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Masking important information to
assess the robustness of a
multimodal classifier for emotion
recognition

Dror Cohen†, Ido Rosenberger†, Moshe Butman and Kfir Bar*

Faculty of Computer Science, The College of Management Academic Studies, Rishon LeZion, Israel

Deep neural networks have been proven e�ective in classifying human

interactions into emotions, especially by encoding multiple input modalities. In

this work, we assess the robustness of a transformer-basedmultimodal audio-text

classifier for emotion recognition, by perturbing the input at inference time using

attacks which we design specifically to corrupt information deemed important for

emotion recognition. To measure the impact of the attacks on the classifier, we

compare between the accuracy of the classifier on the perturbed input and on

the original, unperturbed input. Our results show that the multimodal classifier

is more resilient to perturbation attacks than the equivalent unimodal classifiers,

suggesting that the two modalities are encoded in a way that allows the classifier

to benefit from one modality even when the other one is slightly damaged.
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1. Introduction

Automatic emotion recognition is among the most widely studied applications of

machine learning. People express their emotions through voice, facial expressions, hand

gestures, body movements, writing, arts, and more. In this work, we focus on speech and

its transcriptions.

In the last few decades, there have been a considerable amount of research in the area

of emotion recognition. Before the era of deep learning, most of the algorithms for emotion

recognition were developed based on some traditional machine-learning techniques, such as

support vector machines (SVM). However, recent developments use deep neural networks,

which have shown significant performance improvement in emotion recognition (Fathallah

et al., 2017; Mirsamadi et al., 2017; Sapiński et al., 2019).

Most previous studies focus on emotion recognition using only one modality, such

as text, video, or voice. However, it has already been shown that algorithms for emotion

recognition that are based on multiple modalities, perform better than the ones that use

only one modality (Povolny et al., 2016; Krishna and Patil, 2020). In our study, we go

beyond this comparison as we measure the contribution of each encoded modality by

intentionally perturbing the input at inference time to either exclude or corrupt some

intelligible information, which has already been proven effective for emotion-recognition

classification, and monitoring changes in the performance of the model. We use two

modalities, voice speech and its transcription. For comparison, we train two unimodal

classifiers, one that uses only the acoustic speech signal, and one that uses only its textual

transcriptions, and examine their performance under equivalent conditions.
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It has been shown (Bolinger and Bolinger, 1986; Shintel et al.,

2006) that prosody is an important aspect of emotional expression

through speech, and that vocalizations with high fundamental

frequency (F0), also known as voice pitch, and high intensity are

associated with positive emotion expressions and high arousal;

on the other hand, low-pitch vocalizations may indicate negative

emotions and low arousal. Moreover, there is evidence that

people generate iconic vocalizations to express different meanings

(Perlman and Cain, 2014). Specifically, Perlman et al. (2014)

have shown that different vocalizations—characterized by average

voice pitch, pitch range, duration, intensity, and harmonics-to-

noise ratio—were used to differentiate between antonymic pairs

of adjectives and adverbs. Additionally, there is a large body of

work that studies how voice pitch is associated with everyday

social interactions. For example, Pisanski et al. (2018) showed that

human-voice modulation in non-verbal communication, elicits

favorable judgements and behaviors from potential mates.

In this study, we focus on measuring the robustness of a

multimodal audio-text emotion-recognition model, by performing

perturbation attacks designed to hide or modify information

deemed important for emotion recognition. The multimodal

classifier is evaluated on both, the perturbed and unperturbed

inputs, for which we measure classification performance. The

difference in performance is used to measure the impact of the

specific attack on the examined model. Concretely, inspired by the

studies mentioned above that indicate adjectives, adverbs and pitch

as important components for expressing emotions, on the text side

we hide words from the input that belong to a specific part-of-

speech category. We focus on adjectives and nouns, leaving adverbs

out of scope due to their relatively low frequency. On the audio side,

we increase or decrease the voice pitch by half a tone.

In a recent review paper (Liang et al., 2022) on multimodal

machine learning, the authors have identified six core research

challenges related to multimodal analysis: representation,

alignment, reasoning, generation, transference, and quantification.

We believe that in this study, we make contributions to the

alignment challenge, which is related to the connections and

interactions between the modalities. We study the interaction

between some specific part-of-speech categories and the audio

modality, as well as the interactions between the pitch and the

text modalities.

Therefore, our research focuses on the following research

questions:

RQ1. Does combining speech transcription with voice improve

performance of an emotion-recognition classifier?

RQ2. Is the multimodal emotion-recognition classifier more

resilient to part-of-speech perturbation attacks than the equivalent

text-only classifier?

RQ3. Is the multimodal emotion-recognition classifier more

resilient to pitch-modulation perturbation attacks than the

equivalent audio-only classifier?

We encode each modality using a transformer-based

architecture; for the speech signal we use wav2vec 2.0 (Baevski

et al., 2020), and for the transcriptions we use BERT (Devlin

et al., 2019). In our multimodal architecture design we lean on

the model-level fusion paradigm as we combine the last part of

the two unimodal models, one for voice and one for text. To

train and evaluate our models, we use the Interactive Emotional

Dyadic Motion Capture (IEMOCAP) dataset (Busso et al., 2008),

one of the largest open-sourced multimodal resources available

for emotion recognition. It consists of approximately 12 h of

filmed conversations, broken down into speech, text transcription,

video, and motion capture of face. The conversations are manually

annotated into categorical emotion labels, which can be used in

supervised classification settings.

Our results suggest that a multimodal model for emotion

recognition is more resilient to the perturbations we perform on

to the input, than the equivalent unimodal models.

2. Related work

Emotion recognition has been widely studied over the years,

and different modalities have been evaluated, including audio, text,

facial expressions, and body movements. Some works have already

shown that combining several modalities improves classification

performance for emotion recognition. The two main dimensions

on which multimodal classifiers differ from each other are (1)

the modalities which they encode, and (2) the approach that

they take to combine the modalities together, also known as

fusion strategy. Typically, a multimodal architecture is designed

either by concatenating the features extracted from each modality,

known as feature-level fusion strategy, or by concatenating the

output of unimodal models that encode and classify each modality

independently. The latter is divided into three known strategies:

decision-level fusion in which the final output of the classifiers

are combined and used as an input for a mathematical formula to

generate the final prediction; score-level fusion, which is almost the

same as decision-level fusion, but instead of using the final output

of the unimodal classifiers, their underlying label distributions are

used; and finally, model-level fusion, in which some output layers

of the unimodal models are concatenated and extended with a

classification component. Our model is designed based on the

latter strategy.

There is a relatively large number of studies on emotion

recognition that focus on audio and video. Busso et al. (2004) built

a relatively small collection of recordings of an actress expressing

four basic emotions (sadness, happiness, anger, and the neutral

state) through reading sentences in front of a camera. They

recorded her facial expressions and voice, and used it to train

a multimodal classifier that classifies a given recording into the

four emotion labels. They experimented with two fusion strategies,

decision-level and model-level, and showed that the two perform

similarly, but much higher than unimodal classifiers. Ranganathan

et al. (2016) have introduced a new dataset of short videos featuring

actors enacting various expressions of emotions. Each recording

was divided into three modalities: audio, face video, and body

video. They proposed a deep belief network that combines all

modalities together, attaining better results than some baseline

models, which use either amore traditional classification algorithm,

such as support vector machines (SVM), or encode less modalities.

In another work on audio-video emotion recognition (Zhang et al.,

2017), the authors developed a deep belief network that fuses audio

and video into a single classificationmodel. Schoneveld et al. (2021)

proposed a deep neural network that encodes audio and video

for emotion recognition. Their proposed architecture follows the
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model-level fusion strategy in which the two unimodal models are

combined using a deep feed-forward network, which they train

end to end. As opposed to all other previous work mentioned

above, Schoneveld et al. (2021) worked on a dimensional view of

emotions, in which emotions are embedded on a continuous 3

dimensional space with axes represent the valence, arousal, and

potentially the dominance of the emotion. The other representation

is the categorical view in which emotions are represented as discrete

states. Schoneveld et al. (2021) reported on new state-of-the-art

results for valence detection on the RECOLA dataset (Ringeval

et al., 2013), using their multimodal setup.

Some works use more than two modalities. For example,

Poria et al. (2016) proposed a multimodal classifier that encodes

speech, voice tone, and facial expressions for emotion recognition,

using a temporal convolutional neural network. Tripathi et al.

(2018) introduced a simple architecture that concatenates three

modalities—speech, transcriptions, and motion capture—and

reported on a significant improvement over the equivalent

unimodal classifiers. Earlier that year, a similar concatenation

approach was suggested by Poria et al. (2018), who also showed

that a multimodal classifier outperforms models that use single

modalities for emotion recognition.

In our study, we design a model that encodes speech voice and

its transcription for emotion recognition. Those two modalities

have been the main focus of a recent review article (Atmaja

et al., 2022), which surveys a large number of works on speech

emotion recognition. To name a few, Cho et al. (2019) proposed

a neural architecture for emotion recognition using speech voice

and its transcription, and achieved a significant improvement of

24% in accuracy, over the equivalent unimodal baselines. Atmaja

and Akagi (2020) took a multitask learning approach to encode

some acoustic features extracted from voice, as well as embeddings

of words from the transcriptions, and reported on a significant

improvement in valence prediction over a unimodal classifier

that uses only acoustic features. Several other works (Cai et al.,

2019; Atmaja et al., 2020; Chen and Zhao, 2020; Liu et al., 2022)

that employ different fusion strategies, as well as different model

architectures, have clearly shown performance improvements

achieved by a multimodal architecture over unimodal baselines, for

categorical emotion recognition.

In this work, we study the robustness of a multimodal classifier

that encodes voice speech and its transcription, by perturbing the

input in different ways, specifically designed to make impact on

emotion recognition, and examining the effect of such perturbation

attacks on the performance of the model. In a recent work

(Schiappa et al., 2022), unrelated directly to emotion recognition,

the authors described a similar perturbation methodology which

they use to study the robustness of a multimodal classifier that

encodes video and text. They have tested various real-world

perturbation strategies andmeasured how significantly they impact

the performance of the model. Among the strategies the authors

have tested, there is one in which they replaced different part-of-

speech categories with a placeholder. They concluded that models

are generally more robust when only the text gets perturbed, as

opposed to when only video was perturbed. The robustness of a

multimodal neural network has been studied also by Yang et al.

(2021), who even proposed a way to combine the two modalities in

a neural architecture that have better resilience to such perturbation

attacks performed only on one source.

Similarly, our work focuses on the robustness of a multimodal

audio-text neural network for emotion recognition. We perturb

the input, each modality at a time, and examine the change

in performance. Our perturbation techniques are specifically

designed to corrupt information that has been proven effective for

emotion recognition.

3. Data

We work with the Interactive Dyadic Emotional Motion

Capture Database (IEMOCAP) (Busso et al., 2008) which was

released in 2008. IEMOCAP is a collection of recordings of five

dyadic sessions of different pairs of actors, one female and onemale.

The actors were given two assignments: (1) They were instructed

to play three written scripts, which were designed to generate

emotions. (2) The actors were given a general scene description,

on which they were asked to improvise a conversation. Each

conversation is provided along with a transcription, a speech audio

file, a video file, and some motion-capture data. Overall, the dataset

contains approximately 12 h of recordings. The conversations were

manually divided into utterances of length between 3 and 15 s

which were labeled by at least three human annotators for emotion

labels. The following ten labels were used: neutral, happiness,

sadness, anger, surprise, fear, disgust, frustration, excited, and other.

Table 1 summarizes the label breakdown of the utterances included

in each session. The “xxx” label refers to utterances for which the

annotators have not come into agreement on label assignment; it

comprises about 25% of the dataset, which we decided to exclude

from our experiments.

As shown in the table, some labels are less frequent than the

others. Consequently, in this study we decide to work only with

utterances annotated with the following five labels: sad, anger,

frustrated, happy, and excited. Following common practices (Poria

et al., 2016; Neumann and Vu, 2019; Sutherland et al., 2021;

Schmitz et al., 2022), we merge all happy and excited instances into

a single label, resulting in a dataset of utterances that are labeled

with four labels, as summarized in Table 2.

In our work, each utterance is represented by a voice speech file

and its textual transcription. The audio files were down-sampled to

16 kHz, and the texts were taken as is.

4. Methodology

We design a relatively simple neural architecture for

multimodal classification comprises two encoders, one for

each modality, which works on the utterance level. The two

encoders produce an encoded version of the voice speech (audio)

and its transcription (text), which we concatenate into as a single

representation used for classification. Figure 1 visualizes our

multimodal network architecture. To compare the performance of

our multimodal architecture, we use the same unimodal encoders

individually for classification. We elaborate further on each

encoder in the following three sections.
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TABLE 1 IEMOCAP label breakdown per session.

Label Ses. 1 Ses. 2 Ses. 3 Ses. 4 Ses. 5 Total

Neutral 384 362 320 258 384 1,708 (17.0%)

xxx 415 436 572 564 520 2,507 (24.9%)

Frustrated 280 325 382 481 381 1,849 (18.4%)

Angry 229 137 240 327 170 1,103 (10.9%)

Sad 194 197 305 143 245 1,084 (10.7%)

Happy 135 117 135 65 143 595 (5.9%)

Excited 143 210 151 238 299 1,041 (10.3%)

Surprised 25 17 28 19 18 107 (1.0%)

Other 1 1 0 1 0 3 (0.0%)

Fear 12 9 2 7 10 40 (0.4%)

Disgust 1 0 1 0 0 2 (0.0%)

TABLE 2 Label breakdown per session in the filtered dataset.

Label Short Ses. 1 Ses. 2 Ses. 3 Ses. 4 Ses. 5 Total

Frustrated fru 280 325 382 481 381 1,849 (32.5%)

Angry ang 229 137 240 327 170 1,103 (19.4%)

Sad sad 194 197 305 143 245 1,084 (19.1%)

Happy+Excited hap 278 327 286 303 442 1,636 (28.8%)

We define a short caption for each label in the Short column, which we use throughout the paper.

4.1. The text encoder

Our text encoder is based on BERT (Devlin et al., 2019), a

common bidirectional transformer (Vaswani et al., 2017) encoder.

Following standard practices, we apply WordPiece (Schuster

and Nakajima, 2012) tokenization on the input transcriptions,

place a [CLS] token in front of the sequence of tokens, and

close it with a final [SEP] token. We use the base1 version

of BERT which generates an output vector of 768 dimensions

for every input token. We take only the output vector of the

[CLS] token, which was originally designed for classification

tasks, and feed it into a feed-forward component made of

two ReLU-activated fully-connected layers with 512 and 256

neurons, respectively.

The text encoder is used in two classification settings,

unimodal and multimodal. For unimodal classification, the final

256-dimensional vector is fed into a final classification layer,

activated by softmax, which generates a distribution over the

four emotion labels. The multimodal classifier is described in

the following section. To train the unimodal classifier we use a

batch size of 16, a learning rate of 10−6, and a weighted cross-

entropy loss function, with weights proportional to the number

of instances of each label. We use early stopping with a patience

value of 10.

1 Specifically, we use the bert-base-uncased model of Hugging Face

(Wolf et al., 2019).

4.2. The audio encoder

We design the architecture of the audio encoder in a similar

way to the one presented by Pepino et al. (2021). We start by

processing the raw waveform of the voice speech using wav2vec

2.0 (Baevski et al., 2020), and feed its 768-dimensional mean-

pooled output vector into a feed-forward network composed of

two layers with 512 and 256 neurons, respectively. Each layer is

activated by ReLU and extended by a dropout function with drop

probability of 0.2.

The input sequence length was set intentionally to 246, 000,

which is the static sequence length of wav2vec 2.0. Along

with a sample rate of 16, 000, our input length corresponds

to 15.375 s. Input sequences shorter than this length are

padded accordingly. For longer sequences we use only the

first 246, 000 samples, and cut out all samples that follow.

Overall, there are only 1.16% instances that are longer than the

246, 000 limit.

Similar to the text encoder, we use the audio encoder for both

unimodal and multimodal classification. The multimodal classifier

is described in the following section. In unimodal classification, the

final 256-dimensional vector is fed into a final classification layer

activated by softmax, which generates a distribution over the four

emotion labels.

To train the unimodal classifier, we use batch size of 8, a

learning rate value of 10−6, and a weighted cross-entropy loss

function, with weights proportional to the number of instances

of each label. Same as before, we use early stopping with

patience of 10.
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4.3. The multimodal classifier

The multimodal classifier is composed of the two encoders,

whose 256-dimensional output vectors get concatenated into a

final 512-dimensional vector, which we feed into a ReLU-activated

fully-connected layer with 128 neurons. Finally, we feed the

128-dimensional vector into a final classification layer activated

by softmax to generate classification probabilities for the four

emotion labels.

We use a batch size of 4, since the input for the multimodal

classifier takes more memory than the input for the unimodal

classifiers. Additionally, we use a learning rate of 5 × 10−6 with

a weighted cross-entropy loss function same as described above.

4.4. Experimental settings

We fine-tune the three classifiers, text, audio, and multimodal,

on the five sessions of the IEMOCAP dataset, and evaluate their

performance. Each utterance, represented by speech and its textual

transcription, is used as a single classification instance. We perturb

each utterance, by hiding or modifying some information deemed

important for emotion recognition. We train and evaluate the

models under each perturbation attack individually, and measure

their performance. Embracing common practices, we evaluate

our models on a five-fold cross-validation setting in which we

exclude one full session from the training set, and use it for

evaluation. The performance is measured with the standard

accuracy metric.

The perturbation attacks are carried out only during inference

time on both modalities, text and audio. Our general approach for

text perturbation is to hide some words by replacing them with

the special [MASK] token which BERT uses during pre-training;

this technique is also known as masking. We perform four text

perturbation attacks, which we evaluate independently. The first

attack is masking all adjectives—which we recognize as important

for emotion recognition—in the transcription.

For control, our second attack is carried out by masking

random words, regardless of their part-of-speech category. The

number of words we mask equals to the number of adjectives in

each utterance. Our third attack focuses on nouns, which typically

play a broader semantic role in a sentence. Therefore, we mask all

nouns in the input text, and add another attack in which we mask

the same number words, chosen randomly ignoring their part-

of-speech category. All adjectives and nouns were automatically

detected using spaCy.2 Their frequencies in the entire corpus are

7.91% for nouns and 3.76% for adjectives.

To perturb the voice signal, we use the librosa

audio library (McFee et al., 2015) for modulating the voice

fundamental frequency, also perceived as voice pitch, of each

utterance by either increasing it or decreasing it by half a

tone, chosen randomly. Technically speaking, we use the

librosa.effects.pitch_shift procedure by assigning

n_steps with either 1 or−1, chosen randomly.

2 https://spacy.io

In all our experiments, we fine-tune each model on the original

dataset and evaluate it on both versions of the test set, perturbed

and unperturbed.

5. Results

We report on accuracy values achieved by the three models:

text, audio, and multimodal. We evaluate the three models under

all perturbation conditions which are relevant for their input

modalities. Since the multimodal classifier uses both modalities, we

evaluate it on all four perturbed transcriptions, while maintaining

their speech input intact, and then on the only one perturbed

version of the voice signal, paired along with the original intact

transcription. Additionally, we evaluate the multimodal classifier

on combinations of each of the four perturbed transcriptions and

the pitch-modulated speech signal.

We report on results in four tables. Table 3 summarizes the

results attained by the three classifiers on the original, unperturbed

inputs. The three other tables include results on perturbed inputs.

Tables 3, 4 show the results of the text and audio classifiers,

respectively. Table 6 summarizes the results of the multimodal

classifier. Each experiment is executed three times, with each

execution running using a different random seed. All accuracy

values reported in the four tables are the average of the three

different executions.

The first row in each of Tables 4–6, represents the baseline

experiment, in which we evaluate the models on the original

unperturbed input. Essentially, the numbers in the Baseline rows

are equal to the numbers appear in the corresponding rows of

Table 3. We report on accuracy values achieved by the models on

each of the five sessions, while training on the other four sessions

as described above. The average of the five sessions is reported in

the Avg. column of each table. The Impact column measures in

percentage, the difference between the average accuracy and the

Baseline average accuracy. Unsurprisingly, all impact values have

a negative sign in all our experiments. For convenience reasons,

we add another column to Table 6 named Impact S. Modal and

copy the impact values from the unimodal results tables. The two

rows before last in the multimodal table, refer to the experiments

we perform with the multimodal classifier processing only one

modality (no text means using an empty string as input, and no

audio means using a short audio signal of complete silence). The

last row refer to an experiment we perform using unperturbed text,

and audio that was augmented with some white noise, generated by

random sampling from a zero-mean normal distribution initialized

with a standard deviation of 0.1. We discuss the results in the

following section.

6. Discussion

According to the results shown in Table 3, we learn that the

multimodal classifier significantly outperforms the two unimodal

classifiers. This observation addresses RQ1 and it is aligned with

all previous work mentioned above. Additionally, our results

show that all the three classifiers perform better on the original
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FIGURE 1

The text+audio model’s architecture.

TABLE 3 Accuracy values achieved by the three classifiers, evaluated on original, unperturbed inputs.

Model Ses. 1 Ses. 2 Ses. 3 Ses. 4 Ses. 5 Avg.

Text 67.44 72.21 63.67 66.40 67.82 67.50

Audio 62.70 60.51 54.76 56.40 57.66 58.40

Multimodal 75.94 79.65 72.63 74.64 76.01 75.77

The bold value indicates the best results.

TABLE 4 Accuracy numbers achieved by the text classifier for each IEMOCAP session under di�erent masking conditions.

Method Ses. 1 Ses. 2 Ses. 3 Ses. 4 Ses. 5 Avg. Impact

Baseline 67.44 72.21 63.67 66.40 67.82 67.50

Adjectives 61.33 68.02 58.69 60.76 61.31 62.02 −8.15%

Random

(#adjectives)

62.59 69.06 59.55 61.16 61.60 62.79 −7.01%

Nouns 58.14 63.72 55.92 55.13 58.10 58.20 −13.80%

Random

(#nouns)

60.92 65.78 56.94 56.70 59.88 60.04 −11.09%

The Average column has the average accuracy across all sessions. The Impact column measures the difference of the average accuracy in percentage from the Baseline model that analyzes the

original unperturbed inputs.

TABLE 5 Accuracy numbers achieved by the audio classifier for each IEMOCAP session using speech signal whose pitch was intentionally damaged.

Method Ses. 1 Ses. 2 Ses. 3 Ses. 4 Ses. 5 Avg. Impact

Baseline 62.70 60.51 54.76 56.40 57.66 58.40

Pitch 56.88 53.45 50.55 48.88 51.58 52.26 −10.56%

The Average column has the average accuracy across all sessions. The Impact column measures the difference of the average accuracy in percentage from the Baseline model that analyzes the

original unperturbed inputs.

unperturbed inputs rather than on their relevant perturbed

variation.

Table 6 shows that classifying perturbed inputs makes a larger

impact on the two unimodal classifiers than on themultimodal one.

The impact made on the text classifier using the adjective-masking

attack is −8.15% (±0.12) (i.e., the model performs worse by 8.15%

on the perturbed inputs), while the impact on the multimodal

classifier is only −5.20% (±1.12). Similarly, the impact made by

the noun-masking attack on the text classifier is −13.80% (±1.52),

while the impact on the multimodal classifier is only −8.45%

(±1.60). Based on these results, we conclude that the multimodal

classifier is significantly more resilient to perturbation attacks in

which a specific part-of-speech category is masked, than the text

classifier is. This conclusion addresses RQ2. We get to the same
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TABLE 6 Accuracy numbers achieved by the multimodal classifier for each IEMOCAP session under di�erent conditions.

Method Ses. 1 Ses. 2 Ses. 3 Ses. 4 Ses. 5 Avg. Impact Impact S. Modal

Baseline 75.94 79.65 72.63 74.64 76.01 75.77

Text perturbations

Adjectives 71.59 76.13 68.86 69.93 72.67 71.83 −5.20% −8.15%

Random (#adj.) 72.85 77.11 70.16 70.62 73.15 72.78 −3.95% −7.01%

Nouns 70.74 73.15 66.47 66.93 69.57 69.37 −8.45% −13.80%

Random (#noun) 72.10 75.79 68.59 69.75 71.62 71.57 −5.55% −11.09%

Audio perturbations

Pitch 73.48 78.16 71.33 72.03 73.96 73.79 −2.61% −10.56%

Text-audio perturbations

Pitch + adj. 68.92 74.98 67.66 67.62 69.87 69.81 −7.88% −10.56%,−8.15%

Pitch + rand. (#adj.) 70.12 76.04 68.61 68.21 70.42 70.68 −6.73% −10.56%,−7.01%

Pitch + noun 68.00 71.99 65.12 64.55 66.79 67.29 −11.20% −10.56%,−13.80%

Pitch + rand. (#noun) 68.79 75.05 67.52 66.84 69.32 69.50 −10.17% −10.56%,−5.55%

Eliminating one modality

No text 45.90 40.5 46.25 44.12 48.57 45.07 −40.51%

No audio 60.07 66.63 57.35 64.09 66.96 63.02 −16.82%

Adding white noise

Noisy audio 54.54 65.41 53.54 67.07 46.69 57.45 −24.17%

The Avg. (average) column has the average accuracy across all sessions. The Impact column measures the difference of the average accuracy in percentage from the Baseline model, which

processed the original unperturbed inputs. In the last column, Impact S.(Single) Modal(ilty) we copy the impact numbers from the Impact columns of Tables 4, 5.

TABLE 7 Examples of utterances, provided along with classification decisions made by both, the multimodal and the audio classifiers, under

pitch-modulation perturbation conditions (low by half tone, high by half tone, and unperturbed).

Transcription Label Multimodal Audio

1 There’s people that have given more though, you know? sad

Unperturbed sad = 0.99, fru < 0.1 sad = 0.71, hap = 0.19

File name: Audio 8.WAV

Pitch-modulated: ↑half-tone sad = 0.99, fru < 0.1 fru = 0.70, hap = 0.23

File name: Audio 6.WAV

Pitch-modulated: ↓half-tone sad = 0.99, hap < 0.1 hap = 0.56, fru = 0.31

File name: Audio 7.WAV

2 Oh. Totally. hap

Unperturbed hap = 0.98, fru = 0.01 hap = 0.46, fru = 0.34

File name: Audio 5.WAV

Pitch-modulated: ↑half-tone hap = 0.99, fru < 0.1 ang = 0.96, fru = 0.02

File name: Audio 3.WAV

Pitch-modulated: ↓half-tone hap = 0.99, fru < 0.1 ang = 0.74, fru = 0.23

File name: Audio 4.WAV

For each example, we provide the two labels with the highest probability, as generated by each model (the final label is in boldface). For reference, we provide the audio files in the

Supplementary material (the files can be located with the file name mentioned under each utterance). The true label is provided in the Label column.

conclusion for RQ3 by looking at the pitch-modulation attack

(audiomodel:−10.56%±1.42, multimodal model:−2.61%±1.37).

According to the large (negative) impact values reported on the

three last rows of Table 6, we learn that the multimodal classifier

performs worse than the unimodal classifiers, either when one

modality is completely missing from the input, or when the audio

is augmented with some white noise. We find these results to be

aligned with Schiappa et al. (2022).
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TABLE 8 Examples of utterances, provided along with classification decisions made by both, the multimodal and the text classifiers, under the adjective-

and noun-masking attacks.

Transcription Label Multimodal Text

1 Unperturbed

I waited the entire baggage- I waited for the whole fru fru = 0.99, ang < 0.1 fru = 0.80, ang < 0.1

baggage carousel four times. They told me to go to

the next one. I waited through that for three planes

and now I’m here.

File name: Audio 2.WAV

Adjective-masking

I waited the [MASK] baggage- I waited for the [MASK] fru = 0.88, ang = 0.11 fru = 0.52, sad = 0.38

baggage carousel four times. They told me to go to

the [MASK] one. I waited through that for three planes

and now I’m here.

Noun-masking

I waited the entire [MASK]- I waited for the whole fru = 0.63, ang < 0.1 hap = 0.49, fru = 0.29

[MASK] [MASK] four [MASK]. They told me to go to

the next [MASK]. I waited through that for three [MASK]

and now I’m here.

2 Unperturbed

Then why is she still single? New York is full ang ang = 0.99, fru < 0.1 ang = 0.45, fru = 0.31

of men, why is she still single? Probably a hundred

people told her she’s foolish, but she waited.

File name: Audio 1.WAV

Adjective-masking

Then why is she still [MASK]? New York is [MASK] ang = 0.81, hap = 0.16 hap = 0.69, fru = 0.19

of men, why is she still [MASK]? Probably a hundred

people told her she’s [MASK], but she waited.

Noun-masking

Then why is she still single? New York is full ang = 0.99, fru < 0.1 fru = 0.63, hap = 0.17

of [MASK], why is she still single? Probably a hundred

[MASK] told her she’s foolish, but she waited.

For each example, we provide the two labels with the highest probability, as generated by each model (the final label is in boldface). For reference, we provide the audio files in the

Supplementary material (the files can be located with the file name mentioned under the unperturbed version of each utterance). The true label is provided in the Label column.

Putting this all together, we find that overall, the multimodal

classifier is more robust than the unimodal classifiers, in a way

that it can better handle perturbation attacks, designed specifically

to either damage or remove information considered important for

emotion recognition. Since we perturb the input only at inference

time, we believe that this finding means that the multimodal

classifier encodes the two modalities in a way that it can use

information from one modality to compensate for the other

modality, when the latter was flawed. The voice modality helps

the model make up for the missing adjectives and nouns, while

the transcription helps the model make up for the modulated

pitch, even though in both cases, the model was trained on

unperturbed instances. The no text and no audio experiments

reinforce this finding, as we learn that when one modality is

missing, the moultimodal classifier performs much worse than the

unimodal classifiers. Consequently, it shows that during training

the multimodal classifier uses information from both modalities,

and encodes them in a non-additive way.

In Tables 7, 8, we provide some examples of utterances

for which the multimodal classifier returns the correct label

even when facing the pitch-modulation attack (in Table 7), and

the adjective/noun-masking attacks (Table 8), while the relevant

unimodal classifier returns the wrong label.

Interestingly enough, we see some indications that the

transcription is more important than the voice for multimodal

emotion recognition. Since the pitch-modulation attack makes a

relatively small impact on the multimodal classifier, we assume

that the text, and the way that it is encoded with BERT,

contains more useful information than voice for classification.

However, it could also be attributed to other causes, such
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as inefficient voice attacks, or the way voice is encoded by

wav2vec 2.0.

Looking at the results reported in Table 4, we realize that

masking random words makes a smaller impact on the text model

than masking a specific part-of-speech category. This result is

repeated in the multimodal analysis. Since the number of random

words we choose to mask is equal to the number of words of

the specific category we mask, the results suggest that adjectives

and nouns are more important for emotion recognition than a

randomly chosen set of words. It seems like nouns make a bigger

impact on both, text and multimodal models. However, it is hard to

conclude that nouns are more important for emotion recognition

than adjectives, since nouns are more frequent than adjectives in

our corpus (7.91% vs. 3.76%). More work is needed in order to

compare the importance of specific part-of-speech categories for

emotion recognition.

Combining perturbation attacks on both modalities, results in

impact values equivalent to the sum of the impact values made by

the two individual attacks (combining pitch and adjectives:−7.88%

vs. sum of individual attacks:−7.81%; combining pitch and nouns:

−11.20% vs. sum of individual attacks:−11.06%). It shows that the

multimodal classifier remains resilient to the same adjective- and

noun-masking attacks, even when the pitch is changed. Similarly,

multimodal model remains resilient to the pitch-modulation attack

even when either adjectives or nouns are gone.

7. Limitations

In this study we have used the IEMOCAP dataset, a collection

of recordings of five dyadic sessions of different pairs of actors, one

female and one male, all speak English. The topics discussed in the

recordings are selected by the actors. Therefore, the conclusions

drawn in this paper are limited to English and to the specific

discussed topics. Additionally, our methodology includes using

wav2vec 2.0 and BERT, whichmay be biased toward the dataset that

they have been trained on.

8. Conclusions

In this work, we measure the robustness of a multimodal

audio-text classifier for emotion recognition, by intentionally

perturbing one modality of the input and monitoring the change

in classification performance. The results of all our experiments

show that the multimodal classifier is more resilient to perturbation

attacks designed specifically for emotion recognition, than the

corresponding unimodal classifiers. The perturbation attacks,

which we use in this study, are designed to hide adjectives and

nouns from the transcriptions, as well as to modulate the voice

pitch of the speech signal. Based on the results of this work,

we recommend to include the transcription of the speech as an

input for an audio-based emotion recognition system. However,

more work is still needed to evaluate some additional types of

attacks, which are not necessarily designed for emotion recognition.

Extending this study to evaluate other relevant modalities, is one of

our future directions.
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