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Development and evaluation of a
java-based deep neural network
method for drug response
predictions

Beibei Huang, Lon W. R. Fong, Rajan Chaudhari† and

Shuxing Zhang*

Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of

Texas MD Anderson Cancer Center, Houston, TX, United States

Accurate prediction of drug response is a crucial step in personalized

medicine. Recently, deep learning techniques have been witnessed with

significant breakthroughs in a variety of areas including biomedical research and

chemogenomic applications. This motivated us to develop a novel deep learning

platform to accurately and reliably predict the response of cancer cells to di�erent

drug treatments. In the present work, we describe a Java-based implementation

of deep neural network method, termed JavaDL, to predict cancer responses to

drugs solely based on their chemical features. To this end, we devised a novel

cost function and added a regularization term which suppresses overfitting. We

also adopted an early stopping strategy to further reduce overfit and improve the

accuracy and robustness of our models. To evaluate our method, we compared

with several popular machine learning and deep neural network programs and

observed that JavaDL either outperformed those methods in model building or

obtained comparable predictions. Finally, JavaDL was employed to predict drug

responses of several aggressive breast cancer cell lines, and the results showed

robust and accurate predictions with r
2 as high as 0.81.

KEYWORDS

artificial intelligence (AI), deep learning, deep neural network, quantitative structure

activity relationship (QSAR), multilayer neural network (MNN), triple-negative breast
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1. Introduction

Over the past ten years, many machine-learning methods have been developed to tackle

the problem of identifying drugs that would work best for a given patient population

(Murphy, 2011; Bizzego et al., 2019; Freedman, 2019; Steventon et al., 2019; Vamathevan

et al., 2019; Woo, 2019). Recently a new branch of machine learning known as deep learning

has been gaining significant attention (Tan et al., 2016a; Lee et al., 2019; You et al., 2019;

Zeng et al., 2019; Adam et al., 2020; Baskin, 2020). In particular, the resurgence of neural

networks took place around 2005 when more efficient training algorithms were developed

and improvements in overfitting were made. This has led to the success of deep neural

networks with many applications to biomedical research such as protein structure prediction

and drug repositioning (Reddy et al., 2014; Heffernan et al., 2015; Tan et al., 2016b; Carpenter

and Huang, 2017; Chaudhari et al., 2017; Smalley, 2017; Tsao et al., 2017; Evans et al., 2018;

Lo et al., 2018; Robichaux et al., 2018; Segler et al., 2018; Senior et al., 2020; Humphreys et al.,

2021; Jumper et al., 2021). Moreover, deep learning has been employed to diagnose diseases

based on medical images (Acharya et al., 2018; Du et al., 2018; Jang et al., 2018; Gurovich

et al., 2019; Indraswari et al., 2019; Jeyaraj and Nadar, 2019; Ma et al., 2019).
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In the canonical configuration, a normal deep neural network

(DNN) consists of an input layer where an input signal is fed, an

output layer where predictions are generated, and several hidden

(middle) layers which capture features during the training (Kang

et al., 2018). DNN is also considered a type of representation

learning, in that it allows a machine to be fed raw data and

automatically discover the representations needed for detection.

During the training process, the raw data in the form of certain

signals are fed into the input layer and then transported from one

hidden layer to another, in each one leaving a trail forming a certain

increasingly abstractive pattern. For instance, in image processing

the raw data are arrays of pixel values, while in QSAR modeling

it may be descriptors including a variety of physical chemical

properties of compounds. Such applications involve a large amount

of input data, exposing the drawbacks of previous multilayer neural

network (MNN) programs, which only accept limited numbers of

input descriptors and have limited numbers of hidden layers and

neurons in a hidden layer. Due to these limitations, networks with

only a single hidden layer were largely abandoned (Winkler and Le,

2017).

One of the major issues with artificial neural networks is

that the models are significantly complex, since neural networks

usually have large numbers of layers containing many neurons.

The number of connections in these models is astronomical,

easily reaching the millions, and overfitting thus becomes very

common (Gawehn et al., 2016). In general, there is a direct

trade-off between overfitting and model complexity. Inadequately

complex models may not be powerful enough to capture all the

information necessary to solve a problem, but overly complex

ones (especially with a limited amount of data) tend to run into

the risk of overfitting (Gawehn et al., 2016). Besides overfitting,

another challenge in drug response prediction comes from the

activity cliff that is formed when a pair of structurally similar

molecules display a large difference in potency (Bajorath, 2017;

Watanabe et al., 2017). From the perspective of chemical structures,

the activity cliff indicates a lack of assayed compounds in the

surrounding space. This can also lead to poorly generalized models

and overfitting. Furthermore, the distance between compounds is

defined based on their relationship to neighboring compounds.

Hence almost all current published prediction models are flawed

to some degree due to the limitations that arise from one or more

of the above problems.

In the present study, we aim to develop a novel method and

build robust models that accurately predict drug response in cancer

cells. To this end, we designed an approach which employs deep

learning algorithms for drug activity prediction. Our software

package, termed JavaDL, integrates several of the latest improved

techniques, including regularization, dropout, and early stopping,

to mitigate the issues caused by overfitting and activity cliffs. In

order to assess its robustness, we used two very different datasets:

a Caco-2 dataset for permeability prediction and a hERG dataset

for cardiovascular toxicity prediction. We also evaluated the ability

and robustness of JavaDL to perform big data analysis using the

Merck Molecular Activity Challenge dataset from Kaggle. Finally,

our software was employed to predict the drug response of cancer

cells using data we recently curated and experimentally measured.

The results show that JavaDL could obtain significantly improved

prediction and have broad applicability in a variety of datasets as

well as a high capability to handle big data problems.

2. Methods

2.1. Dataset

For model building and prediction evaluation, we compared

JavaDLwith several published studies using the exact same datasets.

The first dataset was curated by our group and it has been

used to build Caco-2 permeability prediction models with kNN

and SVM (Du-Cuny et al., 2009; Smith et al., 2018). The whole

dataset contains 174 compounds with 334 descriptors calculated

using MOE. Another dataset contains hERG blockers with their

corresponding known hERG inhibition activity (pIC50) obtained

from previous publications (Du-Cuny et al., 2011). This dataset

includes 639 hERG active and inactive compounds. Similarly,

MOE was used to calculate the molecular descriptors which were

normalized to avoid disproportional weighting for both datasets

(Du-Cuny et al., 2011). In addition, to evaluate the ability of

JavaDL to handle big data, we obtained a dataset for the Merck

Molecular Activity Challenge on Kaggle. The original training data

set contained 1,569 compounds with 4,505 descriptors, which after

washing shrank to 1,983 descriptors.1 Finally, we applied JavaDL to

predict the TNBC cell response to drugs. The experimental data

of cancer cell response to drugs were collected from the MIPE

project at the National Center for Advancing Translational Science

(NCATS)2 and our own laboratory’s data. We focused on triple-

negative breast cancer (TNBC) due to our own research interest,

but the approach can be easily applied to other cancer cell lines or

even other diseases. In particular, we selected four breast cancer cell

lines, HCC-1937, MDA-MB-436, MDA-MB-231, and MDA-MB-

453, representing four different TNBC molecular subtypes. The

dataset contains 274 compounds used in all four cell lines. Each

compound is described by 205 molecular descriptors and four half

maximal activity (log) concentration (LAC50) values (one for each

cell line). Although internal cross validation is generally considered

sufficient to justify model predictive power (Tropsha et al., 2003;

Zhang et al., 2006a), many researchers have argued that external

validation is crucial. In this study compounds in our datasets are

divided into training and test sets via a rational approach based on

the Sphere Exclusion algorithm (Golbraikh et al., 2003; Zhang et al.,

2006b).

2.2. Techniques to address challenges in
DNN

2.2.1. Activation function
For our program, we essentially adopted a backpropagation

algorithm to train the deep neural network. Based on our

experience and other reports (Hornik, 1991; Maggiora, 2006;

Hinton, 2014; Ma et al., 2015; Angermueller et al., 2016;

1 https://www.kaggle.com/c/MerckActivity

2 https://tripod.nih.gov/matrix-client/
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FIGURE 1

Activation function based on the Tanh function tanh(x) and its

derivative tanh’(x).

Gawehn et al., 2016), we included five total layers for our

deep neural networks, with three hidden layers. Assuming five

nodes in the input layer and one node in the output layer,

three hidden layers each containing 20 hidden nodes makes the

total number of variables (weight variables) 920. In contrast to

frequently used activation functions in previous studies (Ma et al.,

2015), on each hidden node we adopted an activation function

tanh(x) =
e2x−1
e2x+1

(Figure 1), with which one of the advantages

is to avoid bias in the gradient during training. For the loss

function we chose mean squared error. In the backpropagation

process we employed the stochastic gradient descent algorithm

for optimization. Additionally, JavaDL has been implemented in

a way to deal with data featuring different scales and complexity.

For instance, to build a model from a limited dataset, the five-

layer structure with each layer containing 20 neurons is sufficient.

However, for large datasets such as those in the Merck Molecular

Activity Challenge competition, JavaDL can grow accordingly the

number of layers and neurons with corresponding increase of the

connections between neighboring layers.

2.2.2. Regularization
To address the overfitting issue, we adopted a common

regularization technique: addition of a regularization term to the

cost function. It is based on the relation between the regularized

overall squared-error cost function and the correlation coefficient

q2. Given a training set of m examples, the overall squared-error

cost function J(W, λ) is considered below:

J (W, λ) =
1

m

∑m

i=1

∥

∥hW
(

xi
)

− yi
∥

∥

2
+

λ

2

∑nl−1

n=1

∑Sl

i=1

∑Sl+1

j=1

(

W l
ij

)2
(1)

where nl denotes the number of layers in the network. Sl
represents the number of nodes on lay l, andW l

ij denotes the weight

of the connection between node i on lay l and node j on lay l + 1.

The first term is an average sum-of-squares error. For simplicity, we

neglect the bias term, but it can be easily taken into account. The

second term is the weight decay term, which suppresses overfitting

via tuning the value of λ to decrease the magnitude of the weights.

The method of minimizing the cost function by searching for

the optimal value of λ is introduced in Burden and Winkler

(2008). This method, called Bayesian Regularized Neural Networks,

involves incorporating Bayes’ theorem into the regularization

scheme. It has been frequently used in current research.

We defined our own cost function by replacing the average

sum-of-squares error with – q2

q2 = 1−

∑m
i=1

∥

∥hW
(

xi
)

− yi
∥

∥

2

∑m
i=1

∥

∥

∥
yi − y

∥

∥

∥

2
(2)

where y is the average actual activity of the training set. The relation

in equation 3 guarantees the consistency between the results from

the minimization of J and the maximization of q2; therefore we

consider only the minimization of cost J(W, λ) hereafter.

J(W, λ)∞(1− q2)

∑m
i=1

∥

∥

∥
yi − y

∥

∥

∥

2

2m
(3)

2.2.3. Dropout and early stopping
It has been suggested to use at least two hidden layers with a

minimum of 250 neurons in each layer (Ma et al., 2015). Since our

DNNs have a large number of layers containing many neurons,

the increasing number of connections between these neurons

makes the corresponding Hessian matrix in the backpropagation

process increase complexity by O(N2), where N is the layer size,

and the number of variables in these models can reach into the

millions easily. To improve efficiency, JavaDL adopts a process

of randomly “dropping out” some neurons in the hidden layers

during the training process, which involves temporarily removing

the randomly selected neurons from the network, along with all

their incoming and outgoing connections (Srivastava et al., 2014).

This strategy reduces the complexity of JavaDL’s backpropagation

computation and ameliorates overfitting as well. Several other

methods have also been used to implement the early stopping

strategy in JavaDL. The default early stopping criterion of JavaDL

is based on the evaluation of the cost function value on a test set.

2.3. Implementation of JavaDL

2.3.1. The overall framework
The overall framework of our system consists of four steps

as illustrated in Figure 2. The first step is to curate compound

structures and their corresponding bioactivities from literature and

other online sources. In the second step we calculate the descriptors

of compounds with MOE3 and CDK.4 The third step is to clean

the data as described below, and in the final step the data is used

as input to JavaDL to train the program and build models. We

3 https://www.chemcomp.com/Products.htm

4 https://cdk.github.io/
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FIGURE 2

The overall framework of JavaDL including data processing and DNN implementation.

chose XML as the format for parameter input to provide extra

flexibility for the use of the program: since it is verbose, self-

describing and extendable, it can be easily incorporated in other

applications. Our software was developed using DL4J, an open-

source, distributed deep-learning library. For easy-to-access and

easy-to-use, the software package is made available online along

with an instruction manual (https://www.imdlab.net/JavaDL/) for

download upon request.

2.3.2. Data cleaning
Online or published data are rich but often “dirty,” and thus

generally need further cleaning and curation. Detection of true

outliers is of particular importance; therefore, outlier separation

from the main data is included in the data-washing step. The

premise here is that similar structures have similar biological

activity and that the multidimensional response surface to densely

sampled data follows a normal distribution (Maggiora, 2006; Husby

et al., 2015). Therefore, we adopted the Pauta criterion to detect

abnormal activity-value points, defining a compound with activity

value over three standard deviations (3σ) from the mean as an

outlier. However, to be statistically significant, the number of

compounds similar to the outlier in the descriptor space should be

more than 10.

Currently over 5,000 molecular descriptors have been reported

(Xue et al., 2004; Ballabio et al., 2009), thus requiring selection of

the most relevant and independent descriptors that can represent

specific properties of the chemical entities, with smaller numbers

of descriptors preferred. Principal components analysis (PCA)

has been frequently employed to reduce the dimension of the

descriptor matrix (Chan Phooi M’ng and Mehralizadeh, 2016;

Zhang et al., 2018). Our initial implementation was based on PCA:

given a descriptor matrix Mm×n =
(

aT1 , a
T
2 , a

T
3 · · · aTn

)

, in which n

denotes the number of compounds and aTi represents the vector

containing m descriptors; the algorithm is then described in the

following steps:

Step 1. Calculate the mean of each column ai =
1
m

∑m
j=1 aij and

substract the mean (ã1, ã2, ã3 · · · ãn );

Step 2. Calculate the covariance matrix;

Step 3. Calculate the eigenvectors and eigenvalues of the

covariance matrix Mcov, then order them by eigenvalues from

highest to lowest;

Step 4. Select P important eigenvectors from the highest

P eigenvalues to compose a feature matrix Mfeature,n×p =
(

v1, v2, · · · vp
)

;

Step 5. With the new feature matrix, we derive a new low-

dimension matrix via MT
feature,n×p

×MT
m×n for model building.

However, during the process, the challenge was that the

descriptor covariance is too high and P is difficult to select. To

overcome this problem, we implemented a simple workaround:

instead of considering the covariance of descriptors between

two compounds, we considered the correlation between two

descriptors. In the descriptor matrix Mm×n =
(

b1, b2 · · · bn
)

,

bi represents the ith descriptor vector. We assume if there

is a high correlation between descriptor vectors bi and

bj, they are not considered orthogonal to each other, since

either alone carries enough information to distinguish signals

during the training process. Our final implementation with

a simple algorithm to exclude the redundant descriptors is

as follows:

1. For i= 1 to n

2. For j= i to n
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FIGURE 3

The overall flowchart of JavaDL Algorithm.

3. If corr(bi, bj) > threshold

4. Delete column j fromM

5. End if

6. End for

where corr(bi, bj) is the function calculating the value of

correlation between bi and bj, and “threshold” denotes the tolerance

value for the correlation coefficient. Equation 2 is used to evaluate

the correlation directly. This is much more efficient and effective.

2.3.3. Deep learning implementation
Our JavaDL employs deep layer neural networks as the

primary training engine. A variable selection procedure was also

implemented as an option, in particular for small datasets, where

for each predefined number of variables it seeks to optimize

the models with the highest correlation coefficient (q2) (equation

2) for both internal training set and external test set. Figure 3

shows the flowchart of JavaDL training process, in which the

backpropagation algorithm is utilized. The most time-consuming

step in this algorithm is the calculation of the stochastic gradient

descent (SGD) in each layer and the weight (neuron connections)

adjustment to minimize the errors derived from our overall

squared-error cost function J(W,λ) (equation 1) in each iteration.

In other words, through the backpropagation algorithm, JavaDL

knows how to reduce the error from the cost function, rather

than from blindly wandering in space or being guided by a scalar

quantity such as the random walk in the Metropolis algorithm.

Generally, the time complexity is determined by the number of

descriptors chosen and the structure of the neural network. Let k

denote the number of descriptors picked from K total descriptors,

m, n the number of layers and neurons, respectively, in each layer

(assume each layer contains the same number of neurons), and d

the size of the mini-batch representing the minimum iteration time

in the training process, the time complexity is then O(Ck
Kmnd).

3. Results and discussion

3.1. Comparison with other machine
learning programs

Before training, we first performed data wash as described

previously and then divided the data into two sets using the

Sphere Exclusion (SE) algorithm (Golbraikh et al., 2003; Zhang

et al., 2006b). For the Caco-2 dataset, one is for training with

80 compounds and the other is for testing with 20 compounds.

It should be noted that the division process is executed each

time after changing the descriptors during iterations. The same

procedure was followed for the hERG dataset, with 133 compounds

for training and 14 compounds for testing. Results from JavaDL

are compared with those obtained by kNN, SVM, Random Forest,

XGBoost, and CNN (1D) methods as shown in Tables 1, 2. Also as

illustrated in Figure 4 our models show high correlation between

the actual and predicted activities for the test sets. The statistical

parameters used to assess models, including q2 and r2, demonstrate

the comparable performance of JavaDL to other machine learning

algorithms, particularly when datasets are small. For the first three

MLmethods list in Tables 1, 2, we directly adopted sklearn libraries,

such as sklearn.neighbors.KNeighborsRegressor, sklearn.svm.SVR

and sklearn.ensemble.RandomForestRegressor, for the regression

tasks. The default optimized parameters were used unless otherwise

stated. The architectures and parameters of CNN and our own

JavaDL are described in the Supporting Information.

We also examined our JavaDL program using a large data set

from the Merck Molecular Activity Challenge as described above.

Since this would make the training computationally intensive, we

have implemented a parallel computing function for JavaDL so that

it can efficiently handle big data with a large number of compounds

and high dimensional space (number of descriptors). With 250

compounds in the test set, our model achieved robust predictions

with q2 = 0.99 and r2 = 0.65. These results demonstrate significant

superiority to all publishedmodels released by theMerckMolecular

Activity Challenge where r2 was below 0.49. Our models and

predictions are shown in Figure 5.

3.2. Predicting cancer response to drugs

As discussed, it is critical to predict individual cancer cell

response to different drugs. Such information can provide insight

into what drugs can be used to treat what type of cancer with

the highest sensitivity. With TNBC screening data from NCATS

and our own experiments, we performed data pre-processing, and

the total number of compounds for each of the four TNBC cell

lines was reduced to 186, 163, 146, and 172, respectively. In each

group we randomly selected 40 compounds as the external test

set, and set q2
threshold

= 0.60 and r2
threshold

= 0.55 as criteria to

determine if a model is acceptable. Since the data is sufficiently

large and JavaDL can handle big data efficiently, we took into
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TABLE 1 Method comparison with the Caco-2 dataset.

Caco-2 KNN SVM Random Forest XGBoost CNN JavaDL

Model q2 r2 q2 r2 q2 r2 q2 r2 q2 r2 q2 r2

1 0.54 0.78 0.50 0.80 0.85 0.61 0.83 0.65 0.70 0.81 0.80 0.78

2 0.54 0.78 0.50 0.80 0.73 0.50 0.83 0.55 0.70 0.80 0.80 0.78

3 0.46 0.77 0.50 0.80 0.85 0.59 0.90 0.70 0.70 0.80 0.80 0.73

4 0.51 0.76 0.47 0.79 0.86 0.67 0.83 0.60 0.77 0.81 0.70 0.77

5 0.48 0.77 0.47 0.79 0.85 0.23 0.83 0.65 0.65 0.81 0.65 0.75

6 0.51 0.76 0.47 0.79 0.86 0.30 0.75 0.55 0.70 0.82 0.70 0.72

7 0.51 0.76 0.43 0.76 0.89 0.65 0.91 0.80 0.40 0.65 0.69 0.80

8 0.42 0.72 0.43 0.76 0.85 0.60 0.85 0.80 0.77 0.81 0.62 0.75

9 0.42 0.72 0.43 0.76 0.84 0.43 0.88 0.65 0.89 0.80 0.65 0.60

TABLE 2 Method comparison with the hERG dataset.

hERG KNN SVM Random XGBoost CNN JavaDL

Model q2 r2 q2 r2 q2 r2 q2 r2 q2 r2 q2 r2

1 0.48 0.70 0.41 0.87 0.81 0.46 0.80 0.78 0.67 0.80 0.75 0.72

2 0.48 0.70 0.43 0.87 0.82 0.37 0.77 0.58 0.72 0.80 0.80 0.83

3 0.45 0.68 0.43 0.87 0.82 0.31 0.88 0.73 0.61 0.38 0.80 0.83

4 0.45 0.68 0.46 0.82 0.81 0.18 0.90 0.77 0.77 0.68 0.80 0.83

5 0.45 0.68 0.46 0.82 0.84 0.81 0.85 0.65 0.73 0.80 0.90 0.67

6 0.50 0.66 0.45 0.81 0.80 0.65 0.80 0.72 0.72 0.80 0.90 0.73

7 0.50 0.66 0.52 0.81 0.81 0.55 0.79 0.80 0.73 0.62 0.95 0.63

8 0.50 0.66 0.52 0.81 0.83 0.67 0.82 0.75 0.70 0.59 0.90 0.73

9 0.48 0.65 0.44 0.81 0.80 0.47 0.85 0.80 0.62 0.80 0.93 0.63

10 0.48 0.65 0.44 0.81 0.76 0.55 0.80 0.78 0.73 0.80 0.90 0.67

account all descriptors of the compounds for model building and

final predictions. The measured and predicted activities with our

best models are shown in Figure 6. The curated datasets for four

TNBC cell lines with training source code are available at https://

www.imdlab.net/JavaDL/.

3.3. Discussion

In this study, we present a new deep-learning method for

predicting the efficacy of small-molecule anti-cancer therapeutic

agents. The novelty of this implementation lies in multiple aspects.

The first is that prediction of drug response has been challenging

due to the intrinsic complexity of cancer cells and various unknown

cell survival mechanisms (Hu et al., 2016; Tan and Zhang, 2016);

DNN is exactly designed to handle this type of “black-box”

problems through a continuous self-learning process. Second,

we have implemented a variety of strategies to address several

frequent issues including data cleaning, overfitting, outliers, and

program complexity. Third, we designed a new scoring activation

function and cost function. Fourth, JavaDL is able to predict the

response of cancer cells to drugs using only structural information

from compounds, and it can be easily expanded to include cell

gene profile change upon drug treatment for predictions. Finally,

DNN is combined with variable selection in this parallelized

implementation and we could identify specific descriptors that are

critical for activities. Such information is tremendously helpful to

guide actual rational drug design.

Using two very well studied datasets (hERG and Caco-2)

as benchmarks, we obtained robust results demonstrating the

superiority of our multiple-layer DNN techniques to several

machine learning techniques such as kNN and SVM. As expected,

its predictive capability is comparable to some popular methods

including Random Forest, XGBoost, and CNN. Of note, such

observations are not only related tomodelingmethods and training

parameters, but also highly dependent on the datasets used. In

addition, our models could effectively capture the abstract relation

between the structural features of chemical compounds and their

activities. Also as shown, JavaDL was successfully employed to

predict the response of aggressive TNBC cell lines to different

drugs, which has been a challenge in personalized cancer therapy.

Moreover, this indicates that JavaDL may potentially be used as a

general screening tool to predict activities of novel compounds in

different cancer cells, and thus helping to lower costs of anticancer
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FIGURE 4

Predicted vs. actual activities obtained for test sets. (A) Prediction of Caco-2 permeability using JavaDL with five descriptors: BCUT_ PEOE_3,

GCUT_SLOGP_1, mr, a_base, vsa_base. (B) Prediction of hERG activity with five descriptors: GCUT_PEOE_3, reactive, SlogP_V SA1, SlogP_V SA9,

and vdw_area.

FIGURE 5

Predicted vs. actual biological activities for the Merck Molecular Activity Challenge big data set in Kaggle competition. The model was built using

1,569 compounds with 4,505 descriptors. Among them 250 compounds are picked out randomly for test predictions, and the best model derived (A)

q2 = 0.99, shown in the left panel, and (B) r2 = 0.65, shown in the right panel.

therapeutics screening. It is mostly worth to mention that, as one of

the signified features of deep learning, our prediction of the Merck

Molecular Activity Challenge dataset demonstrated the capacity of

JavaDL to handle big data problems with a large number of points

in a high dimensional space.

As mentioned, the variable selection feature in this

implementation is particularly useful for rational molecular design,

and identification of selected descriptors, when combined with

chemical structures, can be employed to interpret the molecular

structure-activity relationship and guide lead optimization in

drug development. For instance, the descriptors selected in the

Caco-2 permeability model are PEOE Charge BCUT, GCUT logP,

molecular refractivity, number of basic atoms, and Van der Waals

basic surface area. It makes sense that all of these properties, in
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FIGURE 6

Predicted vs. actual activities (IC50) of drugs in TNBC, including (A) HCC-1937, (B) MDA-MB-231, (C) MDA-MB-453, and (D) MDA-MB-436. The

red-circled compound 3-Methyladenine as an outlier was not accurately predicted. Further analysis shows that no compound in the training set is

similar enough to 3-Methyladenine while there are always similar compounds to the accurately predicted ones (blue-circled Afatinib and UNC-0638).

FIGURE 7

From left to right is 3-Methyladenine, Afatinib and UNC-0638, respectively. 3-Methyladenine was not accurately predicted while the other two

compounds obtained accurate prediction of their activity in TNBC.

particular logP, charges, and molecular refractivity, are highly

correlated with the permeability of the compounds. While GCUT

logP contributes positively to permeability, the other four have

negative impact on permeability. Such relationship is demonstrated

by the comparison of quinidine (Caco-2 P= −4.69) and ranitidine

(Caco-2 P = −6.31) where quinidine has much higher GCUT logP

while the other four properties have lower values than ranitidine.

Similar observations have been obtained in the case of hERG and

TNBC studies.

Some cheminformatics practitioners contend that machine

learning has not fulfilled its promise in predicting biological

activity (Golbraikh and Tropsha, 2002; Kovalishyn et al., 2018).
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Poor predictivity is a problem in most models, and there are

a variety of possible reasons for this including the incorrect

assignment of molecular properties, chance correlation, rough

response surfaces, and overtraining (Robichaux et al., 2018; Jumper

et al., 2021). With JavaDL we obtained significant improvement

of prediction over other machine-learning models, with most of

the prediction errors below one unit, which is usually acceptable

in drug design and development. For a few compounds our

prediction is not ideal. As shown in Figure 6C, the compound 3-

methyladenine (structure shown in Figure 7) is identified as an

outlier with the worst prediction in MDA-MB-453 cell lines. To

elucidate the reason, we calculate the similarity of 3-methyladenine

to other compounds in the training dataset based on their

Euclidean distance. We found that the distance to the most similar

compound (theobromine) is SD3−methyladenine = 1.49. Similarly,

we randomly selected two compounds (afatinib and UNC-0638

shown in Figure 7) that were accurately predicted (Figure 6C) and

computed their corresponding Euclidean distance to the most

similar compounds. We obtained SDafatinib = 0.68 and SDUNC−0638

= 0.80, respectively. Using the Tanimoto Coefficient (TC), we

observed the similar trend: for 3-methyladenine the highest TC

= 0.40 (to theobromine); for afatinib and UNC-0638, TC =

0.61 (to pelitinib) and TC = 0.50 (to XL-647), respectively. This

indicates that when there are similar compounds in the training

set, the prediction is relatively accurate, in agreement with the

general principle of QSAR that similar structures tend to have

similar activities.

Our DNN-based JavaDL is not limited to drug response

predictions; rather it can be very easily used for studies of

large genomic and bioinformatics data to predict gene-disease

association, identify biomarkers with whole genome profiling, and

develop treatment algorithms based on patient response to drugs.

Our promising results shown here suggest that JavaDL can be used

as a general tool for the discovery and design of biologically active

agents as well as for many other types of biomedical research.

4. Availability

The program is freely available at https://www.imdlab.net/

JavaDL/.
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