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Modeling needs user modeling
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Modeling has actively tried to take the human out of the loop, originally for
objectivity and recently also for automation. We argue that an unnecessary side
e�ect has been that modeling workflows and machine learning pipelines have
become restricted to only well-specified problems. Putting the humans back into
the models would enable modeling a broader set of problems, through iterative
modeling processes in which AI can o�er collaborative assistance. However, this
requires advances in how we scope our modeling problems, and in the user
models. In this perspective article, we characterize the required user models and
the challenges ahead for realizing this vision, which would enable new interactive
modeling workflows, and human-centric or human-compatible machine learning
pipelines.
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Copernician revolution: Quest for objective
modeling

Ever since the Copernican revolution, models have been meant to be objective

descriptions of the world, and subjective elements in them are minimized. The mindset in

empirical sciences is to form an objective description of a phenomenon, in a mathematical

form when possible (Figure 1), from a set of observations. In probabilistic modeling for

statistical data analysis, which we mainly focus on, the modeler’s beliefs do enter in Bayesian

inference, though in scientific data analysis only as domain knowledge (Gelman et al., 2013).

In the current data science mindset, an objective statistical model is inferred from a

dataset, and is then ready to be interpreted. However, this simplified mindset, which we

brought up to concretize our point, ignores the fact that the data have been collected

by someone, often by the modeler, for specific reasons. Without understanding the data

collection policy and the reasons, we cannot fully understand the data. For instance, it is

not possible to conclude on the efficacy of a treatment by the percentage of cured patients, if

only themost severely ill are treated. This leaves us with the following dilemma: themodeling

must be objective and not depend on the modeler; yet taking into account the modeler’s goal

and data collection policy seems necessary as well. We need a new mindset.

Anti-Copernican revolution with user modeling

Modeling becomes a human–AI collaboration problem

Recent developments in machine learning make a new mindset possible: the computer

can work as a collaborative assistant, working together with the human. For modeling, this

means being able to assist the human modeler even when they do not yet know the desired

outcome well enough to specify it.
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When the modeler is able to specify their data analysis task

precisely, modeling ultimately boils down to a workflow which can

be standardized to a reasonable extent (e.g., Bayesian workflow;

Gelman et al., 2020). In this case, current computational tools

take us a long way. In particular, for model fitting, probabilistic

programming languages require the modeler only to specify the

model and data, and the tool does the rest.

Conversely, when the task cannot be specified in advance, the

modelermust proceed iteratively, by trying out solutions, observing

new intermediate results and refining their hypotheses (Gelman

et al., 2020). During this process, the modeler gradually

understands better the data and the potential computational and

statistical issues. Themodelermay also need to collect new data. For

instance, in personalized medicine, the diagnosis can be sharpened

by iteratively developing hypotheses on the etiology, and then

refining them after additional examination by the physician. Here,

each new observation provides new information and affects the

future choices of the modeler.

Unfortunately, there are not many computational tools

available that can provide interactive assistance in the long and

costly process of iterative modeling. We argue that developing such

advanced tools requires including the human–AI collaboration

angle in the modeling. Specifically, cooperative assistance can be

formulated as a sequential decision-making problem for an AI

assistant, whose task is to decide which recommendations to make

to the user. For learning, the assistant gets some delayed feedback

on the success of the modeling task and instantaneous feedback

from the user’s reactions to the recommendations. Therefore, it

becomes essential for the AI to be able to understand the reasoning

behind the user’s feedback.

Consider the case of iterative drug design. It is difficult for

humans to provide a precise specification of the desired chemical

properties of a drug, because even experts do not know all these

properties yet, and even if they do, they may only know them

implicitly. Current systems force users to specify these chemical

properties, and as a result, the specification can be imprecise.

FIGURE 1

(A) Modeling classically aims at an objective description, from which the modeler should be absent. (B) However, the choice of the model may
depend on the modeler and their experiences; Newton probably would not have proposed the same model of gravity, had he grown up in a space
shuttle. We argue that helping a modeler in modeling may require putting the modeler back into the model.

Instead, if the users had an advanced AI assistant that is able

to interactively suggest good directions to explore the chemical

landscape, this would make it easier for them to arrive at precise

specifications. It has been shown by Sundin et al. (2022) that

pure RL-based solutions give unsatisfactory results, and that even

simple human-in-the-loop helps. In the following, we will show

how advanced user models can improve the assistance in this case.

In this novel mindset, the task of the AI becomes to assist the

modeler by extending the modeler’s abilities to reach their goals.

This is also known as collaborative intelligence (Epstein, 2015).

Then, the modeling process becomes a human–AI collaboration

problem, in which the AI needs to model the modeler as a part of

the process.

Human–AI collaboration needs advanced
user modeling

Collaborative intelligence requires both parties to understand

each other. Current modeling engines lack such understandability:

it is very difficult to guarantee that the user understands the

produced result. This is especially the case with the emerging

AutomaticMachine Learning (autoML) (He et al., 2021). Black-box

approaches such as autoMLmay be excellent for automation (Wang

et al., 2019), but wewant to augment the user’s modeling capabilities

instead of fully automating modeling. For the outcome where a

model is both useful to and understood by the user, it is important

to involve the user in the modeling process. It is also crucial that

the assistant understands what the user wants and why they prefer

certain actions to others, in order to satisfy the goal and preferences

of the user.

Just like the AI, the user also develops an understanding of

the AI assistant during the collaboration. Humans interpret the

actions of other humans as stemming from their goals, and they

extend the same interpretation to AI assistants. Thus, the user

perceives the actions of the AI as stemming from a goal and
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interprets the assistant’s recommendations accordingly. Then to

understand the user’s response, the AI needs to understand how

the user interprets its actions. This recursive understanding of

each other is characteristic of any collaboration. It makes the

cooperation possible by ensuring that the two agents can fully

benefit from the other’s actions.

Even though it may sound counter-intuitive for our initial goal

of developing objective models, what we exposed now shows that

the next step in advanced modeling actually requires including

a model of the modeler into the modeling process. This is not

inconsistent with objectivity of modeling, once we realize that the

traditional modeling mindset is restricted to cases where the goal

of modeling is fully specified. Including the modeler in the model

enables objective modeling also when the goal is tacit, by inferring

it interactively. If the modeling is done properly, the modeling

process remains equally objective and for the goals of the modeler,

the end result is the same as if they had been able to specify the goal

fully in advance.

Next-generation user models

User models have a long history in machine learning systems

such as recommender systems and information retrieval engines.

However, existing works regard the user mostly as a passive agent

reacting to their environment, for instance accepting or rejecting

recommendations based on their tastes. What has been missing is a

vision considering the user as an active decision-maker engaged in

a two-agent interaction with an AI collaborator. How to endow an

artificial agent with advanced models of the user remains an open

question, which is at the core of human–AI cooperation research.

The challenge is to find a simple enough model of the user to be

learnable, while still being useful to the user. Such a model needs to

take into account at least three key characteristics, detailed in the

next subsections.

The user has a goal

The AI assistant first needs to understand that the user has a

goal, and eventually what this specific goal is. The user typically

does not select their actions by responding passively, but actively

plans to reach their goal. The modeling decisions made by a

modeler are all motivated by a purpose, which in research can be as

general as to understand a phenomenon in a faithful way. In drug

design, it is to find a molecule with specific properties, which the

designer is not able to fully explicate.

Indeed, in many cases, the user may not be able to specify their

goal, either because they do not yet know what is feasible, or they

are not able to articulate the desired outcomes. The user may also

simply prefer to save the effort and get help in specifying all details.

Every piece of detail left unspecified, or imprecisely specified, opens

the door to shortcut solutions which the user may not want.

Hence, the AI assistant needs to infer the user’s goal through the

interaction. By observing the actions of the user, the assistant can

attempt to infer what objective the user is maximizing and what

goal is being pursued. This is the task of Inverse Reinforcement

Learning (IRL) (Ng and Russell, 2000). Alas, IRL is inherently

limited, in particular by unidentifiability issues and requirements

it places on the quality of the user input.

The user has a limited cognitive
computational capacity

Knowing that the user has a goal is not enough; it is also

essential to know how they plan on reaching this goal. This is

important to be able to anticipate properly the actions of the user,

and to infer the goal correctly.

Indeed, it is impossible to infer the reward being maximized,

if the maximization process is not known (Armstrong and

Mindermann, 2018). This corresponds to understanding

the limitations and constraints of the agent. An agent with

infinite resources could base its choices on the exploration

of all possible sequences of outcomes. Such an exploration

is obviously computationally prohibitive when planning over

long horizons.

In this sense, a human’s behavior depends on their cognitive

computational capacity: we search the optimum among only

a subset of scenarios, selected according to our cognitive

computational capabilities. For instance, we may ignore scenarios

that we deem too improbable. This idea of being rational within the

bounds of a given computational capacity and other constraints, is

known as computational rationality (Lewis et al., 2014; Gershman

et al., 2015). As an example, when incrementally designing a

molecule, a user having expertise on specific types of molecules

and currently considering incremental changes in them, may not

want to be distracted by completely different kinds, even if they are

theoretically optimal in some sense.

It becomes then difficult for an AI assistant to anticipate

the user’s actions and to infer their goal, if these bounds are

not identified. Therefore, the AI must have a model of the

user as a computationally rational goal-seeking agent. However,

the nature of a human’s cognitive bounds is very different

from the bounds usually implemented in an artificial agent, and

prior knowledge needs to be brought from cognitive sciences,

psychology, and human-computer interaction which study the

specifics of human reasoning.

The user has a theory of the assistant’s mind

No matter how good the plan of the assistant is, the user will

perceive and interpret it from their own point of view (Chakraborti

et al., 2020) and will accept a suggestion of the assistant only if they

consider it as useful to reach their goal.

Humans tend to interpret actions of others as goal-oriented, as

part of a plan to reach their goals, and that is what the user is likely

to do for anAI-assistant’s actions as well: the usermodels the system

and builds a theory of the AI’s mind (Chandrasekaran et al., 2017).

If the user can decipher the AI’s strategy, they can assess whether

it aligns with their own, and if it does, are more likely to accept

the AI’s suggestions and converge to their goal more quickly. This

implies the AI needs to model the user at a more advanced level: as
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FIGURE 2

Four levels of user models. Each level corresponds to the AI assuming a di�erent mode of decision-making of the user. An AI system having a
higher-level user model is able to take into account di�erent types of user’s reasoning. The graph in the head of some users and in the AI’s chip
denotes planning capability: it is a planning graph with the red flag signifying a goal. The AI having access to a higher-level user model means that
the AI has more advanced user modeling capabilities, accounting for the user reasoning about the AI. From left top to right bottom: (A) Level 0: the
user is not pursuing a goal, (B) Level 1: the user is pursuing a goal, but does not consider the AI is pursuing one as well, (C) Level 2: the user is
pursuing a goal and understands that the AI is pursuing a goal too, (D) Level 3: the user is pursuing a goal, understands that the assistant is doing the
same, and that the assistant will interpret user actions as goal-pursuant.

having a model of the assistant. Recent works have demonstrated

the efficiency of models of this type (Peltola et al., 2019).

In summary, we considered multiple levels of understanding

encoded into the user model (Figure 2), inspired by the level-

k (Stahl andWilson, 1995; Bacharach and Stahl, 2000) and cognitive

hierarchy (Camerer et al., 2004) theories from behavioral game

theory. They describe how the AI assistant understands the user.

Up to now, we have described three levels:

Level 0: The user does not pursue a goal. This is the minimal

model we may consider, and is used by most systems nowadays,

in particular by recommender systems. An assistant endowed with

such a model does not aim to understand the goal pursued by the

user, and treats them as a passive data source. For instance, a drug

design assistant would suggest modifications that are optimal in

its opinion.

Level 1: The user is pursuing a goal, but does not consider

the AI to be goal-pursuant. An assistant endowed with a level 1

model will make suggestions that are optimal to the user, but which

may be not understood as such by the user. A drug design assistant

would try to understand the user’s goal and make suggestions that

are optimal in the sense of this goal.

Level 2: The user is pursuing a goal and understands that

the AI is pursuing a goal too. These models can guarantee better

understandability of the assistant’s actions, by enabling the assistant

to take into account how the user would perceive its objectives.

A drug design assistant could visualize a molecule such that the

user understands why the design change is actually useful for the

user’s goal.

Following this logic, a level 3 user model would then consider

a user who is pursuing a goal, understands that the assistant is

doing the same, and understands that the assistant will interpret

user actions as goal-pursuant. In their seminal work, Wright and

Leyton-Brown (2020) define two critical aspects for an agent to

be considered strategic: it must adapt its behavior to the goals of

others (other-responsiveness), and it must also pursue its own goals

(dominance responsiveness). In Figure 2, only user models that are

level-2 or above can be considered strategic. For instance, in video

recommendation, a strategic user will not choose to click “like"

based on their taste only, but also by anticipating the influence such

a click will have on the future video recommendations by the AI.

When users exhibit complex strategic behaviors, models below a

certain level cannot explain or fit their behavior.

Challenges in learning user models

The main motivation for having a user model is to personalize

the assistance in order to help the user more effectively. The

parameters of the user models need to be inferred separately

for each user and their task, based on observed behavior while
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interacting with them. More specifically, user models act as

likelihood functions, and are combined with informative priors and

models of the data-analysis task, when inferring of the models of

specific users carrying out a specific task.

Here, we present open challenges of user model inference for

AI-assistance, in order to sketch the necessary research directions.

Small data

Learning the parameters of the user model online, from

the user’s interaction with the assistant, is challenging due to

data scarcity. Collecting more data may be too costly, or even

impossible, as it requires exploratory actions which may not be

helpful for the user.

The data scarcity makes informative priors necessary. The

priors can come in the form of carefully designed user models

that generalize the existing results of behavioral sciences into

AI-assistance (Griffiths and Ho, 2022). Interaction data of other

users can be integrated using hierarchical models (Kruschke

and Vanpaemel, 2015). However, users’ data are particularly

sensitive and cannot be exchanged carelessly, and simply removing

identifiers is not sufficient to preserve privacy (Narayanan

and Shmatikov, 2008). Therefore, advanced privacy-preserving

techniques must be developed for data sharing between users.

User behavior is non-stationary

The user learns and changes their behavior; their vision

is refined along the process, as they acquire a more accurate

understanding of the task and environment, and their goals might

change over time.

Such changes can be seen as distributional shift (Quiñonero-

Candela et al., 2008), where the data distribution changes over time,

or as an example of agent non-stationarity (Hernandez-Leal et al.,

2017) in a multiagent context. One important challenge here is to

identify and predict these changes. This corresponds to modeling

the evolution of the parameters of the user model, which is difficult

due to the extensive uncertainty and partial observability of this

evolution.

User models require heavy computation

Realistic user models may be computationally complex. This

is an issue for standard approaches to probabilistic inference, such

as Monte Carlo methods, which require a likelihood function that

is computationally easy to evaluate. This issue appears even with

elementary user models: for instance, if we model a user as a

decision-maker who plans T steps into the future, the assistant will

have to solve a T-step planning problem for each evaluation of

the likelihood function. Things get even worse when considering

higher-level user models such as level-2 and level-3, requiring

recursive reasoning.

A promising direction is likelihood-free inference, which

circumvents the need to define the likelihood function explicitly. In

particular, approximate Bayesian computation (ABC) can be done

based on comparing the observed data to synthetic data generated

using parametric surrogate models (Sunnåker et al., 2013). This

comparison critically relies on the choice of relevant summary

statistics, and this choice for user models is still an open problem.

Additionally, for user modeling, ABC needs to be extended to cope

with the non-stationarity discussed in Section 4.2.

User models may not be learnable

Complex user models can capture more subtle user behaviors,

but they may not be learnable due to unidentifiability. For

instance, the goal and the bounds of an agent cannot in general

be inferred simultaneously (Armstrong and Mindermann, 2018).

Unidentifiability worsens when considering higher-level models, in

which the user considers the consequences of their own actions

on the assistant’s behavior. For instance, a user might reach for

something because this is their goal, or because they think this will

lead the AI to help them with their actual goal.

An incorrect user model may lead to wrong predictions of

the user’s behavior, which would make AI assistance inadequate

at best. Informative priors and carefully designed model families

can help with unidentifiability; however, choosing simpler model

families can increase the risk of model misspecification. Therefore,

it is crucial to analyze the relationship between assistance and the

learnability qualities and expressivity of user models (Bajcsy et al.,

2021).

Conclusion

Modern machine learning systems can and have been argued

to be necessary tools for solving the current and future grand

challenges. These problems increasingly lie at the frontier of

human knowledge, where we cannot specify our goals and values

explicitly. Therefore, the stakes are getting higher for developing

human-centric AI solutions that are able to collaboratively help

us. This paper is a call to arms, in which we argue that post-hoc

approaches tomakingmachine learning systems human-centric are

not enough. The next generation machine learning systems need

AI-assistants that can interactively help both system designers and

end users reach even tacit and evolving goals. Such AI-assistants

must model their human users to reach mutual understanding and

meaningful interaction. We have argued that this requires making

the human an integral part of the model and hence the machine

learning system itself, rendering it directly human-centric. We

identified main directions for developing such AI-assistants, where

much more research is required.
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