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Keeping strategic allocations at target level to maintain high exposure to private

equity is a complex but essential task for investors who need to balance against the

risk of default. Illiquidity and cashflow uncertainty are critical challenges especially

when commitments are irrevocable. In this work, we propose to use a trustworthy

and explainable A.I. approach to design recommitment strategies. Using intensive

portfolios simulations and evolutionary computing, we show that e�cient and

dynamic recommitment strategies can be brought forth automatically.
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1. Introduction

Over the last decades investing in private equity (PE) and real assets1 has gained considerable
momentum as described in Cumming et al. (2022). Achieving high exposure to PE is a challenge
faced by institutional investors like insurers, pension funds, banks, endowments, and sovereign
wealth funds who in recent years have been building sizable allocations to this alternative
investment vehicle. Successfully acquiring, managing, and exiting these investments directly
demands strong expertise and incentives that most institutional investors are lacking. This is
the reason why such investors generally prefer to invest indirectly as so-called limited partners
(LPs) through limited partnerships funds (in the following referred to as “funds”) in which they
commit a sizeable amount of capital for a given period of time.

Commitments to funds are in practice immutable, and the invested capital is called
progressively by the fund’s management at its sole discretion. Capital calls cannot be determined
in advance which leads to committed but un-invested capital waiting to be called. Generally,
the committed capital will not be drawn in full by the end of the fund lifetime. Therefore, only
between 60 and 70% of the fund’s commitments will really be invested in PE and yield a return in
line with such assets. As the fund progresses, there will also be pay-outs from early divestments.
These cash inflows must be recommitted into new funds. To make matter worse, the illiquid
nature of PE stakes yields a high risk during the fund’s early years when the likelihood to be
called is the highest, i.e., during the investment period of the fund.

In a nutshell, the three essential aspects making PE investing so challenging for LPs are the
following ones:

(1) Capital is not called in full.
(2) Committed but uncalled capital.
(3) Risk of becoming a defaulting investor.

1 Such as infrastructure, real estate, forestry and farmland, energy and commodities, and copyrights.
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For all these reasons, it can be very challenging to convert
commitments into a stable and high exposure to private equity.
In fact, an additional expertise to determine how to size and time
recommitments into new funds is required to draft an efficient
commitment pacing while securing liquidity for future capital calls.

As of yet, commitment pacing is tackled with portfolios models
based on, despite their unpredictable nature, deterministic cashflow
forecast. Usually these models are spreadsheet-based, very simple and
work through “trial-and-error”. The impact of (alleged) skills when
selecting high-quality funds is either not reflected or over-estimated.
Often, for the targeted portfolio composition, there are no funds
with desired characteristics available or not available at the time. In
addition, the secondary market for funds is difficult to factor in, as it
tends to dry up precisely when LPs experience liquidity problems.

Retaining the uncalled capital as dry powder remains one of the
most overlooked aspect of investing in private equity (Arnold et al.,
2017). However, academic research on this topic is still at its infancy.
To minimize the impact of uncalled capital, LPs commit practically
more capital in aggregate than available by running overcommitment
strategies. They expect to fill the gap using future distributions. They
also rely on the fact that the capital will not be entirely called. This
simplistic strategy is a solution to (1) but increases the risk of liquidity
shortage. Overcommitments share important commonalities with
leverage strategies and show similar rewards and risks, notably that
of becoming a defaulting investor and incurring significant financial
and reputational penalties.

Recommitment strategies are essential to keep investor constantly
invested at some target allocation. To the best of our knowledge,
existing strategies are neither dynamic nor flexible. Heath et al.
(2000) proposed to recommit the entire private equity allocation to
new funds without considering past portfolios evolution. Although
Nevins et al. (2004) considered distributions and commitments rates,
their proposed recommitmentmechanism is based on non-optimized
target threshold and constant rates over time which are clearly
unappropriated. Constant recommitments are not a sustainable
solution in private equity as we will show later in this paper.

The seminal work of de Zwart et al. (2012) is one of the
very few attempts to design dynamic recommitment strategies.
Instead of relying on cashflow forecasting to solve, at each period,
a single-period portfolio optimization problem, they chose to build
recommitment functions relying only on current and past portfolio
developments. In the same vein, Oberli (2015) extends de Zwart’s
work to multi-asset class portfolio including stocks and bonds.
These two last attempts are strong and improving contributions
to deal with the unpredictability of cashflows by generating rules
to adjust dynamically the investment degree. This similarity with
control theory, i.e., a domain dealing with the control of dynamical
systems in engineered processes and machine, seems obvious. We
aim at building a closed-loop or feedback controller to drive the
system output to a desired state and ensure a level of stability. Like a
physical system in which the environment can only be sensed but not
predicted, the private equity controller systemmust actively react and
compensate any deviation to the target output. Nevertheless, such a
control system would have long delays and would not be allowed to
over-shoot the target with the risk to create cash shortage situations.

In this work, we propose to learn such a control system, but
adapted to the private equity environment. For that reason, we do
not consider classical machine learning approaches even though they
have been widely and successfully applied in many domains and

real-world applications. Their main disadvantage is their need of
supervised knowledge requiring therefore a significant amount of
data which is somehow lacking in private equity. Some privatemarket
data providers generally sell data covering very specific periods and
economies, but these data tend to be incomplete. There is also no
guarantee for them to reflect the current market situation. We have
de facto excluded deep learning methodologies which are all greedy
in terms of data and computing time. Despite their strong popularity,
they are also not convenient when it comes to analyze their behavior.
Besides, neural networks may have millions of parameters and are
often subject to overfitting. The recommitment rules proposed by
de Zwart et al. (2012) are simple and very effective. What if we
could generate such recommitment expressions automatically and
consider that our control system would be made of such a set of
strategies to be applied in specific conditions. Learning mathematical
functions, i.e., symbolic expressions, is not a recent occurrence
and has been widely considered by computational physicists to
develop understandable models using symbolic regression. The
recent advance on evolutionary learning and simulation-based
optimization have paved the way to novel learning paradigms.
We therefore propose hereafter a proof of concept consisting in
learning symbolic mathematical expressions in the same format as
proposed by de Zwart et al. (2012) and Oberli (2015) using an
evolutionary algorithm (Freitas, 2003). These symbolic expressions
will be then evaluated through intensive simulations to measure their
performance in providing a stable and efficient control system to keep
PE allocation at the target level.

2. The private equity recommitment
problem

The PERP is a dynamic optimization problem in which an LP
investor owning a portfolio is searching for recommitment levels
to maintain a target allocation. PE funds have generally a lifetime
ranging from 10 to 15 years. The committed capital is draw down
progressively during the investment period over which the net asset
value (NAV) grows continuously until it is reaching a peak around
the halfway point of the fund lifetime. Once this peak has passed and
fund moves into its the divestment period, the NAV along with the
capital calls declines while the fund’s distributions are increasing. For
a single PE fund, the maximum investment level is only reached for
short period of time. Consequently, it is critical to take advantage of
the uncalled capital and early distributions by recommitting into new
PE funds to counterbalance the opportunity cost.

To this end, the investment degree is usually considered as a
metric to evaluate the fraction of the capital actually invested and is
defined as:

IDt =
NAVt

NAVt + Casht
(1)

The optimal amount of recommitment levels Ct , Ct+1,Ct+i for
all periods can be theoretically obtained by solving an equivalent
multi-period portfolio optimization problem defined as follows:

min
ct ,ct+2 ,ct+3 ,...

Et

(

∝
∑

i=1

β i−1(1− IDt+i)
2

)

(2)

where 0 ≤ β i−1 ≤ 1 is a discount factor, IDt+i is the investment
degree at period t+ i and Et is the conditional expectation at period t.
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FIGURE 1

Each capital call is a fraction of the previous commitments. This

fraction diminishes with time such that γt+1,t−i≈ 0 when i ≥ 6 years.

This formulation is not very convenient and reflects the fact that the
current optimal commitment levels depend on the future investment
degree. It is therefore more appropriate to decompose the original
problem into a sequence of single-period portfolio optimization
sub-problems with simplified shape:

〈

min
c1

E1

[

(1− ID2)
2
]

, . . . , min
ct

Et

[

(1− IDt+1)
2
]

,

min
cN−1

EN−1

[

(1− IDN)
2
]

〉

(3)

where the subscript N represents explicitly the last period of
commitment. Note that defining a commitment period is equivalent
to have a discount factor. The analytical solution providing the
optimal level of commitment Ct for each period, i.e., for each
subproblem is thus [see de Zwart et al. (2012) for the demonstration]:

Ct = Et

(

Casht + Dt+1 −
∑T

i=1 γt+1,t−iCt−i

γt+1,0

)

(4)

with γt+1,t−i, the fraction of capital committed i periods ago and
called at t + 1 (see Figure 1). Dt+1 represents future distributions at
the next period. γt+1,0 designates the fraction of the new commitment
called immediately.

Although this sequence of sub-problems formulation gives access
to an analytical solution, LP investors must forecast cashflows
as well as the expected capital calls for the subsequent period.
Indeed

∑T
i=1 γt+1,t−iCt−i represents the fraction of capital from prior

commitments called at t + 1 which is only determined by the fund
manager and not known in advance.

The two main approaches documented for this purpose are:

• For cashflow forecasting see Takahashi and Alexander (2002)
(also known as the “Yale model”2) and de Malherbe (2004).

• For engineering recommitment using strategies see de Zwart
et al. (2012) and Oberli (2015).

For long-term oriented assets like PE funds there are natural
limitations to any precision in cashflow forecasting. Strategies
engineering is an indirect methodology aiming at approximating
the analytical solution by mean of control rules. These rules do
not provide an immediate optimal solution for each period but
adjust recommitments until the system reached its target allocation
and remains stable. They are very convenient but can be tedious
to discover.

For this purpose, we suggest a novel approach based on
simulation and evolutionary learning to discover them automatically.
Contrary to classical machine learning which attempts to build a
model from historical cashflows, we adopt a different perspective in
which we consider an augmented version of the proven Yale model,
to generate cashflows data with specific properties. These synthetic
cashflows described hereafter leverage new opportunities to create
and observe market situations that may have never existed thus far.

3. Building synthetic cashflows—The
Yale Plus model

PE funds are, notwithstanding the emergence of a secondary
market in recent years, highly illiquid. From the LP perspective,
they are cashflow assets, described here in absence of a common
definition as assets that cannot be traded profitably, create cashflows,
and need to be sustained through timely provision of liquidity. LPs
are mainly exposed to the extreme uncertainty regarding the timing
and amount of their funds’ capital calls and disbursements. The
LPs’ problem is how to model the cashflows for portfolio and risk
management purposes.

One well documented technique is to consider so-called
“cashflow libraries”. These are historical funds’ cashflow datasets that
are argued to reflect the “true” behavior of funds and thus capture
the dynamics of private equity and real assets best. When forecasting
for a given fund, its future development is simulated by randomly
picking cashflows from this library with adjustments for the fund’s
strategy and the stage in its lifecycle. This technique arguably is the
“gold standard” for cashflow forecasting.3 It combines simplicity and
robustness of approach with the ability to capture the ups and downs
in private markets.

Collecting a comprehensive and up-to-date data set is a
cumbersome and expensive process. Larger fund-of-funds players

2 Between 2001 and 2005 this paper had been downloadedmore than 10,000

times from Yale School of Management International Center for Finance’s

website.

3 The technology is well documented. Since the early 2000s agencies such as

Fitch, Moody’s, Standard & Poor’s, DBRS have been utilizing data from publicly

available sources of information on private equity for rating debt backed by

interests in a portfolio of funds. These rating agencies initially bought cash-

flow data from Venture Economics (now defunct) and in recent years mainly

from Burgiss and Cambridge Associates. The rating methodologies are very

conservative and apparently the available data is biased towards the universe

of institutional quality funds.

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2023.1014317
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Kie�er et al. 10.3389/frai.2023.1014317

FIGURE 2

Expected cashflows projected by Takahashi-Alexander model.

enviously protect the rich histories in their data warehouses—with
several thousand mature fund cashflows—that allow them to credibly
simulate future cashflows of portfolios of funds. Some private market
data providers sell such fund level cashflow data, but only for high
subscription fees and often just aggregated figures for groups of
funds. For the majority of LPs the cashflow library approach arguably
is not a viable option.

This work considers the use of synthetic fund cashflows as a
more practical solution. These cashflows are artificially generated by
expanding the Yale model.

3.1. The Yale model

The Yale University’s endowment has been investing in private
equity since 1973. Their method for modeling illiquid asset funds has
been described in Takahashi and Alexander (2002).

A robust and tried-and-tested approach.
This Yale model can be applied to private equity and real asset

funds. It mirrors the limited partnership’s actual investment cycle,
distinguishing between contributions (cash inflows), distributions
(cash outflows) and the NAV representing the fund’s underlying
assets. The timing of all cash flows, as well as the return on the
committed capital, is modeled as deterministic, i.e., in contrast to a
probabilistic model, a single run of this model creates just one result
(i.e., expected contributions, expected distributions, and expected
NAVs) for one set of input parameters and not a range of outcomes
(Figure 2). Nevertheless, according to Takahashi and Alexander
(2002), the projections generated fit historical data surprisingly well.
In fact, the model uses the best available information for each step,
e.g., contributions are projected based on the undrawn commitment
for the year and the remaining distributions are based on, among
other factors, the current valuation.

The major advantage of the Yale model is its simplicity and
its power of explanation. It is easy to understand and allows users
to identify the causal relationship between input parameters and
outcomes. Being simple and sensible on a theoretical basis was one of
the model’s stated design objectives. Simplistic as it appears, this Yale
model has been proven as difficult to beat and stacks up well against
other apparently more sophisticated approaches (see Furenstam and
Forsell, 2018).

3.1.1. Applications
Input parameters for the Yale model are the fund’s capital

commitment, its lifetime in years, yearly rates of contributions, the
fund’s annual growth rate (%, effectively its IRR), and a so-called “bow
factor” that describes changes in the rate of distributions over time.
For income generating asset types such as real estate the yield sets the
minimum distribution level. Yield can be interest, rental payments,
but it can also describe depleting assets such as oil and gas. No paper
is known to the author that refers to the use of the yield parameter.
Probably more traditional techniques for modeling debt instruments
are better suited for this case. As output the model projects the fund’s
annual capital contributions, distributions, and NAVs.

3.1.2. Variations
Variations of the Yale model were presented by Hoek (2007),

Tolkamp (2007), and Kocis et al. (2009). All these models, however,
also create just one result for one set of input parameters and not
a range of outcomes. Clearly and like with all other models, the
longer the time horizon the less precise the Yale model’s projections
can be. While their mechanics are simple and allow going through
various scenarios by adjusting input parameters, the need to estimate
these parameters reduces the usefulness of non-probabilistic models.
Particularly the inability to project widening ranges clearly puts
limits to the use of the Yale model and its extensions for risk
management purposes.

3.2. Stochastic expansion—The Yale Plus
model

Instead of depending on the difficult task to acquire historic
cashflows from comparable funds, using synthetic, i.e., artificially
generated, fund cashflows can be an often more practical solution.
These synthetic fund cashflows are created by funneling data
generated by the deterministic Yale model through a noise-adding
algorithm to construct a new data set. The resulting data set shows
the statistical features and the useful patterns needed for capturing
for the liquidity risks associated with portfolio of funds.

3.2.1. The Yale model as starting point
The Yale model’s main weakness is that the output quality

obviously depends on how well input parameters are chosen. In its
simple form it also does not offer an intuitive linkage to the market’s
dynamics and its uncertainty. Deterministic models do not reproduce
the erratic nature of real-world fund cash flows. This may still work
well for the Yale endowment with its highly diversified portfolio of
funds, but investors with relatively concentrated portfolios should be
aware that individual fund cashflows may vary widely and therefore
returns are substantially dispersed. Under these circumstances any
deterministic model does not sufficiently address risk measurement
concerns. Notably the Yale model does not capture the extremes
and the volatility in regards of timing and amounts of cashflows
(Figure 3).

The Yale plus model builds on the Yale model but projects
randomly distributed cashflows. It also estimates a NAV that is
consistent with these cashflows.
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FIGURE 3

Stochastic expansion of Takahashi Alexander model.

3.2.2. Changing the periodicity of forecasts
The first important extension is by allowing for different

periodicities, i.e., not only yearly forecasts but also semi-annually,
quarterly, monthly. Forecasts are often quarterly as this is also in
line with the frequency of the investment reporting in the private
industry. At least for short-term projections LPs may also need
monthly forecasts.

For yearly deterministic forecasts it makes sense just to consider
two types of cashflows, i.e., contributions and distributions. For a
stochastic model and other periodicities, we need to differentiate
between cashflows that remain largely deterministic and cashflows
that are more random in nature. Therefore, the Yale plus model
forecasts four different types of cashflows: drawdowns, management
fees, repayments and fixed returns. Contributions are the sum
between draw downs and management fees while distributions are
repayments increased by fixed returns.

For this purpose, additional parameters are required to model
management fees and fixed returns:

• The usual calculation basis for management fees is either
committed capital or invested capital.

• The investment period defines until when management fees
are to be calculated based on the committed capital. Once the
investment period expires, the vast majority of fund managers
begin to receive a discounted management fee.

• The Yale model’s yield parameter is extended by being able to set
its frequency and the first period of when the yield is generated
as yield schedule.4

4 Example for monthly periodicity: first payment in February, twice a year.

3.2.3. Injecting randomness
In order to capture the volatility of cashflows we need to model

(1) howmany cashflows take place within the year, (2) how cashflows
are allocated to the respective period, and (3) how the amounts of
cash-flow are distributed within the period. The Yale plus model
therefore requires the following additional parameters to model the
randomness of cashflows:

• The frequency of drawdowns within the investment period and
after the investment period (typically reduced frequency).

• The volatility of drawdowns within the investment period and
after the investment period (typically reduced frequency).

• The frequency of repayments within the investment period
(typically reduced frequency) and after the investment period.

• The volatility of repayments within the investment period
(typically reduced frequency) and after the investment period.

The Yale plus model produces randomly distributed cashflows
that are not correlated between the different periods.

3.2.4. Determining a cashflow consistent NAV
The Yale model is setting a deterministic relationship between

contributions, NAVs, and distributions. This relationship does not
hold any longer for randomly distributed cashflows. The Yale
plus model, however, applies the same logic to estimate a NAV
that is consistent with the fund’s cashflows. Like in the Yale
model it is assumed that the underlying portfolio (captured in
the NAV) is growing with the rate given by the fund’s IRR.
Funds tend to have mainly contributions in the beginning of
their life and mainly distributions at the end of their lifetime.
There is some fuzzy-ness during the fund’s mid-life, where there
are contributions as well as distributions within the same period.
However, during this phase the NAV tends to show its maximum,
so that it is unlikely that distributions exceed the available NAV.
Note that this is the NAV attributable to the LPs, as the Yale
plus model, like the Yale model, projects repayments on a net
basis.5

3.3. Results

The Yale plus-model aims to be a generalization of the Yale
model: its average projected annual contributions and distributions
have to be the same as those projected by the deterministic Yale
model. Figure 4 shows how with an increasing number of samples
generated by the Yale plus model (green lines) the results converge
to the contributions forecasted by the deterministic Yale model (blue
dotted lines).

Figure 5 shows how with an increasing number of samples
generated by the Yale plus model (green lines) the results converge

5 Real NAVs tend to underestimate the true (unobservable) economic value,

as they are appraisal-based valuations with a conservative bias.
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FIGURE 4

Yale Plus model, quarterly drawdowns.

FIGURE 5

Yale Plus model, quarterly repayments.
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to the distributions forecasted by the deterministic Yale model (blue
dotted lines).6

The Yale plus model describes the funds’ typical behavior
unbiased by the market. Various stresses can be applied on the
forecasted cashflows without the risk of double counting.

Obviously, the Yale plus-model can generate as many cashflow
samples as needed. In case that there is a significant exposure
to particular situations such as venture capital funds or emerging
markets, more specific models could be beneficial as building blocks.
Data observed for these different fund strategies can be used to
calibrate the Yale plus model for setting the required parameters.
Alternatively, they can be set by expert, for instance in situations
where there are no of insignificant historical data available.

4. Learning recommitment strategies
with evolutionary learning

The last decade has seen an exponential growth in the artificial
intelligence field of study. The literature is replete with numerous
innovations in terms of knowledge discovery (KD) going from
computer vision (see Krizhevsky et al., 2017) to natural language
processing (Devlin et al., 2019). The last wave in AI research and
notably in Deep Networks has reached a level of efficiency that
has never been experienced before. AI-based algorithms are now
challenging Human performance in many domains. The Go game
invented 2,500 years ago in China remained one of the few games
where Human players were undefeated until “Google’s AlphaGo beats
Humanity” in 2016.

Using a library of synthetic cashflows generated from the Yale
Plus model discussed in the previous section, we attempt to train
recommitment strategies to maintain a target investment degree as
close as possible to the ideal one while ensuring that future capital
calls can be satisfied. This will be achieved using simulation-based
learning and, more precisely, by exploiting Evolutionary Learning,
i.e., a Bio-inspired Artificial Intelligent class of algorithms.

4.1. Learning using Darwinian principles

Evolutionary Learning addresses optimization problems in
machine learning using evolutionary algorithms (EAs) which are
stochastic bio-inspired search algorithms relying on Darwinian
evolution. This family of global optimization algorithms (see Zhang
and Xing, 2017; Katoch et al., 2020) is well-suited for complex
mathematical problems, such as non-differentiable, dynamic, non-
convex and multi-objective functions which practitioners may
encounter in daily business.

Recently, Evolutionary Learning approaches have been
experiencing a renewed of interest, especially with the development
of so-called hyper-heuristics algorithms (see Drake et al., 2020).
Hyper-heuristics algorithms belong to the class of “Learning to
optimize” approaches in which heuristics, i.e., rules of thumb and
educated guesses, are generated through a learning process. These

6 For both exhibits simulations were done for fee schedules that spread

payments equally over all periods and yields of zero, therefore the results are the

same for contributions and drawn-downs and for distributions and repayments,

respectively.

approaches do not only focus on discovering a single solution but
also on providing the mean to get to the solution. A famous quote
says: “Give a Man a Fish, and You Feed Him for a Day. Teach a

Man To Fish, and You Feed Him for a Lifetime”. This is clearly the
main philosophy of hyper-heuristics variants found in the literature.
Considered as “off-the-peg” approaches by Burke et al. (2013) as
opposed to “made-to-measure”, the development of hyper-heuristics
expresses a need of generalization to automatically design heuristics
or simply “frugal” rules to tackle problems. Decision makers and
domain experts generally prefer simple and trustworthy approaches
to take decisions. Unfortunately, and despite their success in the
academic world, outcomes provided by deep neural networks are still
very difficult to analyse on real-world applications. For this kind of
applications, trust is as valuable as performance.

This is the reason why learning intelligible rules can be very
helpful for investors in private equity who wish to better grasp results
provided by Artificial Intelligent algorithms.

4.2. Recommitment strategies as heuristics

Recommitment strategies as defined by de Zwart et al. (2012)
are mathematical functions computing the amount of capital that
should be recommitted during the current period Ct . There are
therefore symbolic expressions which can be represented as pieces of
a program.

Training symbolic expressions has been extensively considered
for regression as pointed out in Žegklitz and Pošík (2020). The
objective is to work with a generic and non-parametric model
to fit data while being freed from the burden of choosing the
best regression algorithms. Discovering symbolic expression has
been easily extended to general optimization problem, especially
combinatorial problems which are all belonging to the NP-hard
class of optimization algorithms. The literature is replete with hyper-
heuristics relying on genetic programming (GP) in which symbolic
expressions modeled as abstract syntax trees (ASTs) are evolved using
Darwinian principles to discover promising optimization rules. The
suitability of GP algorithms has been established by Fukunaga (2004)
for the well-known SAT problem. Theses algorithms have the major
advantage to automatize the assembly of the components required to
create a heuristic. Few investigations [in Finance (Kampouridis et al.,
2013)] have been undertaken to apply heuristic generation using GP
algorithms in Finance while it has notably encountered real successes
in combinatorial optimization problems (Sabar et al., 2013; Sabar,
2015) and more specifically in cutting and packing (Burke et al.,
2012), scheduling (Branke et al., 2016) and other additional domains
such as function optimization (Oltean, 2005), real-time logistics (van
Lon et al., 2012).

4.3. Evolution of Recommitment Strategies

As aforementioned, strategies are mathematical expressions.
They can be represented as symbolic expressions through abstract
syntax trees (see Figure 6) composed of 3 kinds of nodes:

• The root which represents the amount of capital to
be recommitted.
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FIGURE 6

Operators and terminals.

• Operators which stand for mathematical operators.
• Terminals representing data obtained from

simulated portfolios.

Multiple trees can be combined and altered to discover new
promising strategies. For this purpose, we rely on a classical
GP algorithm which borrows the concept of “Natural Selection”
from Darwin to drive an initial population of randomly generated
recommitment strategies to develop appropriate features for near-
optimal recommitted capital. Learning is therefore achieved by mean
of generational replacement in such a way that strategies with traits
that enable them to maintain a target PE exposure, i.e., a target
investment degree, will survive through generations and provide
better altered versions inheriting those traits.

Following the Darwinian’s principles, the genetic material of a
strategy is defined as its tree representation which can be altered
using two main operators known as “crossover” and “mutation”.
These operators modify their structure by recombining, cutting or
adding new operators or terminals. In this spirit, the crossover
operator exhanges portions or sub-trees to mimic mating which leads
to an exchange of genetic material. On the contrary, the mutation
operator reflects rare but impactfull events altering randomly the
genetic material.

The parallel with species evolution is the foundation of genetic
programming which simulates a long-lasting natural process which
gave birth to all living entities on Earth. The fittest strategies,
i.e., the ones allowing to maintaing a high exposure, have more
chance to be selected, propagated to the next generation. Yet again,
this mechanism biaised the evolution toward strategies developing
properties helping them to master their environment, i.e., private
equity portfolio.

However, that is where the parallel with Darwin’s evolution of
species ends as we now need to provide a mathematical definition of
fitness which is far from being bio-inspired. Nonetheless, interesting
readers may refer to Whitley and Sutton (2012) for more details.
In addtion, Table 1 is a summary codex between the key element
in Darwinian Evolution and the bio-inspired optimization approach
implemented in this work.

The search for improving strategies is performed according to
the pseudocode described by Algorithm 1. At each generation, a
population of NPOP recommitment strategies will be evaluated

using simulations on a set of 250 initial portfolios, i.e., the training set.

TABLE 1 Parallel with Darwinian evolution.

Species evolution Genetic programming

Entity Strategy

DNA Abstract syntax tree

Breeding Crossover operator

Mutation Mutation operator

Survival Fitness selection, i.e., investment degree

1: population ← gen ramped half and

half(NPOP,min,max)

2: for strategy in population do

3: strategy.fitness ← simulate(strategy,

training instances)

4: end for

5: sortNonDominated(population)

6: assignCrowdingDistance(population)

7: while gen ≤ NGENdo

8: parents ← selection(population)

9: offsprings ← Ø

10: for candidate strategy in parents do

11: if random() ≤ CXPB then

12: mate ← sample(parents,1)

13: offspring1,offspring2 ← CX(candidate

strategy,mate)

14: offsprings ← offsprings ∪ {offspring1,

offspring2}

15: else if random() ≤ CXPB+MUTPBthen

16: mutant ← MUT(candidate strategy)

17: offsprings ← offsprings ∪ mutant

18: else

19: repro strategy ← copy(candidate strategy)

20: offsprings ← offsprings ∪ {repro strategy}

21: end if

22: end for

23: for new strategy in offsprings do

24: new strategy.fitness ← simulate

(new_strategy, training instances)

25: end for

26: sortNonDominated(offsprings)

27: assignCrowdingDistance(offsprings)

28: population ← selection(population

+ offsprings,NPOP)

29: end while

30: return population

Algorithm 1. Bi-objective Evolutionary Learning algorithm.

Evolutionary operators are applied on candidate strategies selected
with regards to a bi-objective function representing t he deviation
to the ideal investment degree and the liquidity risk. Recommitment
strategies are then selected according to a Pareto rank obtained after
assigning a crowding distance as performed in the NSGAII algorithm
proposed by Deb et al. (2000).

Once evolution reached the maximum number of generations
(NGEN), the best non-dominated population of recommitment
strategies is returned and then finally scored with a simulation on
a validation set of 1,000 initial portfolios. Naturally, both training
and validation set contain different portfolios. Only the results
on the validation set will be reported as it is done in classical
machine learning scheme to show generalization capabilities of the
resulting strategies.
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FIGURE 7

Simulation of private equity portfolios.

FIGURE 8

Upper-confidence bound objective.

4.4. Simulation and evaluation of
recommitment strategies

Recommitment strategies will be evaluated using simulation-
based learning relying on the synthetic cashflows described upstream.
Nonetheless, the nature of recommitment strategies requires mature
portfolios with existing investments. Therefore, we adopt the same
portfolio inception and simulation protocol defined in de Zwart et al.
(2012). Initial PE portfolios are constructed over a year by investing
uniformly into 16 randomly selected PE funds.

This set of initial portfolios represents the training set on which
recommitment strategies will be learnt. A simulation just consists
in recommitting some capital to new funds at every quarter for
all training portfolios to obtain statistical confidence regarding the
performance of the strategy. The average investment degree is then
returned once the end of the active recommitment period has been
reached (see Figure 7). At each period, the amount of capital is
computed using the recommitment strategy currently evaluated.
Once the recommitted capital has been determined, it is equally
divided and invested into 4 randomly selected funds.

Simulations ends when all investments have been exited which
necessarily occur after T = t2 − t1 recommitments, i.e., after
the active recommitment period. Nonetheless, the fitness of the
current strategy under evaluation is computed only for the active
recommitment period which is stable and not subject to undue
influence of the initial portfolio creation. Contrary to de Zwart
et al. (2012), we do not consider the average investment degree
as the only metric to measure the efficiency of a strategy. Driving
the investment degree as close as possible to the ideal one will
lead to situations in which some simulated portfolios will be
overinvested due to cashflow variability. This is the reason all
strategies should be evaluated in term of accuracy and dispersion
of the investment degrees. In Kieffer et al. (2021), a preliminary
investigation has considered a scalarization approach to combine
both metrics into a single objective function (see Figure 8). The
Upper-Confidence Bound (UCB) replaced the simplistic average
investment degree considered by de Zwart et al. (2012). The
objective drives only the upper bound of the 95% confidence
interval to the ideal investment degree. Note also that portfolios
exiting investments before the end of the active recommitment
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period due to ill-formed strategies are automatically penalized with
a constant K.

Although the previous scalarization approach provided
promising results, one may wonder if another strategy relying
rather on a bi-objective approach would be more suitable. Indeed,
investors and, more especially institutional investors, may have
a different level of acceptance to the liquidity risk. This is all
the more true as their portfolios are diversified with multi-class
assets that are more or less liquid. In this context, the liquidity
constraint described in de Zwart et al. (2012) could be modeled as
an additional objective which should be minimized. Indeed, both
opportunity cost and liquidity risk are two conflicting objectives. If
cash is missing, some more liquid assets could be sold to cope with
such a situation. Although this last solution should be tempered
and only occur when no valid alternative may be found, selling
liquid assets still remains less critical than becoming a defaulting
investor. This is the reason why this current work focuses on
two objectives, namely the deviation to the ideal investment
degree and the liquidity risk, to discover a set of non-dominated
recommitted strategies.

5. Numerical experiments

The experiments presented hereafter were carried out using the
Luxembourg’s supercomputer: Meluxina. The Python library DEAP
has been considered for the genetic programming implementation. A
distributed implementation relying on a master-slave model has been
put in place to evaluate each strategy during the training phase.

5.1. Setups

Table 2 represents the different atomic elements constituting the
future recommitment strategies. Note that the strategy n◦3 published
in de Zwart et al. (2012) has been embedded into the terminal set.
This is an additional advantage 5.2 of genetic programming as it can
embed and build on existing knowledge providing by experts.

Table 3 lists all simulation parameters for training and validation
which are aligned with the ones described in de Zwart et al. (2012).
Machine learning requires the use of two different sets of initial
portfolios to fairly measure the ability of the future recommitment
strategies to improve the investment degree in unseen situations.
Learning will be performed using the training portfolios while all
reported results will be provided on the validation portfolios.

We used the same simulation protocol and parameters as
described page 89 in de Zwart et al. (2012). We recommit into 4 funds
with synthetic cashflows. Recommitments are performed quarterly
during the active recommitment period which last 26 years. Active
strategies to select the best funds is out of the scope of our study.
Nonetheless, the rise of Environmental, Social, and Governance
(ESG) factors has been one of the major changes for investors in
private equity. ESG considerations have redesigned the standards of
due diligence and add new objectives on top of financial statements
and growth plans. From the regulatory point of view, the landscape
of ESG may seem uncertain and is part of the challenges faced by
private equity investors. ESG criteria are wide and depend strongly
on the underlying private equity firms and their application domains.
Rules and regulations fluctuate regularly from country to country and

TABLE 2 Operators and terminals.

Name Description

Operators + Add two inputs

– Substract two inputs

∗ Multiply two inputs

% Divide two inputs with protection

Min Minimum b.t.w two inputs

Max Maximum b.t.w two inputs

Terminals CCt Contributions/capital call at t

Dt Distributions at t

IDt Investment degree at t

Casht Remaining portfolio cash at t

NAVt Net asset value at t

errort Deviation to ideal IDt at t

DZ3 (t) De Zwart’s strategy no. 3 at t

UCt−24 Uncalled capital for commitments made
24 quarters ago

Ccommitt−24 Capital committed 24 quarters ago

TABLE 3 Evolutionary learning parameters.

Parameters Value

Runs 30

Generations 15

Population of strategies 1,000

Crossover operator/probability One point crossover/0.85

Mutation operator/probability Grow/0.1

Selection operator Binary tournament

Tree initialization Ramped half-and-half

Height limitation 5

evolve quite rapidly with the release of new studies. It is therefore
not trivial to evaluate them with a single criterion adding another
level of difficulties for investors who needs to deal with fuzziness
and conflicting objectives. Currently, there is no automated and
optimized solutions to help investors to maximize their allocation to
ESG. This is the reason why the selection of funds (Table 3) is based
on an artificial ESG scoring which has been computed with a specific
correlation to the Total Value Paid In (TVPI). Our objective was not
to design an ESG scoring mechanism which is a challenge on its own
but to enable future research to combine it with the recommitment
system proposed in this work. Consequently, we added to our
implementation a feature enabling the use of ESG scores.

Finally, Table 4 depicts the parameters considered for the genetic
programming implementation. The choice of these parameters has
not been obtained through parameter tuning but based on our
experience and empirical trials. We provide them for the sake of
reproducibility. The genetic programming is a stochastic search
approaches, 30 runs have been considered to achieve good statistical
confidence. The evolved population contains 1,000 initial and valid
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TABLE 4 Simulation parameters.

Parameters Training Validation

Cashflows frequency Quarterly Quarterly

Investment period 26 years 26 years

Funds per recommitment 4 4

Fund selection ESG score ESG score

Number of simulated portfolios(per evaluation) 250 1,000

Distributed evaluation True False

strategies generated with the ramped half-and-half algorithm which
is a standard in genetic programming. Note that each strategy stops
growing once the depth limits is reached in order to avoid the so-
called “bloating phenomenon” inherent to all genetic programming
approaches having variable-length genome, i.e., an abstract syntax
tree as genome representation. The crossover operator is applied
between two elite strategies, i.e., the fittest strategies obtained after
tournament selection. Finally, the mutation operator which should
inject diversity into the population has a low probability to guarantee
the convergence of the algorithm.

5.2. Results discussion

With respect to the parameter described in the previous section,
the recommitment strategies obtained for all runs have been
merged and a dominance operator have been applied to eliminated
dominated strategies. Figure 9 illustrates a Pareto front in which
dominated strategies in terms of investment degree and percentage
of simulated portfolios becoming overinvested have been removed.
On the y-axis, the first metric represents more precisely the average
maximum investment degree, i.e., the average maximum value
reached by each simulated portfolio during the active recommitment
period. On the x-axis, the second metric illustrates the percentage
of overinvested portfolios, i.e., portfolios in which additional capital
has been injected to satisfy capital calls. Both metrics are clearly
conflicting. Recommitment strategies leading to a high maximal
investment degree are more likely to yield situations in which
portfolios become overinvested. Nonetheless, one can notice that the
majority of the strategies generates less than 20% of overinvested
portfolios during simulation. The three first strategies represented by
the Pareto solutions (0.95; 0), (0.96; 0) and (0.97, 0.4) demonstrate
that alternatives leading to no or very few overinvestments are
possible as well. Above 0.97, the number of overinvested portfolios
steadily increases until reaching 20%. Any attempts to bring the
investment degree above 0.99 will result to a large proportion of
overinvested portfolios.

Contrary to Figure 9 which evaluate the percentage of
overinvested portfolios, Figure 10 depicts the additional capital
which has been injected to the overinvested portfolios. This capital
is compared relatively to the initial committed capital. Except the
two outliers that require re-injecting almost the same capital than
the initial one, most of the recommitment strategies lead to less
than 20% of overinvestment. The question is now for the investors
to find a trade-off and wonder whether the small increases of the

investment degree are worth the additional capital used to satisfy
capital calls.

These results should be nevertheless compared with the three
proposed strategies implemented in de Zwart et al. (2012) which are
defined as follows:

• DZ1 (t) = Dt

• DZ2 (t) = Dt + UCt− 24

• DZ3 (t) = 1
IDt

(Dt + UCt−24 )

DZ1 (t) only recommits the distributions received during the
current period t. DZ2 (t) enhances the first proposal by adding
the committed but uncalled capital for commitments realized 24
quarters ago. This recommitment strategy relies on the fact that
the uncalled capital for funds being in their divestment phase is
unlikely to be called and can be therefore recommitted. Finally,
the last recommitment strategy DZ3 (t) scales the second strategies
DZ2 (t) by the inverse of the current investment degree. This
factor controls the amplitude of recommitment which depends on
the current investment degree level. The authors also proposed
variants of DZ3 (t) taking a desired overcommitment value into
account and defined as follows: DZ3

OC (t) = 1+OCt
IDt

(Dt + UCt−24)

with OCt representing the desired overcommitment applied at each
period t contrary to the first three strategies in which only an
initial and unique overcommitment of 30% has been applied in
their simulations.

Figure 11 illustrates the average investment degrees obtained after
applying the three DZ strategies with regards to the data considered
in this work. We clearly observed the same trends reported by the
original authors. Indeed, the DZ3 (t) strategy outperforms clearly the
two other strategies DZ1 (t) and DZ2 (t). Besides, these two strategies
do not perform differently as observed in their paper. In fact, the
similarities with the original paper confirm the suitability of synthetic
cashflow generation.

Please note that we did not discard the first 3 years of the
portfolio life’s time as done in de Zwart et al. (2012) to observe
the influence of the initial overcommitment which clearly improves
the investment degree during the 1st year but finally drops and
converges to a theoretical value on the long term. All three strategies
have a pseudo-periodic regime which is essentially due to this initial
overcommitment. Once its effect vanished, one can observed a
depreciation of the investment degree which seems to reach a target
convergence value.

To counterbalance this problem, the variant DZ3
OC (t) allows

investors to overcommit at each period by adapting constantly the
overcommitment level. Although this is very appropriate for coping
with the depreciation effect observed with the first three strategies, a
new question arises: “Howmuch overcommitment should be applied
at each period?”.

Finally, the overcommitment applied at each period is difficult to
be interpreted relatively to initial committed capital.

5.3. Advantages of learning private equity
recommitment strategies

The approach developed in this work has the benefit to generate
new strategies built on top of the seminal work of de Zwart et al.
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FIGURE 9

Pareto set of recommitment strategies. Average maximum investment degree V.S. percentage of overinvested portfolios obtained after simulations.

FIGURE 10

Pareto set of recommitment strategies. Average maximum investment degree V.S. Overinvestment.

(2012). Instead of defining explicitly a static level of overcommitment
at each period, the recommitment strategies are generated and
optimized to maximize the investment degree while minimizing
the overall overcommitted capital. Figure 12 emphasis the difference
between overcommitments in de Zwart et al. (2012) and evolutionary
learning of recommitment strategies. The following curves represent
the average investment degree obtained during portfolios’ lifetime:

• DZ3(t) is the third de Zwart’s strategy
• DZ3

0.2 (t) is the variant with 20% of periodic overcommitment
• DZ3

0.5 (t) is the variant with 50% of periodic overcommitment
• RS1 (t) = (IDt × DZ3 (t))+min

(

Casht ,Dt + UCt−24
)

• RS2 (t) = Dt +min(Cash < uscore > t,DẐ3(t))

The two last strategies have been obtained in this work
and correspond to the points (0.96; 0.0) and (0.98; 0.33) in
the Pareto set displayed in Figure 10. Please note that both
contain in their respective formulation the last strategy of de
Zwart as terminal feature. Although, the strategy RS1 (t) does
not lead to any additional capital provided by investors, it
clearly outperforms all de Zwart’s variants relying on static
overcommitments on the long term. Interestingly, the strategy
RS2 (t) only differs from RS1 (t) at the beginning of the
portfolio lifetime. This is due to the initial overcommitment
of 30% which has been applied to each portfolio whatever the
recommitment strategy considered for fairness reason. RS2 (t)

does not seem to be impacted by the initial overcommitment
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FIGURE 11

Simulation of the recommitment strategies described in de de Zwart et al. (2012).

FIGURE 12

Static overcommitment vs. Dynamic learning.

while RS1 (t) clearly is. When the influence from the initial
portfolio formation period ends, both RS1 (t) and RS2 (t) become
equivalent strategies.

Finally, one can observe that de Zwart’s variants are dominated in
terms of Average maximum investment degree and overcommitment
in percentage of the initial capital (see Figure 13). This clearly shows
that the static overcommitment pacing does not reflect the additional
capital injected by investors during the portfolio’s lifetime. Despite a
50% overcommitment applied at each period,D3

0.5 (t) only represents
approximately 9% of the initial capital.

On the contrary, the evolution of the recommitment strategies
as described in this work provides a real insight on how much

capital should be really re-injected to portfolios to maintain a
target exposure.

With regards to the results obtained in this work,
further investigations will target multi-asset portfolios to
take advantage of different liquidity level and optimize
portfolios. Finally, this work was part of a larger project to
help investors including ESG considerations. Adding novel
criterions will definitely complicate recommitments which
should deal with even more objectives. We believe that the
automatic of evolution of recommitment strategies could
be of great help for investors to maximize their allocation
to ESG.
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FIGURE 13

Comparison between de Zwart’s variants and the obtained Pareto set.

6. Conclusion

Discovering efficient recommitment strategies is a real challenge
for LP investors who need to develop efficient recommitment
mechanisms in order to be kept exposed at a desired level.
Although PE has become very popular nowadays, very few academic
investigations have been performed to propose more efficient
alternatives to the existing recommitment strategies implemented
by LPs. In addition, as of today, very few investigations have been
conducted to propose an alternative to the ad-hoc rules currently
in place. They often rely on cashflow forecasting which consisting
in predicting next capital calls and distributions. Nonetheless, a
new methodology adopting a more pragmatical point of view has
emerged. Instead of forecasting data from past cashflows, dynamic
recommitment rules or strategies have been proposed in de Zwart
et al. (2012) and Oberli (2015). Although, these two contributions
offer a real alternative to classical recommitment scheme, they still
lack flexibility and could be optimized to provide better proximity
to the target exposure. Furthermore, they have been developed
using specific cashflow data and may be sub-optimal for different
market conditions.

In this work, we proposed to learn these recommitment
strategies automatically using a bio-inspired algorithm. Referred
to as “evolutionary learning”, a genetic programming algorithm
assemble recommitment strategies based on an abstract syntax
tree representation. This algorithm relies on Darwin’s Theory
of Evolution to mimic natural selection by yielding generation
after generation novel and promising strategies ensuring efficient
recommitment at each period. Using a bi-objective approach, a Pareto
set of recommitment strategies had been generated and compared
against the seminal work of de Zwart et al. (2012). Empirical results
obtained using intensive simulations have shown that the maximum
average investment degree can be greatly maximized while providing
different alternatives in terms of overcommitment related to the
initial capital. Contrary to the static overcommitment seen so far, the
strategies obtained by Evolution and validated through simulations

provide a real insight in terms of additional capital injected to
portfolios during their lifetime. Static overcommitments applied at
each period are quite difficult to measure in terms of initial capital
and does not reflect the real capital that is actually re-injected.

Further investigations will be performed with multi-asset
portfolios to take advantage of the different level of liquidity brought
by public market assets.
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