently be rated A, a

specific component may override the rating to B, e.g., due to

much slower asymptotic runtime, or simplifying assumptions

resulting in weaker theoretical guarantees. To address this issue,

we propose a “building block” approach, by storing separate

ratings for methods and their components in the database and

combining them for a user-specified method. Where ratings

for certain categories are not affected by configuring the
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TABLE 2 Rating scale assigned to categories, depending on expert assessment, aided by proportion of fulfilled criteria.

Letter Symbol Name

A Method strongly and reliably exhibits the category’s properties; all or most applicable criteria are met.

B Method has many positive properties falling into this category; the majority of applicable criteria are met.

C Method has few positive properties falling into this category, or has many positive properties but significant drawbacks; less than half of

applicable criteria are met.

D Method does not match the category’s requirements at all, or significant drawbacks outweigh a few positive properties; no or very few

applicable criteria are met.

FIGURE 3

Ratings of individual components are combined. Neutral ratings

(gray) get overridden.

component, we allow neutral ratings. Generally, ratings should

be combined pessimistically, i.e. good ratings get overridden by

worse ratings, this is depicted in Figure 3. This complexity is

hidden from users, as they only receive a single label.

3.3. Categories and criteria

In an attempt to untangle all aspects that ML users should

consider when choosing a method and implementation, we

propose a set of categories that summarize desirable properties.

For each category, we compile a list of yes-no type criteria:

A high number of fulfilled criteria supports a method’s aptitude

w.r.t. the category, resulting in a higher rating. In this section

we give only a few examples of criteria for each category, hoping

that through practical insights and input from fellow researchers

the list will grow.

While the categories we propose are designed to be more or

less universal across model families, the constituting criteria may

not apply to certain types of models or algorithms, e.g., because

they belong to completely different paradigms. A solution to this

problem would be to differentiate between model families, such

as generative and discriminative models, providing alternative

criteria for each separately.

We want to point out that we purposefully do not include

categories or criteria concerning quality metrics like accuracy

or convergence speed. These are highly dependent on specific

input data and give no reliable impression of how well a method

performs in an arbitrary, unknown use case. Giving simple

ratings for these criteria would strongly contradict the “no

free lunch” theorem—the fact that no single method performs

universally well on all problems (Wolpert and Macready, 1997).

We do however propose to investigate selected performance

properties of method implementations, as described in Section

3.4.

3.3.1. Expressivity

• Example criterion: Themethod provides at least one human-

interpretable measure of uncertainty along with its output.

We call a model expressive if it produces a variety of

useful outputs for different input formats. This simple definition

implies multiple properties: On the one hand, an expressive

model should be able to handle arbitrarily complex functions,

e.g., a classifier splitting every labeled data set, or a generative

model approximating any probability distribution. On the other

hand, highly expressive models provide additional outputs (e.g.

measures of uncertainty or justification) to make them more

interpretable. For users with certain safety-critical application

contexts, such information may even be a strict requirement.

3.3.2. Usability

• Example criterion: The model is free of hyperparameters.

This category is concerned with the method’s ease of

use for end users. A main aspect is the number and

complexity of hyperparameters: A hyperparameter-free method

can be directly applied to a problem, while a method with

many parameters needs fine-tuning to produce good results,

which requires considerable effort and experience. Even more

experience is required for choosing parameter values that are

difficult to interpret: Choosing k for a k-Means Clustering is

conceptually much easier than choosing the weight decay in

stochastic gradient descent. The difficulty of choosing optimal

hyperparameters can be alleviated by theoretical knowledge of

optimal parameter settings. We consider a method to be more
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easily usable if there are algorithms or formulas for deriving

good or even optimal parameter values for given inputs.

3.3.3. Reliability

• Example criterion: The method produces theoretically exact

results.

We require reliablemodels to be firmly grounded in theory,

i.e. when there is evidence of mathematical error bounds, and

if there are insights about the model’s fairness or bias. As an

example, uncertainty given by neuron activations in ANNs alone

was found to not necessarily be a reliable measure (Guo et al.,

2017). Suchmodels are highly untrustworthy when they are used

in safety-critical fields such as autonomous driving. Contrary,

MRFs were proven to recover the correct marginal probabilities

with increasing number of data points, given the underlying

independence structure (Piatkowski, 2019). It is important to

comprehensible visualize these fundamental differences.

Importantly, if there are theoretical bounds for the method

at hand, they should also be verifiable by software tests, which

we call bound checks. The particular tests need to be defined

separately for all methods eligible for certification—we discuss

details in Section 3.4.

3.3.4. Theoretical time and memory
consumption

• Example criterion: The method’s runtime scales (at worst)

quadratically with the input dimensionality, i.e. inO(n2).

Runtime and memory usage are factors of utmost

importance for stakeholders, especially when facing resource

constraints. ML theory provides insights on (worst-case) time

and memory consumption of algorithms in the form of big O

notation. Based on this theoretical tool, we propose a ranking

of asymptotic time and memory complexity classes, with the

rank being displayed in the care label’s theory segment. In cases

where bigO notation depends on different factors (e.g., number

of features or data points), we propose to classify the method

according to the factor with the highest complexity class.

Energy is another important factor to consider when

deploying ML, but it results directly from runtime, memory

consumption and hardware. As such, theory does not provide

any additional information here.

3.4. Certifying the implementation

So far we only considered static theoretical properties of

ML methods, and how corresponding information can be

summarized via simple care label ratings. However, looking

at theory alone is not enough, as practically rolled out

ML can diverge from it. Consider runtime as a practical

example: In theory, an algorithm may be very efficient, but its

implementation may still be very slow, due to slow periphery or

inefficient code. Many popular ML implementations even suffer

from severe bugs (Thung et al., 2012; Islam et al., 2019), let alone

aligning with respective theoretical properties. We therefore

propose to also certify the implementation’s compliance with its

underlying theory via test procedures that we call bound checks,

which either investigate the dynamic aspects of reliability or

performance.

The former intend to verify method-specific theoretical

guarantees for reliability (cf. Section 3.3), as provided by

the expert knowledge database. We propose to check those

guarantees programmatically via software tests. This requires

synthetic data with known properties, which is fed into the

implementation. Its output is then checked against the known

expected results.

Our performance checks investigate runtime and memory

usage in the given execution environment. We here draw from

the previously introduced asymptotic complexity classes, that

the implementation is expected to comply with. We check this

compliance by running experiments on synthetic data with

varying input sizes. Measuring the corresponding runtime and

memory usage in a software profiling fashion (cf. Section 4.2.2)

allows for checking whether the theoretical complexity holds.

Checkmark symbols on the right hand segment of our care label

denote whether the implementation satisfies the reliability and

performance checks.

Information about the available hardware allows to also

assess the energy consumption, and thus, carbon footprint.

As motivated earlier, this is of high interest for aspects of

environmental ethics (Henderson et al., 2020). By drawing

inspiration from electronic household devices and informing

about energy consumption, our care label rewards energy-

efficient implementations and ultra-low-power devices such as

FPGAs andASICs, even if they are limited in expressivity or have

a higher runtime. For providing specific information, we assess

the practical runtime (in seconds) and memory demand (in

megabytes), along with energy consumption (in Watt-seconds)

for a medium-sized data set. Those measurements are displayed

in the implementation segment. For comprehensibility we also

display them as colored badges, based on their position on a scale

for different orders of magnitudes.

3.5. Badges for noteworthy criteria

We argue that there are certain properties, which are

particularly noteworthy, because they are rare among

comparable methods and have great impact on the method’s

overall rating. Examples of such noteworthy properties

include uncertainty measures, whether the method can

be tested for robustness, and whether the model can be

used with streaming data. In order to highlight these

properties, we introduce badges in form of pictograms
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FIGURE 4

Three examples of badges as a compact way to summarize a method’s noteworthy properties (Images taken from Flaticon.com). (A) Method

provides un-certainty measure. (B) Method can be tested for robustness. (C) Method can be used with data streams.

that get printed on the care labels. Some examples

of badges, along with short explanations, are given in

Figure 4.

3.6. Certification suite concept

We propose to develop a certification suite software

that enables a less informed user to enquire comprehensible

information on ML methods and their implementations,

in the form of care labels. Most importantly, it allows to

configure a specific method from its available constituting

components. For the chosen configuration, the software

queries the ranking information, asymptotic performance

bounds, and reliability bounds from the knowledge database,

and combines them into the theoretical label segment.

After configuring the method’s backend implementation

according to the user input, the suite then profiles and

runs bound checks. We also propose to implement an

interactive, high-level interface, that hides all complicated

ML logic from users who are not very experienced in

the field of ML. In terms of our work we have already

implemented a simple prototype, see Section 4.2.2 for

more information.

4. Applying the care label concept to
graphical models

We now implement our concept for selected members of

the probabilistic graphical model (PGM) family. Having a long

history in statistics and computer science, theoretical properties

of graphical models have been studied rigorously in literature

(Koller and Friedman, 2009). Thus, they are well-suited to

demonstrate our care label concept as a means to aid the user

in their decision making process. Firstly, we briefly discuss

the theoretical background of Markov random fields (MRFs),

a specific subtype of probabilistic graphical models (PGMs).

Secondly, we present the care label generation procedure for

two different MRF variants (Section 4.2). We discuss the

static, theoretical properties and corresponding rating, as stored

in the expert knowledge database, determining the theory

segment of our label (Section 4.2.1). In addition, we present

results of our testing procedures, which certify a given MRF

implementation against the underlying theory, both in terms

of reliability and resource demand, while also assessing the

energy consumption of the execution environment at hand

(Section 4.2.2).

4.1. Background on Markov random fields

MRFs belong to the family of PGMs and are used in

many different applications like satellite image gap filling

(Fischer et al., 2020), medical diagnosis (Schmidt, 2017), and

security-critical systems (Lin et al., 2018). Moreover, MRFs

can be used for constrained learning scenarios, like distributed

environments (Heppe et al., 2020) or platforms under strict

resource requirements (Piatkowski et al., 2016). We now shortly

discuss the underlying theory of MRFs, as it provides guarantees

and static properties that determine their care label ratings.

MRFs combine aspects from graph and probability theory

in order to model complex probability distributions P(X)

over some d-dimensional random vector X = (X1, . . . ,Xd)
⊤

efficiently. Conditional independences between elements of X

are exploited and modeled through a graph G = (V ,E), where

each vertex v ∈ G is associated with one random variable of X.

If two vertices i and j are not connected by an edge, Xi and Xj

are conditionally independent given the remaining variables. In

this work we focus on discrete MRFs, allowing for an intuitive

parametrization, therefore each element Xi can take values in

its discrete finite state space Xi. By introducing the so-called

potential functions ψC :XC 7→ R+ for each of the cliques in

G, mapping variable assignments to positive values, the joint

density factorizes according to Hammersley and Clifford (1971)

as follows:

P(X = x) =
1

Z

∏

C∈C(G)

ψC(xC) , (1)
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where Z, which is called partition function, acts as normalization,

Z =
∑

x∈X

∏

C∈C(G)

ψC(xC). (2)

The potential functions ψ are parametrized by weights, which

allows to define a loss function. By minimizing it during the

training process the model adapts to a given data set. Typically,

the weights are learned via maximum-likelihood-estimation

with first order optimization methods.

Having access to the joint density clears the path for

many further ML tasks, such as generating data via Gibbs

sampling, answering marginal P(Xi = x) or conditional

P(Xi = xi|Xj = xj) probability queries, or providing

maximum a-posteriori (MAP) estimates. However, solving

such tasks requires probabilistic inference. Algorithms for such

computations can be divided into two variants, namely exact and

approximate algorithms (see upper part of Figure 5). On the one

hand, the junction tree (JT) algorithm (Wainwright and Jordan,

2008) is a well-known method to perform exact inference on

arbitrary graph structures, while having a very slow asymptotic

runtime. On the other hand, the loopy belief propagation

(LBP) algorithm (Kim and Pearl, 1983) performs approximate

inference, sacrificing theoretical guarantees for considerably

faster performance. Further approximation algorithms include

the variational (Wainwright et al., 2003) and sampling-based

approaches (Andrieu et al., 2003). Keep in mind that exact

probabilistic inference is a #P-complete task (Piatkowski, 2018).

4.2. Deriving care labels for Markov
random fields

We generate care labels for different MRFs, based on

combinations of chosen components. In the context of MRFs,

there are three major configurable components: an optimizer, a

loss function, and an inference algorithm. We restrict ourselves

to investigating gradient descent optimization with a likelihood

loss function, using either the LBP or the JT algorithm for

performing inference. These combinations are depicted in

Figure 5, along with their corresponding final care labels.

4.2.1. Expert knowledge-based ratings

MRFs already exhibit certain static properties and receive

corresponding ratings for our categories. The ratings in the

theoretical segment of the care label are stored in the expert

knowledge database (cf. Section 3.2) and were agreed upon

by 10 experts using a majority vote. In case of a tie, we

decided in favor of the method. As combining the individual

components can greatly influence the rating, we also have to

identify their individual ratings. Combining the component

ratings should be based on a fixed set of rules. Here, we stick

to the already proposed way of taking the infimum overall

ratings (cf. Figure 3). We display the respective ratings for the

MRF components and variants in Table 3, and now explain

their expert-knowledge-based justification and corresponding

implications for the user, following the columns from left to

right.

4.2.1.1. Expressivity

Looking at Table 3, it stands out that the general MLmethod

choice is the only component affecting the expressivity rating.

We reason that the expressive power ofMRFs is determined only

by its inherent properties, while the customizable components

are neutral. MRFs are very expressive, because they can perform

all generative model tasks: they can be queried for conditional

or joint probabilities and they allow to sample data from the

distribution. In addition, their probability output is a natural

uncertainty measure. Therefore, we argue that MRFs should be

rated A.

4.2.1.2. Usability

In terms of usability, MRFs receive the grade B, since the

independence graph is usually unknown for real-world use

cases, and thus has to be defined manually. For this, the user

must either incorporate expert knowledge or use procedures

for structure estimation (Yang et al., 2014). The loss function

does not impact the usability and is rated neutral. Gradient

descent only requires choosing a step size, which is well-

documented with reasonable defaults, therefore we rate it A.

The LBP inference requires careful tuning of the stopping

criterion by specifying the convergence threshold or number

of iterations. However, more iterations do not necessarily

improve performance, whichmakes the choice quite unintuitive,

resulting in a C rating for usability. JT inference does not require

additional hyperparameter tuning, which yields an A rating. The

usability rating shows the user that LBPmakesMRFs a bit harder

to use.

4.2.1.3. Reliability

When provided with an exact inference algorithm and a

convex optimization problem, MRFs are guaranteed to recover

the correct distribution, with the error being bounded by the

number of training instances (Bradley and Guestrin, 2012).

This bound, which we call distribution recovery check, can be

verified through software, resulting in an A rating. Since the

likelihood as a loss function exhibits strong statistical guarantees,

like consistency, unbiasedness and efficiency, we also award it

with A. Given a density, which is convex w.r.t. parameters, a

gradient descent optimizer is able to recover the global optimum,

resulting in an A rating. This is also verifiable for the dynamic

properties of a specific implementation via software, the so-

called convergence check. However, all this reliability is only given

if the chosen inference algorithm provides exact results for the

gradient update. We reflect this restriction by assigning D and

A ratings to LBP and JT respectively, as the former does not

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2022.975029
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Morik et al. 10.3389/frai.2022.975029

FIGURE 5

Overview of configurable components for MRFs. Each instanced model requires choosing the loss, an optimizer and an inference algorithm. For

our experiments we chose likelihood as loss function, gradient descent for optimization, and evaluated two di�erent inference algorithms. The

respectively instantiated care labels are shown below, with resulting theoretical and practical ratings.

even provide a bound on the approximation error2. Our ratings

clearly show the user that LBP makes MRFs a lot less reliable.

4.2.1.4. Runtime and memory

The theoretical runtime and memory complexity classes

depend mostly on the chosen inference algorithm component,

2 Under certain, special conditions LBP may have guarantees, but this

is generally not the case (Ihler et al., 2005).

while the MRFs type’s general runtime is unspecified. Their

memory demand for parametrization depends on the data

complexity in two ways: It grows linearly with the number

of features and quadratically with the number of discrete

states, resulting in a B rating. Due to only requiring a plain

mathematical function evaluation, the likelihood loss acts

neutrally on both categories. The gradient descent optimizer

itself is resource efficient, assuming we are given the gradients of

our loss function. Both memory and runtime complexity scale
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TABLE 3 Ratings for individual components based on theoretical properties and expert knowledge rated from A to D alongside the final combined

ratings for two concrete configurations.

Component Choice Expressivity Usability Reliability Runtime Memory

MLMethod Markov random field

Loss Likelihood

Optimizer Gradient descent

Inference Loopy belief propagation

Junction tree

Care labels MRF+ LBP

MRF+ JT

Categories for which the criteria do not apply are shown in gray and are treated neutral toward the final rating. The final ratings are typically derived from the worst-case of all rated

components, but may depend on additional expert knowledge instead.

TABLE 4 Guarantees and resource consumption of di�erent inference algorithms.

Junction tree LBP

Time complexity O (Xw
Cmax

) O (I|E|X2
max Nmax)

Memory complexity
∑

C∈C(JT)

∏
v∈C Xv 2.

∑
(s,t)∈E |Xs|+|Xt|

Exact Yes (Lauritzen and Spiegelhalter, 1988) Heuristic (Murphy et al., 1999)

linearly with the model dimension, resulting in an A rating for

both categories.

The resource requirements of our inference algorithms are

shown in Table 4 (Piatkowski, 2018). We rated the runtime of JT

inference with D due to scaling exponentially with the junction

tree’s width3 w. Memory receives the same rating, because the

underlying data structures also grow exponentially with tree

width. Thus, users might find JT inference feasible for sparse

independence structures, while for dense graphs its runtime and

memory demand may exceed available resources. LBP on the

other handworks efficiently on general graphs and even provides

exact solutions for trees and polytrees. It is rated B due to scaling

quadratically in number of states of the largest state spaceXmax,

and linearly in the number of edges |E| in the graph, the number

of iterations I and the size of the largest neighborhood Nmax

in G. The memory consumption for LBP is rated A as we only

have to store intermediate results, whose memory demands scale

linearly in the number of states per clique. Choosing between

JT and LBP inference, the user can trade exactness and strong

guarantees for better runtime and memory. This is illustrated in

3 The junction tree (Huang and Darwiche, 1996) is an auxiliary graph

which needs to be derived in order to run the complete inference

algorithm.

Figure 7, showing runtime and memory consumption for MRFs

with increasing number of vertices.

4.2.2. Testing the implementation

To test the dynamic properties of specific MRF

implementations and derive the care label’s implementation

segments, we implemented a certification suite, as described in

Section 3.6. It draws the theory-based static bounds and ratings

from the expert knowledge database, performs reliability bound

checks, investigates the implementation’s behavior in terms of

runtime, memory and energy consumption, and outputs the

complete care label.

4.2.2.1. Experimental setup

In order to run our bound checks (cf. Section 3.4) we

generated synthetic data sets by defining specific distributions

and sampling from them. Having access to both the sampled

data and their underlying distribution parameters allows for

assessing whether reliability checks pass. As graph structure we

chose a grid graph, with binary state space and increasing grid

size from 2×2 up to 15×15. This resulted in data sets of different

sizes, which have been utilized to perform the resource bound

checks.

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2022.975029
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Morik et al. 10.3389/frai.2022.975029

FIGURE 6

Deviations of LBP marginals compared to the true marginals

computed with the exact JT algorithm over five runs. We used a

random Erdos-Renyi-Graph with 20 nodes and an edge

probability of 0.25. Each dot represents a single marginal

probability, with all marginals ideally being located on the

diagonal (LBP marginal equal to JT marginal).

For running the MRFs logic, we utilized the pxpy4 library,

which implements JT and LBP.

Our certification suite measures runtime, memory demand5,

and CPU energy consumption6 via established tools, similar

to Henderson et al. (2020). All experiments were performed on

a workstation equipped with an Intel(R) Xeon(R) W-2155 CPU,

64 GB RAM and Ubuntu 20.04.1 LTS as operating system.

4.2.2.2. Reliability bound checks

To verify the reliability of the implementation against

the static characteristics described in Section 4.2.1, which

are especially important for safety-critical applications, we

perform two exemplary bound checks: The distribution recovery

check (Hoeffding, 1963) and the likelihood convergence check.

The first check is performed by comparing the true marginal

probabilities µ∗ to the marginals µ̂ computed by the provided

implementation for the true parameters θ∗. Therefore, clique-

wise KL-divergences are computed and reduced to the max

value. If this value falls below a given threshold, the check passes.

The second check verifies if the given implementation fits the

data. To this end, we run an optimization procedure with the

true structure and our samples, checking convergence based on

the gradient norm. If the norm falls below a given threshold,

the check passes. The investigated JT implementation was able

to pass both checks. Recall that LBP inference is not exact as

depicted in Figure 6 and received aD for reliability. Even though

4 https://pypi.org/project/pxpy/

5 https://github.com/giampaolo/psutil

6 https://github.com/wkatsak/py-rapl

the LBP algorithm does not exhibit theoretical guarantees, it

was able to pass the reliability tests for some data sets. Still, it

failed for most, therefore the implementation did not receive the

reliability checkmark.

4.2.2.3. Runtime and memory bound checks

Next, we evaluate whether the performance in the given

execution environment complies with the identified complexity

classes. We depict the measured resource consumption for both

JT and LBP configurations in Figure 7. As expected, it shows

that both memory usage and runtime increase with the number

of vertices for JT. For our automatic checks, we fit different

linear regression models with the resource measurements

(i.e. one model for linear, quadratic, cubic, etc. complexity).

We also cross-validated this assessment by subdividing the

measurements into several independent sets, and fitting the

regression for each group. In our experiments, those results

corresponded to the identified theoretical complexity of the

tested MRF configurations, thus all methods receive memory

and runtime checkmarks.

4.2.2.4. Resource consumption testing

For specific resource measurements, we chose a medium-

sized data set stemming from a grid-structured graph with 14×

14 vertices and binary state space. The results are displayed in

Table 5. They confirm that the JT configuration requires much

more runtime and energy than LBP. The hardware platform was

internally measured to consume an average of 20 − 43 Watt

per experiment. To obtain the complete energy consumption,

we multiplied the power with runtime. The badge colors in the

implementation part of the care labels are directly derived from

those measurements.

Our experimental findings show the usefulness of our care

label concept, compacting the extensive theory of PGMs, while

still providing useful information that is otherwise not accessible

for users.

5. Conclusion and further work

With state-of-the-art systems, ML user requirements can

differ vastly. Certain users might know the theory or have an

intuitive understanding of properties and guarantees. Often,

however, users are not aware of the intricacies of different

methods. There are approaches that discuss how trust in ML can

be increased, but they often fail to connect theory and practice,

or are too abstract and inaccessible to non-experts who do not

want to understand system in the same manner that they do not

want to understand their washing machine.

We address these issues via our care labels to inform a

broad range of users and ML customers. Our labels identify

theoretical properties that are highly relevant for safety-critical

or resource-constrained use cases. We test implementations

against theory by performing bound checks for reliability and
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FIGURE 7

Comparison of running JT and LBP inference in terms of memory consumption and runtime for increasing number of vertices, i.e. model

complexity. Results are averaged over ten experiment repetitions (standard deviation σ < 0.5).

TABLE 5 Comparison of the two methods on a data set with a grid

independence structure sized 14 × 14.

Measurements JT LBP

Runtime 9.86 s 599.84 µs

Memory 157.28 MB 76.99 MB

Energy 416.88 W s 20.63 mW s

The experiments were repeated ten times with a standard deviation of σ < 0.5.

measuring resource consumption. All this information is neatly

displayed in our care label design, which is easy-to-understand

for both experts and customers without a scientific background.

If demanded, more intricate details could be provided to users.

We demonstrated that our concept is practical for MRFs

as an example for undirected generative models. For the

experimental evaluation, we implemented a verification suite,

expert knowledge database, and care label design (cf. Figure 1).

Looking at their inference, we have inspected the exact JT and

the approximate LBP algorithms. The generated labels allow

users to assess implications of using MRF variants with different

components where the extensive amount of theory behind

PGMs remains invisible to the user.

Subsequent to this work, we intend to refine and finally

publish a verification suite for ML practitioners. Here, we

contributed the general framework concept and proof-of-

concept results for MRFs. Future work could investigate other

probabilistic inference methods, i.e. variational inference and

the MCMC method. Tests for discriminative methods like

Conditional Random Fields or directed PGMss like Latent

Dirichlet Allocation or Hidden Markov Models are yet to be

generated in order to assign care labels to these.

Other ML methods like deep neural networks might also

bring attention to totally different properties like robustness. A

wide range of tools for testing robustness or measuring resource

consumption is already available, e.g., cleverhans https://github.

com/cleverhans-lab/, carbon tracker https://github.com/lfwa/

carbontracker and many more. In order to integrate those tools

into our framework, the tests become related to a particular

architecture with a particular parameter setting. This is more

complex, but preliminary studies already show that it is possible.

The question of scalability is indeed a pressing one, because

the expert knowledge database and criteria checks need to

be assembled and implemented manually. The ultimate goal

would be to automatically generate tests from the proofs

and experiments that are published in scientific papers. The

collection of https://paperswithcode.com is a first step into

that direction. Turning this into generating calls of executing

experiments whose results can be framed as care labels is the very

long-term perspective of our approach.
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