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It is well-known that Artificial Intelligence (AI), and in particular Machine Learning

(ML), is not e�ective without good data preparation, as also pointed out by the

recent wave of data-centric AI. Data preparation is the process of gathering,

transforming and cleaning raw data prior to processing and analysis. Since

nowadays data often reside in distributed and heterogeneous data sources, the

first activity of data preparation requires collecting data from suitable data sources

and data services, often distributed and heterogeneous. It is thus essential that

providers describe their data services in a way to make them compliant with

the FAIR guiding principles, i.e., make them automatically Findable, Accessible,

Interoperable, and Reusable (FAIR). The notion of data abstraction has been

introduced exactly to meet this need. Abstraction is a kind of reverse engineering

task that automatically provides a semantic characterization of a data servicemade

available by a provider. The goal of this paper is to review the results obtained

so far in data abstraction, by presenting the formal framework for its definition,

reporting about the decidability and complexity of the main theoretical problems

concerning abstraction, and discuss open issues and interesting directions for

future research.

KEYWORDS
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preparation

1. Introduction

Despite the increasing centrality of data in AI, the way in which AI deals with data has

remained virtually unchanged since the dawn of the discipline. This has to be contrasted

with the well-known fact that Artificial Intelligence (AI), and in particular Machine Learning

(ML), is not effective without good data preparation, as also pointed out by the recent

wave of data-centric AI. The term “data centric” refers to an architecture where data is the

primary and permanent asset. So, data preparation precedes the implementation of any given

machine learning task, and can potentially support many of such tasks relying on the same

domain. More specifically, data preparation is the process of gathering, transforming and

cleaning raw data prior to processing and analysis. It is therefore regarded as an important

step in any data engineering and data science projects, includingmachine learning, involving

tasks such as understanding, collecting and reformatting data, aggregating, integrating,

combining and enriching raw source data and making modifications and corrections in

order to meet quality standards.

The first activity of data preparation requires collecting data from suitable data sources

and data services, often distributed and heterogeneous. In the era of data as driving asset

both for the private and public domain, the availability of services providing data, also called

data services, is indeed growing incredibly fast. Thus, on one hand, more and more data

services are available, on the other hand, more and more AI tasks and applications rely

on data services. This scenario opens two crucial issues for data-centric AI. First, from a

consumer point of view, how to find the “right” data, i.e., data which properly respond to

an information need? Second, from a provider point of view, how to release FAIR-compliant

data services, i.e., services automatically Findable, Accessible, Interoperable, and Reusable
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(FAIR)? An effective answer to the former question is given by

exploiting the state of the art technology for answering queries over

data integration systems, which stems from more than thirty years

of research. As for the second question, an answer is given by the

results on a relatively new service of data integration systems, called

abstraction. In order to elaborate more on both these answers, let us

first make a step back to data integration.

Data integration is the problem of providing a unified and

reconciled view of the data stored in a set of autonomous and

heterogeneous sources. The theoretical works on data integration

systems have advocated a three-layer architecture comprising the

data sources, which in our setting are the output of the data services,

the global schema, which is a unified shared conceptualization of the

domain of interest, and the mapping between the sources and the

global schema. Formally, a data integration system is a triple J =

〈G,S,M〉, where G is the global schema, S is the source schema and

M is the mapping, i.e., a set of logical assertions describing how

the data at the sources relate to the elements of the global schema.

Then, intuitively, given a set of data sources D, J represents all the

(possibly incomplete) databases that are instances of G satisfying

M w.r.t. D.

Once data services have been integrated by means of a data

integration system specified through a triple J = 〈G,S,M〉, in

order to find the “right data,” a data service consumer can rely

on query answering. Specifically, by unambiguously expressing an

information need as a query over the shared vocabulary of G, he

can get the answers that “best correspond” to his need without

even having to know the relevant data services. In particular, in

most approaches, such answers have been identified as certain

answers, i.e. answers to qG that would be returned by every database

represented by J given a set of data sources D. Also, typically, such

answers are computed by first reformulating qG in terms of a query

qS and then by evaluating qS over D. Conversely, in order to make

a data service FAIR-compliant, a provider can rely on abstraction

over J. Specifically, given a data service originally expressed as a

query over a set of data sources, he can get a query over the shared

vocabulary of G, that unambiguously describes the data service

content, thus making it both accessible, interoperable and reusable.

Concretely, given a query qS over the data sources, he would get a

query qG over the global schema whose answers “best correspond”

to the data service. Obviously, also for abstraction, the meaning of

“best correspond” has to be made precise. Ideally, the query qG is

the one whose certain answers are exactly the answers of qS, for

every possible source database. Such a query qG is called perfect

J-abstraction of qS.

We next use an example for informally introducing and

illustrating the main notions related to abstraction. In the example,

we focus on queries that are conjunctions of atoms, called

conjunctive queries (CQ), and unions thereof, called unions of

conjunctive queries (UCQ), and we assume that the evaluation of

a query expressed over the global schema is based on the certain

answer semantics.

Example 1. Let J = 〈G,S,M〉 be a data integration system

where the elements of the source schema S are the predicates (with

associated arity) {s1/1, s2/2, s3/1, s4/1, s5/2}, the elements of the

global schema G are {g1/2, g2/1, g3/2, g4/2, g5/1}, and M contains

the following assertions (where the free variables are implicitly

universally quantified):

m1 : s1(x) → ∃y.g1(x, y)

m2 : s2(x, y) → g1(x, y)

m3 : s3(x) ∧ s4(x) → g2(x)

m4 : s3(x) ∧ s2(x, y) → g3(x, y)

m5 : ∃z.s5(y, z) ∧ s2(x, y) → g3(x, y)

m6 : s5(x, y) → g4(x, y)

m7 : s1(x) ∧ s4(x) → g5(x)

Consider the query q1
S
= {x, y | s2(x, y)}. It is easy to see that, for

every database D, the set of certain answers of q1
G
= {x, y | g1(x, y)}

coincides with the set of answers of q1
S
w.r.t. D. It follows that the CQ

q1
G
= {x, y | g1(x, y)} is a perfect J-abstraction of q1

S
.

Consider the query q2
S
= {x | ∃y.s2(x, y)}. A natural candidate

for the perfect J-abstraction of q2
S
is q2

G
= {x | ∃y.g1(x, y)}. Note,

however, that the certain answers to q2
G
include tuples in s1 that

may not belong to s2, and therefore q2
G

is not even a sound J-

abstraction of q2
S
(i.e., it does not retrieve only tuples of q2

S
). Indeed,

it can be shown that no UCQ exists that is a perfect J-abstraction

of q2
S
. However, the query asking for those x such that g1(x, y) is

known to be true, i.e., holds in every model of J, cannot exploit

mapping m1, and therefore avoids retrieving tuples from s1. It follows

that such query, which is not expressible as a UCQ, is a perfect J-

abstraction of q2
S
. Consider the query q3

S
= {x | s1(x)}. Again,

the natural candidate for the perfect J-abstraction of q3
S
is clearly

q2
G
= {x | ∃y.g1(x, y)}. However, because of m2, the certain answers

to q2
G
also include the values in the first component of s2, and this

means that q2
G
is not a sound J-abstraction of q3

S
, although it is

a complete one (i.e., it retrieves all tuples of q3
S
). Another possible

candidate is the query q3
G

= {x | ∃y.g5(x)}. However, this query

captures only the tuples occurring in s1 which also occur in s4. It

follows that q3
G
is a sound J-abstraction, although not a complete

one. Actually, it can be shown that no perfect J-abstraction of

q3
S

exists in the class UCQ, but q2
G

and q3
G

are, respectively, the

minimally complete and the maximally sound J-abstraction of q3
S

in the class UCQ.

Consider now the query q4
S

= {() | ∃x, y.s5(x, y) ∧ s3(x)}, and

assume that we aim at checking whether its perfect J-abstraction

can be expressed as a UCQ. We immediately observe that {() |

∃x, y.g4(x, y) ∧ g2(x)} is a sound J-abstraction of q4
S
. Also, we

can easily verify that {() | ∃x, y, x1.g4(x, y) ∧ g3(x, x1) ∧ g2(x1)}

is also sound, and may retrieve tuples that are not retrieved by

{() | ∃x, y.g4(x, y) ∧ g2(x)}. More generally, all queries of the

form {() | ∃x, y, x1, . . . , xn.g4(x, y) ∧ g3(x, x1) ∧ . . . ∧ g3(xn−1 ∧

xn) ∧ g2(xn)}, for n ≥ 1, are pairwise incomparable sound J-

abstractions of q4
S
. Based on this observation, one can show that

there exists no maximally sound J-abstraction of q4
S

in the class

UCQ. However, the following Datalog query (with goal Ans) is the

maximally sound J-abstraction of q4
S
in the whole class of monotone

queries:

g3(x, y) → t1(x, y)

t1(x, y) ∧ t1(y, z) → t1(x, z)

g4(x, y) ∧ g2(x) → Ans()

g4(x, y) ∧ t1(x, z) ∧ g2(z) → Ans()

△

We point out that, apart from the scenario of data services

providers, data abstraction is relevant in several other contexts.

We mention three of them here. In the context of ontology-based

data management, abstraction can be used to check whether the

mapping provides the right coverage for expressing the relevant
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data services at the global schema level (Lutz et al., 2018). Also,

abstractions can provide the semantics of open datasets and

open APIs published by organizations, which is a key aspect for

unchaining all the potentials of open data (Cima et al., 2017).

Finally, abstraction can be the basis for a semantic-based approach

to source profiling (Abedjan et al., 2017), again one of tasks of

data preparation, in particular for describing the structure and the

content of a data source in terms of the business vocabulary.

The goal of this paper is to review the main notions and

results about abstraction. We present the formal framework for

its definition, and report about the decidability and complexity

of the main theoretical problems concerning abstraction, i.e.,

verification, existence, and computation. The roadmap of the paper

is as follows:

• Section 2 introduces some relevant background about

databases, queries, and data integration.

• Section 3 illustrates the formal framework for abstraction in

data integration by providing some of the key definitions used

throughout the paper.

• Section 4 reports results appearing in Cima et al. (2021)

on the relationship between abstraction and another well-

studied problem, namely view-based query processing (see,

e.g., Halevy, 2001). The latter is the problem of answering a

query over a schema S in terms of a set of materialized views

over S. Interestingly, the established relationship between

abstraction and view-based query processing sheds into light

new results about both problems.

• Section 5 illustrates results related to the problem of

computing best UCQ abstractions of UCQ source

queries (Cima et al., 2019). The main results are that,

while minimally complete abstractions are guaranteed to

exist, this is not the case for maximally sound abstractions.

Motivated by the latter result, a restricted scenario is

introduced, in which the existence of maximally sound

abstractions is always guaranteed.

• Section 6 surveys results on computing best monotone

abstractions of UCQ source queries (Cima et al., 2022). The

principal contributions are the definition of a novel monotone

query language (in the context of data integration) and the

discussion of how such a language is able to express all forms

of the best monotone abstractions (perfect, or approximated).

• Section 7 presents results on computing abstractions of UCQ

source queries in a specific, well-known non-monotone query

language (Cima et al., 2020). The main results are that all

forms of best abstractions are not guaranteed to exist in such a

language, and, in virtue of this result, two interesting restricted

scenarios are investigated.

• Finally, Section 8 concludes the paper by discussing possible

future research on abstraction.

2. Preliminaries

2.1. Databases and queries

We assume a denumerable set of constant symbols C that

is included in every alphabet that we shall consider. A database

schema (or simply schema) T is a logical theory, i.e., a finite set

of logical axioms, over an alphabet AT of predicate symbols and

constants from C. A T-database is simply a model of T, i.e., an

interpretation for AT that satisfies all the axioms of T, with the

additional requirements that (i) the domain of D is C, (ii) every

constant is interpreted into itself, and (iii) the extention of every

predicate is finite.1 In what follows, we will often see a T-database

as a finite set of ground facts overAT, each of which corresponding

to a tuple in the extension of the associated predicate.

As customary, a database query over a schema T of arity n,

or simply an n-ary T-query, is a function associating to each T-

database a finite set of tuples of constants of arity n. Often, however,

it is more convenient to specify queries using expressions from

some formal language to which a semantics, i.e., an actual query

function, is associated. In what follows, whenever we talk about

a query language L, we mean the class of all queries that can be

expressed using L and its associated semantics.

A fundamental query language for our work is the language of

First-Order Logic (FOL) queries. A FOL query q for a schema T is a

T-query defined by an expression of the form {x̄ | φ(x̄)}, where x̄ is

a tuple of variables, called the distinguished variables of q, and φ(x̄)

is a FOL formula over alphabet of T containing all the variables in x̄.

The arity of q is the arity of x̄, and we will often use q(x̄) to say that

x̄ are the free-variables of the FOL query q and write {x̄ | ∃ȳ.φ(x̄, ȳ)}

simply as φ(x̄). Moreover,we will use the predicate⊤ to form atoms

of any arity; such atoms will always be interpreted as true. Given

a T-database D and a FOL T-query q of arity n, qD is the set of all

tuples c̄ ∈ Cn such that D |H φ(c̄).

A conjunctive query (CQ) q over a schema T is a FOL query

of the form {x̄ | ∃ȳ.φ(x̄, ȳ)}, where ȳ is a tuple of variables, called

the existential variables of q, and φ(x̄, ȳ) is a finite conjunction of

relational atom. Given a CQ q = {x̄ | ∃ȳ.φ(x̄, ȳ)}, we say that an

existential variable y ∈ ȳ is a join existential variable of q if it occurs

more than once in the atoms of φ(x̄, ȳ). In what follows, we say

that a CQ q is a conjunctive query with join-free existential variables

(CQJFE) if there is no join existential variable occurring in q.

Other classes of database queries considered in this paper

are defined as customary in terms of both syntax and semantics.

An atomic query is a FOL query where φ(x̄) consists of a single

relational atom. A union of conjunctive queries (UCQ) (resp., union

of conjunctive queries with join-free existential variables (UCQJFE))

is a query defined as a finite union of CQs (resp., CQJFEs) having

the same arity, called its disjuncts, and its semantics is defined via

the associated FOL query. For the definition of Datalog, Disjunctive

Datalog, and Disjunctive Datalog with inequalities (denoted by

DD6=), we refer the reader to Eiter et al. (1997).

2.2. Querying sets of databases

In what follows, we will often need to extend the notion of

database queries to sets of databases. A generalized T-query of arity

n is a function associating to each set of T-databases a finite set of

n-tuples of constants in C, called the answers of q for6 and denoted

q6 . As customary, for two T-queries q1 and q2, we write q1 ⊑ q2 if

1 In principle, we could also consider databases that are infinite structures.
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q61 ⊆ q62 for each set 6 of T-databases, and we write q1 ≡ q2 if

both q1 ⊑ q2 and q2 ⊑ q1.

A common method to define a generalized T-query is to lift the

semantics of a T-query to sets of T-databases using the notion of

certain answers. Given a T-query q and a set 6 of T-databases, the

certain answers of q over 6 are defined as
⋂

D∈6 qD. Thus, in what

follows, we consider that every generalized T-query is such that

given a set 6 of T-databases, q6 is the set of the certain answers

of q over 6. This small abuse of notation and the observation

that qD = q{D} allow us to blur the distinction between queries

and generalized queries. Therefore, from now on, unless otherwise

specified, we will use the term T-query for generalized T-query.

2.3. Data integration

A data integration system (Lenzerini, 2002) J is specified

by a triple 〈G,S,M〉, where G, the global schema, is a

schema over an alphabet AG, S, the source schema, is a

schema over an alphabet AS (disjoint from AG, except for

the set C), and M is a mapping relating S to G. Specifically,

M is a finite set of assertions of the form qS → qG,

where qS is an S-query and qG is a G-query of the same

arity as qS.

The semantics of J is defined relative to an S-database D, and,

intuitively, is the set of all the G-databases that satisfy M with

respect toD. A G-database B satisfiesM with respect toD, denoted

by (D,B) |H M, if it satisfies all the assertions in M, i.e., qD
S
⊆ qB

G

for each (qS → qG) ∈ M.

Formally, the semantics of J relative to D, denoted as

mod(J,D), is defined as {B|B is a G-database such that (D,B) |H

M}. We say that D is consistent with J if mod(J,D) 6= ∅.

The answers to a G-query q w.r.t. a data integration system J =

〈G,S,M〉 and an S-database D is simply qmod(J,D), that we often

write simply as qJ,D. For two G-queries q1 and q2, we write

q1 ⊑J q2 if qJ,D
1 ⊆ qJ,D

2 for each S-database D; q1 <J q2 and

J-equivalence are defined accordingly.

Specific classes of mappings considered in the literature are

GAV, LAV,GLAV,PGAV, andSPGAV. We introduce them under

the assumption that the queries appearing in mapping assertions

are conjunctive queries or restricted forms thereof.

A GLAV mapping is a set of assertions of the form qS(Ex) →

qG(Ex), where both qS and qG are conjunctive queries over S and G

respectively, with distinguished variables Ex.

A GAV mapping is a special case of GLAV, constituted by a

set of assertions of the form qS(Ex) → A(Ex), where (i) qS is a

conjunctive query over S and (ii) A(Ex) is an atomic T-query. A pure

GAV mapping (PGAV) is a GAV mapping in which each assertion

qS(Ex) → A(Ex) is such that no repeated variables appear in Ex. A

PGAV mapping is called SPGAV (PGAV with single assertion per

predicate) if it does not contain a pair of assertions with the same

predicate symbol the right-hand side.

A LAV mapping is a special case of GLAV, constituted by a

set of assertions A(Ex) → qG(Ex), where (i) A(x̄) is an atomic T-

query and (ii) qG is a conjunctive query over G with distinguished

variables Ex.

In what follows, we implicitly refer to a data integration system

J = 〈G,S,M〉, and when we denote a query by qG (resp., qS) we

mean that the query is a G-query (resp., S-query).

2.4. The EQL-Lite(UCQ) language

EQL-Lite(UCQ) is a powerful query language in the context of

data integrations systems introduced and studied in Calvanese et al.

(2007a). An EQL-Lite(UCQ) T-query q is an expression of the form

q = {x̄ | ϕ(x̄)} where ϕ(x̄) is an EQL formula built according to the

following syntax:

ϕ(x̄) : : = K̺ | ∃y.ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ

with ̺ being a disjunction of conjunction of relational atoms

over T possibly involving existentially quantified variables. The

semantics is based on the notion of satisfaction of EQL sentences

w.r.t. epistemic interpretations, which are pairs 〈E,I〉 with E being

a set of interpretations and I ∈ E. We now inductively define

when an epistemic interpretation 〈E,I〉 satisfies an EQL sentence

ϕ, written 〈E,I〉 |H ϕ:

〈E,I〉 |H P(Ec) if I |H P(Ec)

〈E,I〉 |H ϕ1 ∧ ϕ2 if 〈E,I〉 |H ϕ1 and 〈E,I〉 |H ϕ2

〈E,I〉 |H ¬ϕ if 〈E,I〉 6|H ϕ

〈E,I〉 |H ∃x.ϕ if 〈E,I〉 |H ϕxc for some constant c

〈E,I〉 |H Kϕ if 〈E,I′〉 |H ϕ for every I′ ∈ E,

Then, the answers qJ,D of an EQL-Lite(UCQ) query q =

{x̄ | ϕ(x̄)} w.r.t. a data integration system J = 〈G,S,M〉

and an S-database D are those tuples c̄ of constants such that

〈mod(J,D),B〉 |H ϕ(c̄) for every B ∈ mod(J,D).

Example 2. Consider Example 1 and suppose we are interested in

asking for all x such that there exists y such that we know (x, y)

belongs to g1. This can be expressed in EQL-Lite(UCQ) as follows:

q6G = {x | ∃y.K(g1(x, y)}

Note that the query q6
G
is different from the query asking for all x

such that we know there exists y such that (x, y) belongs to g1, which

is expressed as follows:

q7G = {x | K(∃y.g1(x, y)}

Indeed, while it can be verified that the answers to q6
G
over J

coincide with the answers to the query q2
S

= {x | ∃y.s2(x, y)},

the answers to q7
G
over J coincide with the answers to the query

q5
S
= q2

S
∪ {x | s1(x)}. △

3. Framework

We proceed to introduce the notion of query abstraction

following Cima et al. (2019) for the basic definitions. We say that

qG is a perfect J-abstraction of qS if qJ,D
G

= qD
S
, for each S-database

D consistent with J. Clearly, if a perfect J-abstraction of qS exists,

then it is unique up to J-equivalence, i.e., if q′ is a perfect J-

abstraction of qS then q′ =J qG. Therefore in the following we

will talk about the perfect J-abstraction of qS.
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Example 3. Consider Example 1. It is easy to verify that q1
G
is the

perfect J-abstraction of q1
S
. △

The following theorem presents a preliminary characterization

of the existence of perfect J-abstractions.

Theorem 1. [(Cima et al., 2021, Theorem 1)] There exists a perfect

J-abstraction of qS if and only if for all pair D,D′ of S-databases,

mod(J,D) = mod(J,D′) implies qD
S
= qD

′

S
.

As the condition of being a perfect J-abstraction of source

query is rather strong one, it might be very well the case that such a

global schema query may not exist.

Example 4. Consider again Example 1. Using Theorem 1, we can

show that there exists no perfect J-abstraction for q4
S
. In fact, for

the databases D = {s5(a, b)} and D′ = {s5(a, b), s3(a)}, we have

mod(J,D) = mod(J,D′) but D 6|H q5
S
while D′ |H q5

S
. △

In these cases, it is reasonable to consider weaker notions,

such as sound or complete approximations of perfectness. We

say that qG is a complete J-abstraction of qS if qD
S

⊆ qJ,D
G

, for

each S-database D consistent with J. Similarly, we say that qG is

a sound J-abstraction of qS if qJ,D
G

⊆ qD
S
, for each S-database

D consistent with J. Obviously, one is interested in complete or

sound abstractions that approximate qS at best, at least in the

context of a specific class of queries. IfLG is a class of queries, we say

that a global schema query qG ∈ LG is an LG-minimally complete

J-abstraction of qS if qG is a completeJ-abstraction of qS and there

is no global schema query q′
G
∈ LG such that q′

G
is a complete J-

abstraction of qS and q′
G

<J qG. Similarly, we say that a global

schema query qG ∈ LG is an LG-maximally sound J-abstraction

of qS if qG is a sound J-abstraction of qS and there is no global

schema query q′
G
∈ LG such that q′

G
is a sound J-abstraction of qS

and resp., qG <J q′
G
.

Example 5. Consider again Example 1. Queries q2
G
and q3

G
are,

respectively, the UCQ-minimally complete and UCQ-maximally

sound J-abstraction of q3
S
. △

Depending on the chosen language LG, it may be the case that

no LG-minimally complete or LG-maximally sound J-abstraction

exists (see again Example 1 for some concrete cases). Moreover,

even if one such abstraction exists, it may not be unique. For

some classes Q of queries, however, one can show that a Q-

maximally sound (resp., Q-minimally complete) J-abstraction of

qS exists, then it is unique up to J-equivalence. This is the case, for

example, of the class of UCQs for which, if a UCQ-maximally sound

(resp., UCQ-minimally complete) J-abstraction of exists, then it

is unique up to J-equivalence. Thus, in the following, we simply

talk about the UCQ-maximally sound and the UCQ-minimally

complete J-abstraction of a source query qS. Other classes of

queries with this properties will be introduced in the subsequent

sections.

In the next sections, we will study J-abstraction for

data integration systems of a specific form, namely where (i)

the mapping is of type GLAV or special cases of GLAV,
and (ii) if not otherwise stated, the set of axioms of both

the global schema and the source schema is empty. Also,

we will limit our analysis to abstractions of UCQ source

queries.

4. View-based query processing and
query abstraction

It is well-known that there is a relationship between data

integration and view-based query processing, grounded on the

idea that the sources of a LAV data integration systems can

be considered as views defined over the global schema, in

particular sound views (Lenzerini, 2002). In this section, we take

another approach and establish a relationship between GAV data

integration systems and views, based on the idea that the elements

of the global schema can be considered as views defined over the

source schema.

This section is organized as follows. We first recall the

basic notions about view-based query processing. Then, in

Section 4.1 we make clear the relationship between GAV data

integration systems and views, while in Section 4.2 we establish the

connection between abstractions and rewriting queries using views.

Finally, in Sections 4.3 and 4.4 we use the above connection to

introduce results for abstraction and view-based query processing,

respectively. All the results presented in this section appear in Cima

et al. (2021).

View-based query processing is a general term denoting several

tasks related to the presence of views in databases. A set of views

V over a schema T is constituted by a finite set of view predicate

symbols, where each V ∈ V has a specific arity, and an associated

view definition VT, i.e., a query over T of the same arity of V .

An extension of a view V is simply a set of facts for V , and a V-

extension E is constituted by an extension for each view in V. Given

a T-database D, we denote by V(D) the V-extension {V(c̄) | V ∈

V and c̄ ∈ VD
T
}. In what follows, we use the termL views to indicate

a set of views in which all view definitions are queries expressed in

the query language L.

Two particular notions have been subject to extensive

investigations in the view-based processing literature, namely view-

based query rewriting and view-based query answering (Calvanese

et al., 2000, 2007b).

In the former notion, originated in Levy et al. (1995), we are

given a query qT over a schema T and a set of views V over T, and

the goal is to reformulate qT into a query qV, called a V-rewriting,

in terms of the view predicate symbols of V. We obtain different

variants of V-rewritings depending on the relationship between

qT and qV we aim at. We call qV (i) a V-rewriting of qT under

exact views, or simply V-rewriting of qT, if for every T-database

D it holds that q
V(D)
V

⊆ qD
T
, (ii) an exact V-rewriting of qT if for

every T-database D it holds that q
V(D)
V

= qD
T
. Note that, if we fix

a specific query language LV for expressing V-rewritings, we might

lose power in expressingV-rewritings. In this case, a reasonable goal

is to compute V-rewritings expressible in LV that are “maximal” in

the class LV. Formally, we say that a query qV ∈ LV is an LV-

maximal V-rewriting of qT, if (i) qV is a V-rewriting of qT; and (ii)

there is no q1 ∈ LV such that (a) q1 is a V-rewriting of qT, (b)

q
V(D)
V

⊆ q
V(D)
1 for each T-database D, and (c) there is a T-database

D for which q
V(D)
V

( q
V(D)
1 .

As argued in Nash et al. (2010), given qT and V, the problem

of checking whether there exists an exact V-rewriting of qT (called

losslessness with respect to rewriting Calvanese et al., 2007b) is

equivalent to the problem, called view determinacy (Nash et al.,
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2010), of checking whether qT is determined byV, denotedV ։ qT,

i.e., whether V(D1) = V(D2) implies qD1
T

= qD2
T

for each pair of T-

databases D1 and D2. Indeed, on the one hand, if V ։ qT, then

the function qV associating to each V(D) the tuples qD
T
, for each

T-database D, is an exact V-rewriting of qT, on the other hand,

if V 6։ qT, then such qV is not a function, and hence an exact

V-rewriting of qS cannot exist.

In the view-based query answering, originated in Duschka and

Genesereth (1997), besides qT andVwe are also given aV-extension

E, and the goal is to compute the so-called certain answers of

qT w.r.t. V and E, denoted by certEqT ,V, which are those tuples of

constants c̄ such that c̄ ∈ qD
T

for each S-database D satisfying

E ⊆ V(D). We denote by certqT ,V the query over V that, for every

V-extension E, computes the certain answers of qT w.r.t. V and E,

and we call certqT ,V the perfect V-rewriting of qT under sound views,

or simply perfect V-rewriting of qT.

4.1. View-based query processing and data
integration

We start by describing how to obtain, from any data integration

system J with PGAV mapping, a suitable set of UCQ views2

VJ, and, viceversa, from any set of UCQ views V, a suitable data

integration system JV with PGAV mapping.

For a data integration systemJ = 〈G,S,M〉withM ∈ PGAV,
the set of UCQ views VJ is such that (i) the set of view symbols

coincides with AG, and (ii) for each view symbol g, the associated

view definition gS is the following UCQ over S:

{x̄1 | ∃ȳ1.φ
1
S(x̄1, ȳ1)} ∪ . . . ∪ {x̄l | ∃ȳl.φ

l
S(x̄l, ȳl)},

where we have one disjunct ∃ȳi.φ
i
S
(x̄i, ȳi) for each mapping

assertion in M of the form ∃ȳi.φ
i
S
(x̄i, ȳi) → g(x̄i). Note that, if

M ∈ SPGAV, then all view definitions in VJ are CQs.

Example 6. Let J = 〈G,S,M〉 be a data integration system such

thatM = {m1,m2,m3} with:

m1 : ∃y1, y2.s1(y1, x, x) ∧ s2(x, y2, y2) → g1(x)

m2 : ∃y1, y2, y3.s1(y1, x1, x2) ∧ s2(x2, y2, y3) → g2(x1, x2)

m3 : ∃y1.s3(x1, x2, y1) → g2(x1, x2)

Then, the UCQ views VJ over S is VJ = {g1, g2}, where

g1S = {x | ∃y1, y2.s1(y1, x, x) ∧ s2(x, y2, y2)} and g2S =

{x1, x2 | ∃y1, y2, y3.s1(y1, x1, x2) ∧ s2(x2, y2, y3)} ∪ {x1, x2 |

∃y1.s3(x1, x2, y1)}. △

For a set of UCQ views V over a schema S, the data integration

system JV = 〈G,S,M〉 is such that (i) AG coincides with the

view predicate symbols in V, (ii) G has no axiom, and (iii) M is

defined as follows: for each view symbol V ∈ V and for each CQ

2 When we refer to UCQ views, we in fact assume that view definitions

are UCQs without repeated variables in the target list. We refer to Afrati and

Chirkova (2019) for the complications that can arise when this assumption is

removed.

{x̄ | ∃ȳ.φS(x̄, ȳ)} that is a disjunct in the UCQ VS, the mapping

M includes a mapping assertion of the form: ∃ȳ.φS(x̄, ȳ) → V(x̄).

Note that, in general, M ∈ PGAV. However, if V is a set of CQ

views, thenM ∈ SPGAV.

Example 7. Let V = {V1,V2} be a set of UCQ views over S such

that: V1S = {x1, x2, x3 | s3(x1, x2, x3)} ∪ {x1, x2, x3 | ∃y.s1(x1, y) ∧

s2(y, x2, x3)} ∪ {x1, x2, x3 | ∃y1, y2.s1(x1, y1) ∧ s4(y2, x2, x3)} and

V2S = {x1, x2, x3, x4 | ∃y.s1(x1, x2, y) ∧ s3(y, x3, x4)}.

Then, the data integration system is JV = 〈G,S,M〉, where

AG = {V1,V2} andM = {m1,m2,m3,m4} with:

m1 : s3(x1, x2, x3) → V1(x1, x2, x3),

m2 : ∃y.s1(x1, y) ∧ s2(y, x2, x3) → V1(x1, x2, x3),

m3 : ∃y1, y2.s1(x1, y1) ∧ s4(y2, x2, x3) → V1(x1, x2, x3),

m4 : ∃y.s2(x1, x2, y) ∧ s4(y, x3, x4) → V2(x1, x2, x3, x4).

△

For a data integration system J with PGAV mapping and a

set of UCQ views V, the pair (J,V) is said to be coherent if (i) the

schema over which the set of views V is defined and the source of

J coincide, and (ii) J = JV or V = VJ. In what follows, when we

talk about a coherent pair (J,V), we use S to denote the common

schema between J and V.

Based on the relationship between JV and VJ, the following

proposition provides a connection between existence of perfect

abstractions and existence of exact rewritings.

Proposition 1. [(Cima et al., 2021, Proposition 1)] If (J,V) is a

coherent pair and qS is an S-query, then there exists a perfect J-

abstraction of qS if and only if there exists an exact V-rewriting of

qS.

4.2. Abstractions and rewritings of DD6=

We now turn our attention to a concrete class of queries,

namely DD6=. From now on, when we use L, we refer to a

sublanguage ofDD 6=. By exploiting well-known results, we provide

connections between the notion ofJ-abstractions and V-rewritings

in the context of DD6= and its sublanguages. To this end, we first

introduce some terminology.

Given a mapping M ∈ PGAV relating S to G and a

G-query q in a certain query language L, the M-unfolding

of q (Lenzerini, 2002), denoted by unfM(q), is the S-query

obtained by replacing each atom α occurring in the expression

corresponding to q by the logical disjunction of all the left-

hand sides of the mapping assertions in M having the predicate

symbol of α in the right-hand side (being careful to use unique

variables in place of those variables that appear in the left-hand

side of the mapping assertions but not in the right-hand side

of those).

Given a set of UCQ views V over S and a V-query q in

a certain query language L, the V-expansion of q (Levy et al.,

1995), denoted by expV(q), is the S-query obtained by replacing

each atom α occurring in in the expression corresponding to q

by the view definition associated to the view predicate name of
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α (again, being careful to use unique variables in place of those

variables that appear in the bodies of the view but not in the heads

of those).

Proposition 2. [(Cima et al., 2021, Proposition 2)] If (J,V) is a

coherent pair, qS is an S-query in L, and q is a query in L, then q

is a sound (resp., perfect) J-abstraction of qS if and only if q is a

V-rewriting (resp.,exact V-rewriting) of qS.

Actually, as shown in Duschka and Genesereth (1998,

Lemma 1), if L allows for the union operator, then for any pair of

UCQ views V over S and query qS ∈ L over S, if an L-maximal

V-rewriting of qS exists, then it is unique up to V-equivalence,

and, moreover, it coincides with the perfect V-rewriting of qS.
3

From Proposition 2 and the above observation, we can derive the

following result.

Corollary 1. [(Cima et al., 2021, Corollary 1)] If (J,V) is a coherent

pair andL allows for the union operator, then for every pair of queries

qS, q ∈ L, we have that q is theL-maximally sound J-abstraction of

qS if and only if q is the perfect V-rewriting of qS.

By exploiting the above provided relationships, we are now

ready to investigate how results and techniques from the view-

based query processing literature can be directly translated into

results and techniques in the context of abstraction, and viceversa.

4.3. From view-based query processing to
abstraction

By combining Proposition 1 with a well-known undecidability

result about view determinacy, we can derive a negative result about

an arguably fundamental problem for the notion of abstraction,

namely the existence problem (with no restrictions on the query

language to express perfect abstractions) of perfect abstractions,

even in very restricted settings.

Theorem 2. [(Cima et al., 2021, Theorem 2)] Given a data

integration system J = 〈G,S,M〉 with M ∈ SPGAV and a CQ

S-query qS, checking whether there exists a perfect J-abstraction of

qS is undecidable.

By exploiting Corollary 1, we now illustrate how to use off-

the-shelf algorithms for rewriting queries in the presence of views

as algorithms for computing abstractions. By results of Levy et al.

(1995), for CQ views V, perfect V-rewritings of UCQs qS can be

always expressed as UCQs, and can be always computed [e.g., by

means of the bucket algorithm (Levy et al., 1996) or the MiniCon

algorithm (Pottinger and Halevy, 2001)]. Thus Corollary 1 implies

that, given a data integration system J = 〈G,S,M〉 with M ∈

SPGAV and a UCQ S-query qS, we can compute the UCQ-

maximally sound J-abstraction of qS as follows: (i) compute VJ,

and (ii) compute and return the UCQ corresponding to the perfect

VJ-rewriting of qS.

Corollary 2. [(Cima et al., 2021, Corollary 2)] If J is a data

integration system with SPGAV mapping and qS is a UCQ S-query,

3 This is not the case when view definitions are expressed as regular path

queries rather than UCQs (Calvanese et al., 2002).

then the UCQ-maximally sound J-abstraction of qS exists and is

computable.

Things get more complicated when we consider a data

integration systemJwith PGAV mappings, which are clearly more

expressive than SPGAV, for which VJ is a set of UCQ views,

rather than CQ views. Indeed, for UCQ views V, UCQ-maximal

V-rewritings of CQs qS are not guaranteed to exist (Duschka

and Genesereth, 1998; Afrati and Chirkova, 2019), and thus, in

general, perfect V-rewritings of CQs qS are not expressible as

UCQs. However, the perfect V-rewritings of UCQs (actually, even

of Datalog queries) qS can always be expressed in DD6=, and can

always be computed using the technique presented in Duschka

and Genesereth (1998). Thus, Corollary 1 implies that, given a

data integration system J = 〈G,S,M〉 with M ∈ PGAV and a

UCQ S-query qS, we can compute the DD 6=-maximally sound J-

abstraction of qS as follows: (i) compute VJ, and (ii) compute and

return the DD 6= query corresponding to the perfect VJ-rewriting

of qS.

Corollary 3. [(Cima et al., 2021, Corollary 3)] If J is a data

integration system with PGAV mapping and qS is a UCQ S-query,

then the DD6=-maximally sound J-abstraction of qS exists and is

computable.

4.4. From abstraction to view-based query
processing

As already observed, Duschka and Genesereth (1998) and

Afrati and Chirkova (2019) show that for a given set V of

UCQ views, UCQ-maximal V-rewritings of CQs may not exist.

Combined with an observation made above, this means that perfect

V-rewritings of CQs are in general not expressible as UCQs. We

point out that the CQ qS used to prove such results contain more

than one join existential variable. As a consequence, in the case of

UCQ views V, it is still open whether (i) the result holds even for

qS with just one join existential variable (ii) perfect V-rewritings of

UCQJFEs are expressible as UCQs. By combining Corollary 1 with

results of Cima et al. (2019) (that we will discuss in Section 5), we

can actually answer positively to both questions.

Corollary 4. [(Cima et al., 2021, Corollary 4)] For a set V of UCQ

views, the UCQ-maximal V-rewritings of qS may not exist, even if

qS is a CQ with one join existential variable.

On the other hand, in Section 5, we will show that for a

data integration systems J with PGAV mapping, UCQ-maximally

sound J-abstractions of UCQJFEs are guaranteed to exist, and we

will provide an algorithm to compute them (Theorem 5). Thus,

given a set of UCQ views V over a schema S and a UCQJFE S-

query qS, we can compute the perfect V-rewriting of qS as follows:

(i) compute JV, and (ii) compute and return the UCQ-maximally

sound JV-abstraction of qS. This leads to the following positive

result for V-rewritings of UCQJFEs.

Corollary 5. [(Cima et al., 2021, Corollary 5)] If V is a set of UCQ

views and qS is a UCQJFE S-query, then the perfect V-rewriting of

qS is computable and can be expressed as a UCQ.
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5. UCQ abstractions

In this section we investigate the problem of checking

the existence of abstractions in the class UCQ, and of their

computation. We first study the case of UCQ-minimally complete

J-abstractions, then we switch to UCQ-maximally sound J-

abstractions, and finally we tackle perfect J-abstractions in the

class UCQ. We observe that all the results presented in this section

appear in Cima et al. (2019).

On the positive side, we show that UCQ-minimally complete

abstractions always exist, by providing an algorithm to compute

them. In a nutshell, given a data integration system J = 〈G,S,M〉

and a UCQ qS = q1
S
∪ . . . ∪ qn

S
, an algorithm to compute the

UCQ minimally-complete J-abstraction of qS returns the union

of CQs of the form {x̄i | ∃Ȳi.M(qi
S
) ∧ ⊤(x̄i)} obtained by simply

“applying” the mapping M to each CQ qi
S
in qS, using ⊤ to bind

the distinguished variables that are not involved in the application

of M to qi
S
. Formally, applying the GLAV mapping M to a CQ q

means to chase (Fagin et al., 2005) the atoms in q by using the tuple

generating dependencies corresponding to the assertions inM.

Theorem 3. [(Cima et al., 2019, Theorem 13)] The UCQ-minimally

complete J-abstraction of qS always exists and is computable.

On the negative side, the following shows that UCQ-maximally

sound abstractions may not exist.

Theorem 4. [(Cima et al., 2019, Theorem 16)] The UCQ-

maximally sound J-abstractions of qS may not exist if at least one

of the following is true:

(a) qS contains a join existential variable;

(b) M contains a LAV mapping assertion;

(c) M contains a non-PGAV mapping assertion.

Interestingly, in order to illustrate the case (a) of the above

theoremwe can refer to a slight modification of the data integration

system J introduced in Example 1. In particular, let J1 =

〈G,S,M1〉 be obtained from J by removing fromM the mapping

m1, and consider the query q4
S
of Example 1. Note that M1 ∈

PGAV and q4
S

contains a join existential variable, x. Clearly,

removing m1 has no impact on the abstraction of q4
S
. Thus, as

already discussed in Example 1, there exists no UCQ-maximally

sound J1-abstraction of q4
S
.

Motivated by Theorem 4, we next introduce a specific scenario,

that we call restricted, obtained from the general one by limiting

the mapping language to PGAV, and qS to be UCQJFEs. It can be

shown that for such a restricted scenario, UCQ-maximally sound

abstractions always exist. Intuitively, the latter can be derived by

showing that for any UCQJFE qS and data integration system J =

〈G,S,M〉withM ∈ PGAV, a CQ-maximally soundJ-abstraction

of qS may comprise at most kMqS atoms, where kMqS is an integer

that depends on the number of atoms occurring in qS and the

number of mapping assertions occurring inM. Hence, given a data

integration system J with PGAV mapping and an UCQJFE qS, an

algorithm to compute the UCQ-maximally sound J-abstraction of

qS simply returns the union of all CQs qG comprising at most kMqS
atoms, that are soundJ-abstractions of qS. The crucial observation

here is that in order to check whether qG is a sound J-abstraction

of qS, it is sufficient to check whether unfM(qG) ⊑ qS, which

is decidable, since both qS and unfM(qG) are UCQs (Sagiv and

Yannakakis, 1980).

Theorem 5. [(Cima et al., 2019, Theorem 21)] In the restricted

scenario, the UCQ-maximally sound J-abstractions of qS always

exists and is computable.

To conclude the section, we provide the last positive result

about perfect abstractions in the class UCQ. Namely, we show

that checking whether there exists a UCQ that is the perfect J-

abstraction of qS is decidable. In particular, given a data integration

system J with GLAV mapping and a UCQ qS, an algorithm to

decide whether there exists a UCQ that is a perfect J-abstraction

of qS proceeds as follows. First, it computes the query qG that is

the UCQ-minimally complete J-abstraction of qS. Then, it checks

whether qG is a sound abstraction of qS (as discussed above). If the

answer is negative, then there exists no UCQ that is a perfect J-

abstraction of qS. If the answer is positive, then qG is actually a

UCQ, and is the perfect J-abstraction of qS. Thus the algorithm

also solves the computation problem for perfect abstractions in the

UCQ language.

Theorem 6. [Cima et al. (2019)] Checking whether there exists a

query q in the class UCQ that is the perfect J-abstraction of qS is

decidable. Moreover, there is an algorithm that computes q, whenever

it exists.

6. Monotone abstractions

The notion of monotonicity defines a very natural class of

queries that is popular in the field of databases and knowledge

representation alike. The intuition behind monotone queries is

simple: a query q is monotone if, whenever the data we posses

increases, the answers for q do not decrease. In the literature,

however, this notion has been formalized in two distinct ways. In

the context of databases, a T-query q is monotone if, for every pair

of T-databasesD,D′ such thatD ⊆ D′, we have qD ⊆ qD
′
. Even very

simple FOL queries can be shown not to be monotone under this

notion. On the other hand, in the context of mathematical logic,

the notion of monotonicity comes in a different flavor: a T-query

q is monotone, if, for every every set of interpretations 6,6′ for T

such that 6 ⊆ 6′, we have q6 ⊆ q6
′
. We observe here that, under

the semantics of certain answers, FOL queries are monotone in this

sense.

To define the notion of monotone queries in the context

of a data integration system, we use the notion of monotonicty

from logic. A G-query q is monotone in the context of a data

integration system J = 〈G,S,M〉 if for every pair D,D′ of S-

databases, mod(J,D) ⊆ mod(J,D′) implies qJ,D′
⊆ qJ,D. In the

following, we use MJ to denote the class of monotone queries in

the context ofJ = 〈G,S,M〉, and whenJ is understood, we simply

useM.

This notion of monotonicity is natural yet broad enough to

characterize some of the most popular classes of queries. For

example, it is trivial to see that queries evaluated under certain

answer semantics aremonotone. In the light of this consideration, it
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is natural to ask whether perfect and approximated abstractions in

the class of monotone queries always exist for a given class of source

queries and whether they can be computed. Moreover, one can

show that, whenever an M-maximally sound (resp., M-minimally

complete) J-abstraction exists, then it is unique. Therefore, from

now on, given a source query qS, we will talk about the M-

maximally sound (resp., theM-minimally complete)J-abstraction

of qS.

In the remainder of this section, we survey recent results on

monotone abstractions of UCQs presented in Cima et al. (2022).

We introduce a language of monotone queries, called DDK, with

attractive computational properties (Section 6.1). For the case of

data integration systems with no axioms in both the global schema

and in the source schema, we show that minimally complete and

maximally sound monotone abstractions for UCQ source queries

always exist, and are expressible in DDK. From these results, we

also derive the decidability of checking whether a perfect monotone

abstraction of a given source query exists (Section 6.2).

6.1. A language for monotone abstractions

Monotone queries form a natural yet expressive class of queries.

Unsurprisingly, perfect and approximated monotone abstractions

require a suitably expressive query language. We now introduce

one such language and discuss some of its most compelling

computational characteristics. The language, called DDK, is based

on disjunctive Datalog, extended with an epistemic operator.

We present it in a form specifically tailored for querying data

integration systems.

Assume a data integration system J = 〈G,M,S〉 and an

alphabet of predicate symbols Int, called intensional predicate

symbols, disjoint from the alphabets of G and S. We now consider

the case where the logical theories corresponding to both G and S

may have a nonempty set of axioms.

A DDK query for J includes a set of rules, each one of two

possible forms:

• the typical form of disjunctive Datalog, i.e.,

b1 ∧ . . . ∧ bm → i1 ∨ . . . ∨ in (1)

where b1, . . . , bm and i1, . . . , in are atoms on intensional

predicates, and

• a new form specified as follows

K(φ1(x̄) ∨ . . . ∨ φm(x̄)) →
∨

i∈{1..n}

∃ȳi.ψi(x̄, ȳi) (2)

where each ψi is a conjunction of atoms over Int, and each

φi is of the form ∃z̄.γ (x̄, z̄) ∧ ξ (x̄), with γ (x̄, z̄) a conjunction

of atoms over G, and ξ (x̄) a conjunction of inequalities over

variables in x̄ only.

An n-ary DDK query q for J is a pair q = 〈Ans,R〉 where R

is a finite set of DDK rules, called the definition of q, and Ans is an

n-ary intensional predicate in Int, called the answer predicate of q.

Answers for DDK queries are defined based on the notions

presented in Calvanese et al. (2007a). An interpretation for q is

a pair I = (E, f ), where E is a set of interpretations for J, and

f is an interpretation for Int with domain C. An interpretation

I = (E, f ) satisfies aDDK rule ρ of q (written I |H ρ) if the following

conditions hold:

• If ρ is a formula of the form (1), then I |H ρ if f |H ρ, i.e., f

satisfies the implication in (1).

• If ρ is a formula of the form (2), then I |H ρ if for all tuples c̄

of values in C, if I satisfies the epistemic formula K(
∧

i φi(c̄))},

then there is j such that ∃ȳj.ψj(c̄j, ȳj) is true in f .

An interpretation I for q is called a model of q if all the rules

in the definition of q are satisfied by I. It should be clear that,

under this definition of semantics, K represents the “knowledge"

operator of the modal logic system S5. In other words, the formula

Kα should be read as “α is known (i.e., logically implied) by the

system”.

We are ready to define what is the answer qJ,D of a DDK query

q = 〈Ans,R〉 with respect to J and the S-database D. Specifically,

qJ,D =
⋂

{c̄ ∈ Ansf |(mod(J,D), f ) is a model of q}.

While a thorough analysis of DDK is outside the scope

of the present work, we mention some of its most appealing

characteristics. Firstly, we observe that DDK generalizes UCQs. In

particular, every UCQ q ofm disjuncts is equivalent to aDDK query

with one rule of the form (2) where the disjuncts of q are in the

scope ofK. Secondly, every DDK query q overJ is monotone in the

context of J. Intuitively, monotonicity follows from a simple form

of stratification where certain answers to UCQs (rules of the form

(2)) and recursive computations (rules (1)) never mix. In turn, this

simple form of stratification guarantees that answering q over J

boils down to the following: (i) computing certain answers for the

UCQs in the scope of K in the left-hand side of rules of the form

(1) in q, and (ii) computing the answers for the remaining rules

(form (2)) over the result of the previous step.Monotonicity follows

from the monotonicity of certain answers to UCQs, and from the

fact that the rules of the form (2) define a monotone query. These

considerations indicate a third appealing characteristic of DDK.

Specifically, the decidability of answering a DDK query q w.r.t. J

and D depends exclusively on the decidability of answering UCQs

over J, as the following proposition shows.

Proposition 3. [(Cima et al., 2022, Proposition 2)]AnsweringDDK

queries w.r.t.J andD is decidable if and only if computing the certain

answers of UCQs w.r.t. J and D is decidable.

These results sharply contrast with similar results obtained for

plain (non-disjunctive) Datalog. In particular, the undecidability of

the latter can be proved even in the case of global schema axioms

expressed in very simple Description Logics of the DL-Lite family

(see, e.g., Levy and Rousset, 1998; Calvanese and Rosati, 2003).

6.2. Monotone abstractions via DDK

We now turn our attention to monotone abstractions expressed

in DDK. We start by observing that, in terms of computational

complexity, DDK perfectly fits the problem of computing

approximated abstractions, as the following proposition shows.
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Proposition 4. [(Cima et al., 2022, Proposition 3)] There exists

a data integration system J with PGAV mapping and a UCQ qS
such that answering the M-maximally sound J-abstraction of qS is

coNP-hard in data complexity.

In the remainder of this section, we show that DDK is

well-suited to express monotone abstractions, both perfect and

approximated. In discussing this issue, we go back to our

assumption of dealing with data integration systems with no

axioms in both the global and the source schema. So, in what

follows, we implicitly deal with a data integration system J =

〈G,M,S〉, where G and S have no axioms, and a UCQ S-query

qS = q1 ∪ . . . ∪ qn, where qi = {x̄ | ∃ȳi.φ(x̄, ȳ)}, for i = 1, . . . , n.

6.2.1. M-maximally sound abstractions
In Cima et al. (2022), it is shown that DDK can always express

M-maximally sound J-abstractions of UCQs, by illustrating a

technique that, given query qS, builds a setRJ of DDK rules whose

intensional predicates are the predicates in S, and then uses such

rules to construct theM-maximally soundJ-abstractions of qS as a

DDK query.We do not describe the technique in detail here. Rather,

we use an example to give an intuition of the construction.

Example 8. Given the following mapping in J:

m1 : ∃y.s1(x) ∧ s2(x, y) → g1(x, x)

m2 : s1(x) ∧ s3(x, y) → g1(x, y)

m3 : s4(x) → ∃y.g1(x, y)

RJ is the following set of DDK rules:

K(g1(x, x)) → (∃y.s1(x) ∧ s2(x, y)) ∨ (s1(x) ∧ s3(x, x))

K(g1(x, y) ∧ x 6= y) → s1(x) ∧ s3(x, y)

K(∃y.g1(x, y)) → s4(x) ∨ (∃y.s1(x) ∧ s3(x, y))∨

(∃y.s1(x) ∧ s2(x, y))

Intuitively, the rules of RJ specify, for the various facts over G

that are certain, i.e., that are known to hold, the queries over the

sources that generate them. For example, the first rule ofRJ specifies

that, if a constant is known to satisfy g1(x, x), then this knowledge

derives either from the answers to the source query {x|∃y.s1(x) ∧

s2(x, y)} or from the answers to the source query {x|s1(x) ∧ s3(x, x)}.

As another example, the second rule of RJ specifies that the pairs of

distinct constants x, y known to satisfy g1(x, y) derive from the query

{x, y|s1(x)∧ s3(x, y)}. It can be shown that this is crucial for ensuring

that the abstraction of queries involving the join of s1 and s3, which is

based on the certain answers of g1, do not include data deriving from

source queries whose abstraction is based on the certain answers of

the projection of g1. Finally, the third rule of RJ takes care of those

constants x known to satisfy g1(x, y), for some, not necessarily known,

y. Such constants may derive from each of source queries above. △

Using the notion of RJ, we can immediately obtain the M-

maximally sound J-abstraction of qS, by adding to RJ the set A

constituted by one rule of the form φi(x̄, ȳ) → Ans(x̄) for each

disjunct qi = {x̄ | ∃ȳi.φ(x̄, ȳ)} in qS.

Proposition 5. [(Cima et al., 2022, Theorem 2)] The DDK query

〈Ans,RJ ∪A〉 is theM-maximally sound J-abstraction of qS.

In the light of Proposition 5 and from the existence of an

algorithm to computeRJ ∪A, we obtain the following.

Theorem 7. [(Cima et al., 2022, Theorem 2)] The M-maximally

sound J-abstraction of qS always exists, is computable, and can be

expressed in DDK.

6.2.2. M-minimally complete abstractions
We show that DDK can always expressM-minimally complete

J-abstractions of UCQs.

Let us first introduce a useful notion. Given a CQ q =

{x̄ | ∃ȳ.φ(x̄, ȳ)}, Saturate(q) denotes the UCQ with inequalities

obtained as follows. For each possible unifier µ on the variables in

x̄ ∪ ȳ such that µ(x) ∈ x̄ for each x ∈ x̄, Saturate(q) contains a
query obtained from µ(q) by adding an inequality atom (t1 6= t2)

for each pair of distinct variables t1, t2 occurring inµ(q). For a UCQ

Q, we denote by Saturate(Q) the UCQ with inequalities consisting

of the union of Saturate(q), for each disjunct q of Q. It is easy to

see that Saturate(Q) is equivalent to Q, for every UCQ Q.

Consider a disjunct qh in in Saturate(qS). Clearly, qh is a CQ
with inequalities of the form qh = {x̄ | ∃ȳ.φ(x̄, ȳ) ∧ χ(x̄, ȳ)}, where

χ(x̄, ȳ) are inequality atoms. LetM(qh) denote the result of chasing

the set of relational atoms occurring in qh with M. Let ρqh denote

the DDK rule K(M(qh) ∧⊤(x̄) ∧ χ(x̄, ȳ)) → Ans(x̄). Finally, let qc
denote the DDK query consisting of all the rules ρqh for the various

qh in Saturate(qS) and with answer predicate Ans. We can now

prove the following.

Proposition 6. [(Cima et al., 2022, Theorem 1)] qc is the M-

minimally complete J-abstraction of qS.

The following statement is a straightforward consequence of

Proposition 6.

Theorem 8. [(Cima et al., 2022, Theorem 1)] The M-minimally

complete J-abstraction of qS always exists, is computable, and can

be expressed in DDK.

6.2.3. Perfect monotone abstractions
From the results presented above, we can derive an algorithm

for checking whether there exists a query in M that is the perfect

J-abstraction of qS. In particular, observe that if the perfect J-

abstraction of qS can be expressed as a query in M, then it is

J-equivalent to the M-minimally complete J-abstraction of qS.

Then, from Proposition 6 we know that, in order to check whether

there exists a query inM that is the perfect J-abstraction of qS, we

have to check whether qS is equivalent to qc modulo J.

To this end, we observe the following. There exists a UCQ

with inequalities S-query qmin such that qDmin = qJ,D
c , for every

S-database D. Moreover, qmin is computable. These two properties

result from J being a GLAV data integration system with no

source and global schema axioms, and from the specific form of qc.

Therefore, in order to check whether there exists a query inM that

is the perfect J-abstraction of qS, we just need to check whether

qmin ⊑ qS. The next claim follows from these considerations.

Theorem 9. [(Cima et al., 2022, Theorem 3)] Checking whether

there exists a query q in the classM that is the perfect J-abstraction

of qS is decidable. Moreover, there is an algorithm that computes q,

whenever it exists.
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7. Non-monotone abstractions

So far, we have limited our analysis of the abstraction reasoning

task by focusing on monotone query languages in the context

of data integration systems. There exist, however, very simple

scenarios in which the perfect abstraction can only be expressed by

means of a non-monotone query.

Example 9. Let J = 〈G,S,M〉 be such that the global schema

G has the predicates {A/1,B/1,C/1}, the source schema S has the

predicates {s1/1, s2/1}, andM = {m1,m2,m3,m4}, where:

m1 : s1(x) → A(x)

m2 : s2(x) → A(x)

m3 : s2(x) → B(x)

m4 : s1(x) ∧ s2(x) → C(x)

Consider the query qS = {x | s1(x)}. One can verify that the

perfect J-abstraction of qS is the non-monotone query qG such that,

given an S-database D, returns those x for which either (A(x) ∧

¬B(x)) or C(x) is known to be true, i.e. holds in every G-database

B such that B ∈ mod(J,D). △

Motivated by the above example, in this section we summarize

the most salient aspects of the results in Cima et al. (2020),

which investigates the problem of finding perfect (resp. minimally

complete, maximally sound) abstractions expressed in the query

language EQL-Lite(UCQ).4 For instance, refer to Example 9. The

perfect J-abstraction of qS written there in natural language can

be formulated through the EQL-Lite(UCQ) query qG = {(x) |

K(A(x) ∧ ¬B(x)) ∨ K(C(x))}. As in the case of the UCQ and the

M classes, it can be shown that if an EQL-Lite(UCQ)-maximally

sound (resp., EQL-Lite(UCQ)-minimally complete) J-abstraction

of qS exists, then it is unique up to J-equivalence. Thus, in what

follows, we will simply talk about the EQL-Lite(UCQ)-maximally

sound (resp., EQL-Lite(UCQ)-minimally complete) J-abstraction

of qS.

A natural question that arises is whether “best” abstractions in

the EQL-Lite(UCQ) query language always exist. Unfortunately,

the following theorem shows that this is not the case for

both EQL-Lite(UCQ)-minimally complete abstractions and

EQL-Lite(UCQ)-maximally sound abstractions.

Theorem 10. [(Cima et al., 2020, Theorems 1 and 2)] Both the

EQL-Lite(UCQ)-minimally complete J-abstractions of qS and the

EQL-Lite(UCQ)-maximally sound J-abstractions of qS may not

exist.

Due to the above negative result, which holds already for CQJFE

queries qS and data integrations systems with PGAV mappings,

we now explore two alternative restricted scenarios. The former

weakens the target query language for expressing abstractions

by considering a fragment of EQL-Lite(UCQ), whereas the latter

weakens the mapping language by considering a special case of

GLAV. In both the restricted scenarios, we assume that source

queries are CQs rather than UCQs.

4 Actually, we consider the slightly restricted version of EQL-Lite(UCQ)

which does not allow the use of (in)equalities.

7.1. A restricted non-monotone query
language

We now consider the problem of finding abstractions expressed

in EQL-Lite−(UCQ), which corresponds to the fragment of

EQL-Lite(UCQ) where both nested negation and union operators

are disallowed. More formally, an EQL-Lite−(UCQ) query q is an

expression of the form q = {x̄ | ϕ(Ex)}where ϕ(Ex) is an EQL formula

built according to the following syntax:

ϕ : : = K̺ | ∃y.ϕ | ϕ1 ∧ ϕ2 | ¬δ

δ : : = K̺ | ∃y.δ

with ̺ being a disjunction of conjunction of atoms over G

possibly involving existentially quantified variables. For instance,

the EQL-Lite(UCQ) query qG illustrated above, which corresponds

to the perfect J-abstraction of qS in Example 9, is not an

EQL-Lite−(UCQ) query.

On the negative side, even in this scenario, maximally sound

abstractions are not guaranteed to exist, and this holds already

for CQJFE queries qS and data integrations systems with PGAV
mappings.

Theorem 11. [(Cima et al., 2020, Theorem 2)] The

EQL-Lite−(UCQ)-maximally sound J-abstractions of qS may

not exist.

On the positive side, we now provide an algorithm for

computing EQL-Lite−(UCQ)-minimally complete J-abstractions

of CQs qS. The algorithm is similar to the one for the UCQ case

(cf. Section 5), expect that all the atoms obtained when applying

themapping to the given CQ occur inside the scope of the epistemic

operator K, binding also the existential variables coming from the

input query. More precisely, given a data integration system J =

〈G,S,M〉 and a CQ qS = {x̄ | ∃ȳ.φ(x̄, ȳ)}, the algorithm returns

the EQL-Lite−(UCQ) query qG = {x̄ | ∃Ȳ.K(∃z̄.M(qS) ∧ ⊤(x̄))},

where Ȳ ⊆ ȳ are the existential variables of qS occurring inM(qS),

while z̄ are the fresh existential variables introduced when applying

M to qS. To see the difference with the UCQ case, recall Example 1

in the introduction and the CQ q2
S
therein. While q2

G
is the UCQ-

minimally complete J-abstraction of q2
S
, the EQL-Lite−(UCQ)

query {x | ∃y.K(g1(x, y))} returned by the above algorithm is a

better complete approximation than q2
G
, and is in fact the perfect

J-abstraction of q2
S
.

Theorem 12. [(Cima et al., 2020, Theorem 5)] The

EQL-Lite−(UCQ)-minimally complete J-abstraction of a CQ

qS always exists and is computable.

We further notice that the above algorithm returns queries

that are monotone and that are expressible in DDK, thus proving

that, without disjunction, the limited form of negation allowed in

EQL-Lite−(UCQ) does not give more expressive power in finding

minimally complete (and therefore also perfect) abstractions of

CQs. On the contrary, it can be shown that inequalities give

more expressive power in finding abstractions. In particular, there

existM-minimally complete J-abstractions of CQs that cannot be

expressed in EQL-Lite−(UCQ), whereas, as shown in the previous

section, they can be expressed in DDK.
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Given a query qG as returned by the above algorithm, it is

always possible to compute a UCQ qu such that q
D
u = qJ,D

G
for every

S-databaseD. Thus, following the same line of reasoning as the one

at the end of the previous section, in this scenario we can solve the

computation problem for perfect abstractions of CQs.

Theorem 13. [Cima et al. (2020)] Checking whether there exists a

query q in EQL-Lite−(UCQ) that is the perfectJ-abstraction of a CQ

qS is decidable. Moreover, if it exists, then q is a monotone query and

there is an algorithm that computes it.

7.2. One-to-one mapping

We now examine the problem of finding abstractions in the

presence of data integration systems J = 〈G,S,M〉 such that

M is a one-to-one mapping. A one-to-one mapping is a special

case of GLAV, constituted by a set of assertions of the form

∃ȳ.s(x̄, ȳ) → ∃z̄.g(x̄, ȳ), where s(x̄, ȳ) and g(x̄, ȳ) are single atoms

without constants or repeated variables.

The first result is that the algorithm previously presented for

computing EQL-Lite−(UCQ)-minimally complete abstractions of

CQs can be also used for computing EQL-Lite(UCQ)-minimally

complete abstractions of CQs for data integration systems J with

PGAV mapping.

Theorem 14. [(Cima et al., 2020, Theorem 3)] Under one-to-one

mappings, the EQL-Lite(UCQ)-minimally complete J-abstraction of

a CQ qS always exists, is computable, and is a monotone query.

Thus, using exactly the same considerations done for the case

of EQL-Lite−(UCQ), we can solve the computation problem for

perfect abstractions in EQL-Lite(UCQ) of CQs under one-to-one

mappings.

Theorem 15. [Cima et al. (2020)] Under one-to-one mappings,

checking whether there exists a query q in EQL-Lite(UCQ) that is the

perfect J-abstraction of a CQ qS is decidable. Moreover, if it exists,

then q is a monotone query and there is an algorithm that computes

it.

We now turn to the sound case under one-to-one mappings.

Specifically, in this scenario, while the existence of EQL-Lite(UCQ)-

maximally sound J-abstractions of CQs is still an open problem,

we present an algorithm for computing EQL-Lite(UCQ)-maximally

sound J-abstractions of CQJFEs qS. Roughly speaking, given a

data integration system J = 〈G,S,M〉 with M a one-to-one

mapping and a CQJFE qS, as a first step the algorithm computes

the EQL-Lite(UCQ)-minimally complete qG of qS and its UCQ

reformulation qu such that q
D
u = qJ,D

G
for each S-databaseD. Then,

for each CQ q′ which is a disjunct of qu such that q′ 6⊑ qS, the

algorithm adds in conjunction to the body of qG the negation of the

body of the EQL-Lite(UCQ)-minimally complete of q′. Informally,

this last step prevents qG to return answers that are not answers

of qS, guaranteeing soundness of the output query. For instance,

recall Example 1, and let J ′ = 〈G,S,M′〉 be the data integration

system with M′ = {m1,m2,m3} a one-to-one mapping. The

query returned by the algorithm is the EQL-Lite−(UCQ) query

{x | K(A(x))∧¬K(B(x))}, which is the EQL-Lite(UCQ)-maximally

sound J ′ abstraction of qS.

Theorem 16. [(Cima et al., 2020, Theorem 4)] Under one-to-one

mappings, the EQL-Lite(UCQ)-maximally sound J-abstraction of a

CQJFE qS always exists and is computable.

We conclude this section with the following observation.

The algorithms sketched above for computing “best” abstractions

always return an EQL-Lite−(UCQ) query. This directly implies that,

under one-to-one mappings, the query languages EQL-Lite(UCQ)

and EQL-Lite−(UCQ) have the same expressive power in finding

all three kinds of abstractions (perfect, minimally complete, and

maximally sound).

8. Open problems

We have provided an overview of data abstraction, and we

have illustrated some results obtained in recent years on computing

abstractions. We conclude the paper by discussing a set of issues

related to abstractions that deserve more investigation.

8.1. Data quality

While data quality is one the main issues proposed in

Data-centric AI, there is no general and well-established

methodology for leveraging data quality for improving Machine

Learning methods.

As pointed out in Chen et al. (2021), poor data quality has

a direct impact on the performance of the machine learning

system that is built on the data. It is therefore important to

devise techniques for validating the quality of both training and

testing datasets. Recent work in this direction shows a strong

correlation between the quality of the datasets and the performance

of the machine learning system, and demonstrates that a rigorous

evaluation of data quality is necessary for guiding the quality

improvement of machine learning.We believe that formal methods

like data abstraction can provide some contributions toward this

goal. For example, by helping in making the semantics of training

data explicit, abstraction can provide support for recognizing biases

or other problems in the data used to train a Machine Learning

Model. Making concrete steps in this direction is a stimulating

research challenge.

8.2. Languages for abstractions

A crucial issue related to abstraction is to compute perfect and

approximated abstractions within specific classes of queries. For

the fundamental class UCQ, the decidability of checking whether

there exists a UCQ-maximally sound abstraction of a UCQ source

query is still open. More generally, there are many interesting

classes of queries that can be used to express abstractions, and for

which it would be interesting to compute perfect, or approximated

abstractions. For example, in the case of graph databases

as virtual views, relevant classes of queries for abstractions

include regular path queries, or two-way conjunctive regular

path queries.
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8.3. Abstraction and monotonicity

In this paper we have discussed the use of DDK to express

monotone abstractions of source queries in the class UCQ. It

would be interesting to investigate which is the minimal expressive

power needed for capturing perfect and approximated monotone

abstractions of source queries. Also, it is not difficult to see

that there are queries for which the perfect abstraction is non-

monotone. Although first results on non-monotone abstractions

have appeared in Cima et al. (2020), the issue of checking

the existence of and computing non-monotone abstractions is

largely unexplored.

8.4. Expressive source queries

The majority of work on abstraction so far focused on

source queries in the class UCQ. It would be interesting to

address the problem of computing perfect and approximated

abstractions of source queries expressed in more expressive

languages such as Datalog. More expressive mapping languages

(e.g., UCQ with inequalities in the GLAV type of mapping) also

deserve attention.

8.5. Axioms

The computation of abstractions in the presence of

axioms in the global schema or in the source schema is

another interesting problem to study. First results in this

direction appeared in Cima (2017), Lutz et al. (2018),

and Cima et al. (2019), but the topic requires a more

thorough analysis.

8.6. Reverse engineering

Abstraction has also interesting connections with the reverse-

engineering problem (Barceló and Romero, 2017). When casted

in data integration, given a source database D and set P of

tuples, this problem aims at finding a global schema query q

that captures P, i.e., such that the answers of q with respect to

D captures the tuples in P. Despite the intuitive connection, a

detailed analysis of the relationship between the two problems

is missing.

8.7. User requirements

Finally, crucial aspects of abstractions, such as succinctness and

clarity, have not been considered in this paper. More generally,

issues related to the adequacy of the formulation of abstractions

with respect to user requirements deserve greater attention.
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