
TYPE Original Research

PUBLISHED 06 April 2023

DOI 10.3389/frai.2023.1099407

OPEN ACCESS

EDITED BY

Emmanuelle Dietz,

Airbus, Germany

REVIEWED BY

Nick Bassiliades,

Aristotle University of Thessaloniki, Greece

Alfonso Guarino,

University of Foggia, Italy

*CORRESPONDENCE

Antonio Rago

a.rago@imperial.ac.uk

SPECIALTY SECTION

This article was submitted to

Machine Learning and Artificial Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

RECEIVED 15 November 2022

ACCEPTED 20 March 2023

PUBLISHED 06 April 2023

CITATION

Albini E, Rago A, Baroni P and Toni F (2023)

Achieving descriptive accuracy in explanations

via argumentation: The case of probabilistic

classifiers. Front. Artif. Intell. 6:1099407.

doi: 10.3389/frai.2023.1099407

COPYRIGHT

© 2023 Albini, Rago, Baroni and Toni. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Achieving descriptive accuracy in
explanations via argumentation:
The case of probabilistic
classifiers

Emanuele Albini1, Antonio Rago1*, Pietro Baroni2 and

Francesca Toni1

1Department of Computing, Imperial College London, London, United Kingdom, 2Dipartimento di

Ingegneria dell’Informazione, Università degli Studi di Brescia, Brescia, Italy

The pursuit of trust in and fairness of AI systems in order to enable human-centric

goals has been gathering pace of late, often supported by the use of explanations

for the outputs of these systems. Several properties of explanations have been

highlighted as critical for achieving trustworthy and fair AI systems, but one

that has thus far been overlooked is that of descriptive accuracy (DA), i.e., that

the explanation contents are in correspondence with the internal working of

the explained system. Indeed, the violation of this core property would lead

to the paradoxical situation of systems producing explanations which are not

suitably related to how the system actually works: clearly this may hinder user

trust. Further, if explanations violate DA then they can be deceitful, resulting

in an unfair behavior toward the users. Crucial as the DA property appears to

be, it has been somehow overlooked in the XAI literature to date. To address

this problem, we consider the questions of formalizing DA and of analyzing its

satisfaction by explanation methods. We provide formal definitions of naive,

structural and dialectical DA, using the family of probabilistic classifiers as the

context for our analysis. We evaluate the satisfaction of our given notions of DA

by several explanation methods, amounting to two popular feature-attribution

methods from the literature, variants thereof and a novel form of explanation

that we propose. We conduct experiments with a varied selection of concrete

probabilistic classifiers and highlight the importance, with a user study, of our

most demanding notion of dialectical DA, which our novel method satisfies by

design and others may violate. We thus demonstrate how DA could be a critical

component in achieving trustworthy and fair systems, in line with the principles of

human-centric AI.
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1. Introduction

Equipping automated decision systems with explanation capabilities is a compelling

need which lies at the basis of the rapid growth of the research field of explainable AI

(XAI) in recent years (Guidotti et al., 2019) and is receiving an increasing attention from

government and regulatory bodies, like the European Commission. Quoting the report of

the Independent high-level expert group on Artificial Intelligence set up by the European

Commission (2019): “Whenever an AI system has a significant impact on people’s lives,

it should be possible to demand a suitable explanation of the AI system’s decision-making

process. Such explanation should be timely and adapted to the expertise of the stakeholder

concerned (e.g., layperson, regulator or researcher).”
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By providing explanations, a system goes beyond just

presenting its outcomes as oracles: rather, they are subjected to

the scrutiny of the cognitive capabilities of the users, who receive

means to achieve a better understanding of the reasons underlying

system’s decisions and/or of its internal operation. In this way, the

adoption of an active and conscious role by users is supported: they

will be able to criticize or agree with system decisions, based on a

cognitively elaborated motivation, rather than blindly rejecting or

accepting them. Thus, explanations for the outputs of AI systems

are widely understood as crucial to support trust in these systems

(Ribeiro et al., 2016; Miller, 2019; Zerilli et al., 2022).

Due to their role in promoting users’ understanding and

involvement, it is no surprise that the two properties of cognitive

explainability and transparency are widely regarded as key factors

and technical challenges of Human-Centric AI, as evidenced in the

introductory article of this special issue (Kakas et al., 2022). For

instance, “Make clear why the system did what it did” is one of the

design guidelines for human-AI interaction presented by Amershi

et al. (2019), while the Research Roadmap of the European network

of Human-Centered Artificial Intelligence (www.humane-ai.eu)

regards the fact that AI systems are explainable and accountable as

a basic prerequisite for human-in-the-loop activities.

This paper contributes to the development of explainability for

human-centric AI by proposing a formal treatment of the notion

of descriptive accuracy (DA), a crucial property for explanations

supporting fair AI systems deserving trust, and by showing how

DA requirements can be achieved in practice through a suitable

form of explanation, called DARXs (acronym for Dialectically

Accurate Relational Explanations). Both the formal treatment of DA

and the definition of DARX are based on ideas and formalisms

from the field of Argumentation Theory, connecting the present

contribution to the subject of the special issue. Argumentation

theory (also referred to in the literature as computational or

artificial argumentation, e.g., see Atkinson et al., 2017; Baroni et al.,

2018 for overviews) has recently been advocated, in a variety of

ways, as a mechanism for supporting explainable AI (see Cyras

et al., 2021; Vassiliades et al., 2021 for recent surveys). A popular

use thereof is as a means for representing the information in an

existing AI system in a way which is more amenable for human

consumption than typical explanation methods, e.g., as in Timmer

et al. (2015) and Rago et al. (2021). This use of argumentation is the

inspiration also for this paper: the formulations of DA we propose

are defined for abstract notions of explanation inspired by the

argumentation frameworks in the seminal works of Toulmin (1958)

and Cayrol and Lagasquie-Schiex (2005), DARXs are inspired

by bipolar argumentation frameworks (Cayrol and Lagasquie-

Schiex, 2005); and our definitions of DA bear resemblance to

properties originally proposed (for various forms of argumentation

frameworks) by Amgoud and Ben-Naim (2018) and by Baroni et al.

(2019).

The paper is organized as follows. Section 2 presents the

motivations and contribution of the work, in particular positioning

our contribution in the context of the special issue, while Section

3 discusses related works. Then, after providing the required

preliminary notions in Section 4, we introduce the proposed formal

treatment of DA in Section 5. Section 6 examines the satisfaction of

DA by some existing and novel explanation approaches, showing

that, differently from other proposals, DARX guarantees a full

satisfaction of DA requirements. These formal results are backed

by an experimental evaluation in Section 7 and by a human

experiment in Section 8, before concluding in Section 9.

2. Motivations and contribution

Being immersed in the human-centric perspective, the issue

of realizing explainable and transparent system does not only

represent a challenging and fascinating socio-technical problem to

tackle (Miller, 2019), but also involves substantial ethical aspects

and requires the satisfaction of human-centric properties, like

trustworthiness and fairness.

First, the explanations provided for the outputs of a system are

a key factor in achieving user trust, a prerequisite for acceptance of

the decisions of a systemwhen deemed to be trustworthy. However,

as pointed out by Jacovi et al. (2021), trust, which is an attitude of

the trustors (in our case, the systems’ users), is distinguished from

trustworthiness, which is a property of the trustees (in our case the

explained systems), i.e., the capability of maintaining some contract

with the users. In fact, “trust and trustworthiness are entirely

disentangled: . . . trust can exist in a model that is not trustworthy,

and a trustworthy model does not necessarily gain trust” (Jacovi

et al., 2021). This makes the goal of achieving trust, and the role

of explanations therefor, a rather tricky issue. On the one hand,

there can be situations where trust is achieved by explanations

which are convincing but somehow deceptive. On the other hand,

there can be situations where an otherwise trustworthy system loses

users’ trust due to problems in its explanations’ capabilities, e.g., as

pointed out by Jacovi et al. (2021), For illustration, consider the case

of an AI-based medical system predicting, for a patient, a high risk

of getting disease X and including in the explanation the fact that

some parameter Y in the patient’s blood test is high. If the patient

deems the system trustworthy, they may try to change (if possible)

the value of Y, e.g., by lifestyle changes. If they find out that the

value of Y was actually irrelevant, i.e., the diagnosis would have

been the same with a low value of Y, and thus trying to modify it

will not have the intended impact on the system prediction, then

the patient’s trust will be negatively affected, independently of the

correctness of the diagnosis.

Thus, trust in an otherwise accurate system can be hindered or

even destroyed by some drawbacks of the explanations it provides.

Trust is however not the only issue at stake. Continuing the

illustration, suppose the patient never gets to know about the

irrelevance of parameter Y. Then, their trust may be preserved, but

then a possibly deceitful system would remain in place. This shows

that, in connection to their impact on trust, explanations also have

an important role toward fairness of AI systems: the description

of the principle of fairness in the report by the Independent high-

level expert group on Artificial Intelligence set up by the European

Commission (2019) states that “the use of AI systems should never

lead to people being deceived or unjustifiably impaired in their

freedom of choice.” This indication complements the requirement

of “ensuring equal and just distribution of both benefits and costs,

and ensuring that individuals and groups are free from unfair bias,

discrimination and stigmatization.” Two complementary facets

of fairness emerge here. The latter concerns a possible unjust
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treatment caused by system biases toward specific user features,

while the former addresses the risk that the system may treat

its users improperly due to inappropriate design choices for the

explanations. This form of unfairness applies to all users, rather

than just some, as in the case of selective system biases.

Avoiding selectively unfair (biased) systems is receiving a great

deal of attention in the literature (see, for instance, Dwork et al.,

2012; Heidari et al., 2019; Hutchinson and Mitchell, 2019; Binns,

2020; Räz, 2021), whereas the problem of avoiding uniformly unfair

systems (due to ill-founded explanations) is receiving less attention,

in spite of being no less important.

These considerations call for the need of identifying some basic

formal requirements that explanations should satisfy in order to

lead to (deservingly) trustworthy as well as (uniformly) fair AI

systems. Indeed, providing a formal counterpart to these high-level

principles appears to be crucial in order to carry out the following

activities in a well-founded and non-ambiguous way: defining

methods for quality verification and assurance from a human-

centric perspective, comparing the adequacy of different systems

on a uniform basis, providing guidelines for system development.

Universal and absolute notions of trustworthiness and fairness

being elusive, if not utopical, we share the suggestion that “the

point is not complete fairness, but the need to establish metrics and

thresholds for fairness that ensure trust in AI systems” (Dignum,

2021).

In turn, the investigation of formal requirements for

explanations can benefit from a reference conceptual environment

where their definition can be put in relation with some general

foundational notions, whose suitability with respect to the human-

centric perspective is well-established. Formal argumentation

is an ideal candidate in this respect, for the reasons extensively

illustrated in particular in Sections 3.1, 4.1 of Kakas et al. (2022)

from which we limit ourselves to cite the emblematic statement

that “Argumentation has a natural link to explanation.” Thus, it

is not surprising that several works have focused on the use of

argumentative techniques for a variety of explanation purposes

(Cyras et al., 2021; Vassiliades et al., 2021). However, the study

of argumentation-inspired formal properties related to human-

centric issues like trustworthiness and fairness appears to have

received lesser attention.

As a contribution to fill this gap, in this paper we use

argumentation as a basis to formalize the property of descriptive

accuracy (DA) described by Murdoch et al. (2019), for machine

learning in general, as “the degree to which an interpretation

method objectively captures the relationships learned by machine

learning models.” DA appears to be a crucial requirement for any

explanation: its absence would lead to the risk of misleading (if

not deceptive) indications for the user (thus affecting trust and

fairness). As such, one would expect that any explanation method

is either able to enforce DA by construction or is equipped with a

way to unearth possible violations of this fundamental property.

Specifically, we address the issue of defining argumentation-

inspired formal counterparts (from simpler to more articulated)

for the general notion of DA. In particular, our proposal leverages

on two main sources from the argumentation literature: Toulmin’s

argument model (Toulmin, 1958) and the formalism of bipolar

argumentation frameworks (Cayrol and Lagasquie-Schiex, 2005;

Amgoud et al., 2008; Cayrol and Lagasquie-Schiex, 2013). In a

nutshell, Toulmin’s argument model focuses on providing patterns

for analyzing argument structure at a conceptual level. The

most fundamental argument structure consists of three elements:

claim, data and warrant. The claim of an argument is the

conclusion it brings forward; the data provide evidence and

facts which are the grounds in support of the claim; and the

warrant, which could be implicit, links the data to the claim.

Bipolar argumentation frameworks belong to the family of abstract

argumentation formalisms pioneered by Dung (1995), where

arguments are seen as abstract entities, and the main focus is on

the relations among arguments, their meaning, and their role in the

assessment of argument status. In particular, bipolar argumentation

encompasses the basic relations of attack and support which

provide a synthetic and powerful abstraction of the main kinds of

dialectical interactions that may occur between two entities (see, for

instance, Tversky and Kahneman (1992) and Dubois et al. (2008)

for general analyzes emphasizing the role of bipolarity in human

decisions). A bipolar argumentation framework is hence a triple

(Args,Att, Supp) where Att, Supp ⊆ Args× Args.

We will see that some of our abstractions for explanations can

be put in correspondence with Toulmin’s model with an implicit

warrant, whereas others can be seen as bipolar argumentation

frameworks. Argumentation frameworks are typically equipped

with “semantics” (e.g., notions of extensions) that may satisfy

desirable properties: we define notions of DA drawing inspiration

from some of these properties.

On these bases, focusing on the setting of probabilistic classifiers,

we make the following contributions.

• We introduce three formal notions of DA (Section 5): naive

DA, as a precursor to dialectical DA, both applicable to

any probabilistic classifier, and structural DA, applicable to

probabilistic classifiers that are equipped with a structural

description, as is the case for Bayesian network classifiers

(BCs) (see Bielza and Larrañaga, 2014 for an overview) and

Chain Classifiers (CCs), resulting from chaining probabilistic

classifiers (e.g., as is done for BCs by Read et al., 2009

and for other types of probabilistic classifiers by Blazek

and Lin, 2021). These notions of DA are defined for

generic abstractions of explanations, so that they can be

applied widely to a variety of concrete notions instantiating

the abstractions.

• We study whether concrete explanation methods

(instantiating our abstract notions of explanation) satisfy

our notions of DA (Section 6). We focus our analysis on

(i) existing feature attribution methods from the literature,

namely LIME (Ribeiro et al., 2016) and SHAP (Lundberg and

Lee, 2017), as well as (ii) novel variants thereof and (iii) a

novel method we define (which we refer to in short as DARX).

We prove that: the methods (i) are not guaranteed to satisfy

any of the formulations of DA we define; the variants (ii) are

guaranteed to satisfy structural DA (by construction) but may

still violate (naive and) dialectical DA; the DARX method

is guaranteed to satisfy all the considered forms of DA (by

construction), thus providing a proof of concept that our

forms of DA are indeed satisfiable.
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• We evaluate our forms of DA empirically on a variety of BCs

and CCs (Section 7),1 showing that they are often violated in

practice by methods (i) and (ii).

• We describe a user study we conducted to gauge the

importance of dialectical DA (our most “demanding” form

of DA, applicable to any probabilistic classifier) to humans,

when using explanations of probabilistic classifiers (Section

8), showing that this property predominantly aligns with

human judgement.

3. Related work

A multitude of methods for providing explanations have been

proposed (e.g., see the survey by Guidotti et al., 2019) and

their desirable properties have been considered from a variety

of perspectives (e.g., see the survey by Sokol and Flach, 2020).

We draw inspiration from Murdoch et al. (2019) and focus,

in particular, on their property of descriptive accuracy (DA) for

(model-based or post-hoc) interpretable machine learning. As

mentioned in the introduction, DA concerns the degree to which

an interpretation (in our setting, explanation) method objectively

captures the behavior of themachine-learnedmodels.We will build

on argumentative notions to provide three formal characterisations

for DA, allowing evaluation of explanation methods for satisfaction

of DA in precise terms.

DA is seen, in Murdoch et al. (2019), as a crucial property for

achieving interpretable machine learning, alongside, in particular,

predictive accuracy, wrt (test) data, of the predictions produced by

the interpretations/explanations. Whereas DA is concerned with

the inner workings of models, predictive accuracy is concerned

with the input-output behavior thereof. Predictive accuracy is thus

closely linked with properties of fidelity or faithfulness which have

been considered by several works. For instance, in Guidotti et al.

(2019) fidelity is defined as the capability of an explanation model

to “accurately imitate a black-box predictor” and is measured in

terms of accuracy score, F1-score, and so on, but wrt synthetic data

capturing the behavior of the black-box. Analogously, in Lakkaraju

et al. (2019), fidelity concerns the ability of an explanation to

“faithfully mimic the behavior” of a model and is assessed in terms

of the disagreement between the labels predicted by the explanation

and the labels predicted by the model. In the case of explanations

concerning a single instance, local fidelity has been defined as

a measure of how well an explanation model approximates the

original model in a neighborhood of the considered instance in

need of explaining (Ribeiro et al., 2016; Alvarez-Melis and Jaakkola,

2017). In a similar vein, White and d’Avila Garcez (2020) define

counterfactual fidelity error as the difference between the actual

perturbation of a parameter needed to change the outcome in the

original model and an estimate of that value, calculated using an

approximate model.

1 Note that some of these probabilistic classifiers are based on models

which are, in principle, interpretable, like Bayesian networks. However

we remark that interpretable models may still need explanations (Lipton,

2018; Ciatto et al., 2020; Du et al., 2020), e.g., because their size is

beyond human interpretation capabilities or because lay users cannot

understand probabilities.

Du et al. (2019) propose a post-hoc attribution method to

explain the predictions of recurrent neural networks (RNNs) in

text mining tasks with the goal of producing explanations, both at

word-level and phrase-level which are faithful to the original RNN

model. The method is specifically tailored to RNNs’ architecture as

it resorts to computations on hidden state vectors. Faithfulness is

evaluated empirically by computing a score based on the following

idea: if one deletes the sentence with the highest attribution for

a given prediction, one should then observe a significant drop

in the probability of the predicted outcome, if the method is

faithful. Thus, this work does not introduce a formal notion of

faithfulness which is directly comparable to our characterization of

descriptive accuracy and, in fact, the faithfulness score proposed is

only indirectly related to the internal behavior of the RNN or of any

other classifier.

The work by Adebayo et al. (2018) focuses on saliency methods

used to highlight relevant features in images and shows that some

of these methods are independent of both the data the model

was trained on, and the model parameters, thus pointing out

a lack of descriptive accuracy. Interestingly, but not completely

surprisingly, it is shown that visual inspection of saliency maps

may be misleading and some systematic tests (called sanity checks)

are applied to verify whether the explanations depend on the data

and the model parameters. The very interesting analysis carried

out in this work provides striking evidence that the notion of

descriptive accuracy requires more attention, while, differently

from our present work, it does not include a proposal for an explicit

formalization of this notion.

Yeh et al. (2019) address the problem of defining objective

measures to assess explanations and propose, in particular, an

infidelity measure, which can be roughly described as the difference

between the effect of an input perturbation on the explanation

and its effect on the output, and a sensitivity measure capturing

the degree to which the explanation is affected by insignificant

perturbations. Both measures use the classifier as a black box and

hence there are no a priori guarantees about their ability to satisfy

descriptive accuracy, as discussed in the present paper. Indeed, the

authors apply a sanity check in the spirit of Adebayo et al. (2018) to

verify whether the explanations generated to optimize the proposed

measures are related to the model.

In the context of deep networks, Sundararajan et al. (2017)

propose two axioms called Sensitivity and Implementation

Invariance. The former consists of two requirements: (a) for every

input and baseline that differ in one feature but have different

predictions then the differing feature should be given a non-zero

attribution; (b) if the function implemented by the deep network

does not depend (mathematically) on some variable, then the

attribution to that variable is always zero. The latter states that

attributions should be identical for two functionally equivalent

networks, where two networks are functionally equivalent if their

outputs are equal for all inputs, despite having very different

implementations. Sensitivity bears some similarity with the weakest

notion we consider, namely naive descriptive accuracy, as they

both refer to the role of individual variables and to ensure their

relevance when present in explanations. However the perspective

is slightly different as we essentially require that the presence

of a feature in the explanation is somehow justified by the

model, while Sundararajan et al. (2017) require that a feature is
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present in the explanation under some specific conditions. Bridging

these perspectives is an interesting issue for future work. The

requirement of Implementation Invariance is motivated by the

authors with the claim that attribution can be colloquially defined

as assigning the blame (or credit) for the output to the input

features. Such a definition does not refer to implementation details.

While referring to the special (and rather unlikely in practice)

situation where two internally different classifiers produce exactly

the same output for the same input, we regard this requirement,

which is somehow in contrast with descriptive accuracy, as partly

questionable. Indeed, the fact that internal differences are reflected

in the explanations may be, at least in principle, useful for some

purposes like model debugging. If the differences concern the use

of actually irrelevant features, we argue that this aspect should be

captured by more general relevance-related criteria.

Chan et al. (2022) carry out a comparative study of faithfulness

metrics for model interpretability methods in the context of natural

language processing (NLP). Six faithfulness metrics are examined,

all of which are based, with different nuances, on an evaluation of

the role of the most important tokens in the classified sentences,

in particular the common idea underlying these metrics is to

compare the output of the classifiers for the same input with or

without the most important tokens. These metrics use classifiers

as black boxes and do not take into consideration their actual

internal operation, so, while sharing the general goal of avoiding

explanations that have loose correspondence with the explained

model, their scope is somehow orthogonal to ours. Chan et al.

(2022) observe that, though referring to the same basic principle,

thesemetrics may provide contradictory outcomes, so that themost

faithful method according to a metric is the worst with respect

to another one. To address this problem, the authors propose a

property of Diagnosticity, which refers to the capability of a metric

to discriminate a more faithful interpretation from an unfaithful

one (where, in practice, randomly generated interpretations are

used as instances of unfaithful ones). Applying a possibly adapted

notion of Diagnosticity in the context of our proposal appears an

interesting direction of future work.

Mollas et al. (2022) propose Altruist, an approach for

transforming the output of feature attribution methods into

explanations using argumentation based on classical logic. In

particular, Altruist is able to distinguish truthful vs. untruthful

parts in a feature attribution and can work as a meta-explanation

technique on top of a set of feature attribution methods. Similarly

to our proposal, Mollas et al. (2022) assume that the importance

weights produced by feature attribution methods are typically

associated with a monotonic notion, and that end-users expect

monotonic behavior when altering the value of some feature.

On this basis, Altruist includes a module which assesses the

truthfulness of an importance value by comparing the expected

changes of the output, given some perturbations, with respect to

the actual ones and then building an argumentation framework

which is based on the predicates corresponding to the results of

these comparisons and can be used to support a dialogue with

the final user. The notion of truthfulness used in Mollas et al.

(2022) refers to correspondence with users expectations rather

than with internal model behavior and is thus complementary to

our notion of descriptive accuracy. As both aspects are important

in practice, bridging them and investigating their relationships

is a very interesting direction of future work. Also, the uses of

argumentation in the two works are somehow complementary:

while we resort to argumentation concepts as foundational

notions, in Mollas et al. (2022) logic-based argumentation

frameworks are used to support reasoning and dialogues about

truthfulness evaluations.

Overall, whereas formal counterparts of predictive

accuracy/faithfulness/fidelity have been extensively studied

in the XAI literature, to the best of our knowledge, formal

counterparts of DA appear to have received limited attention

up to now. This gap is particularly significant for the classes of

post-hoc explanations methods which, per se, have no relations with

the underlying operation of the explained model and therefore

cannot rely on any implicit assumption that DA is guaranteed, in a

sense, by construction. This applies, in particular, to the family of

model-agnostic local explanation methods, namely methods which

are designed to be applicable to any model (and hence need to treat

the model itself purely as a black-box) and whose explanations are

restricted to illustrate individually a single outcome of the model

without aiming to describe its behavior in more general terms. This

family includes the well-known class of additive feature attribution

methods, such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg

and Lee, 2017), where the explanation for the outcome of a model

basically consists in ascribing to each input feature a numerical

weight. We will study our formalisations of DA in the context of

both LIME and SHAP.

SHAP has been shown to be the only additive attribution

method able to jointly satisfy three formal properties, called local

accuracy, missingness, and consistency (see Lundberg and Lee, 2017

for details). These properties do not directly concern the internal

working of the model and thus cannot be seen as forms of DA.

Indeed, our analysis will show that SHAP, as well as LIME, are

not guaranteed to satisfy our notions of DA– thus local accuracy,

missingness and consistency do not suffice to enforce DA in

our sense.

A variety of approaches devoted in particular to the explanation

of Bayesian networks exist in the literature (Lacave and Díez,

2002; Mihaljevic et al., 2021). At a high level these approaches can

be partitioned into three main families (Lacave and Díez, 2002):

explanation of evidence (which concerns explaining observations

by abducing the value of some unobserved variables), explanation

of model (which aims at presenting the entire underlying model to

the user), and explanation of reasoning. Explanation of reasoning

is the one that best lends itself to fulfilling DA. According to

Lacave and Díez (2002), it is in turn divided into: (i) explanation

of the results obtained by the system and the reasoning process that

produced them; (ii) explanation of the results not obtained by the

system, despite the user’s expectations; (iii) hypothetical reasoning,

i.e., what results the system would have returned if one or more

given variables had taken on different values from those observed.

Our DARX approach is mainly related to point (i), even if it

may support some form of hypothetical reasoning too. We remark

that the spirit of DARX is not advancing the state of the art in

explanations for Bayesian networks but rather providing a concrete

example of a method satisfying the DA properties we introduce

and showing that even with this baseline approach we can get
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improvements with respect to popular model-agnostic methods, as

concerns satisfaction of DA.

To introduce formal notions of DA we take inspiration from

basic concepts in formal argumentation. As pointed out by Cyras

et al. (2021), many popular methods for generating explanations

in AI can be seen as implicitly argumentative, in addition to

the vast literature on overtly argumentative approaches. These

include the use of a variety of argumentation frameworks for

explanation purposes, as surveyed in particular by Cyras et al.

(2021), with a broad set of application domains, ranging from

law and medical informatics to robotics and security, as discussed

by Vassiliades et al. (2021). As pointed out by Cyras et al.

(2021), however, in the literature the study of formal properties

of argumentation frameworks have received by far more attention

than the investigation of desirable properties of explanations, and

our use of argumentation to drive the definition of explanation

requirements, rather than of the explanation methods themselves,

appears to be a novel investigation line to the best of our knowledge.

Last but not least, the human-centric approach requires

that users’ perspectives lie at the heart of the evaluation of

AI explanation methods. Some works have identified properties

naturally amenable to being assessed with humans, for example,

Murdoch et al. (2019) propose relevancy, concerning the ability

to provide insight for a particular audience into a chosen domain

problem. It is widely acknowledged though that more user testing

would be beneficial for evaluating XAI methods (e.g., see Keane

et al., 2021). We contribute to this line of research by conducting

a user study to assess whether our dialectical DA is in line with

user expectations.

4. Preliminaries on probabilistic
classifiers

As DA is inherently related to the internal operation of a model,

rather than just to its input/output behavior, any formal notion

of DA cannot be completely model-agnostic. It follows that an

investigation of DA needs to find a balance between the obvious

need of wide applicability and the potential advantages of model-

tailored definitions. For this reason we will focus on the broad

family of probabilistic classifiers.

We consider (discrete) probabilistic classifiers with feature

variables X = {X1, . . . ,Xm} (m > 1) and class variables C =

{C1, . . . ,Cn} (n ≥ 1). Each (random) variable Vi ∈ V = X ∪ C

is equipped with a discrete set of possible values2 �Vi : we define

the feature space as X = �X1 × . . . × �Xm and the class space as

C = �C1 × . . . × �Cn . From now on, we call any vector x ∈ X an

input and denote as x(Xi) the value of feature Xi in x. Given input x,

a probabilistic classifier PC computes, for each class variable Ci and

value ω ∈ �Ci , the probability P(Ci = ω|x) that Ci takes value ω,

given x.3 We then refer to the resulting value for a class variableCi ∈

2 Thus, in this paper we discretise continuous variables, leaving their full

treatment to future work.

3 Our focus is on explaining the outputs of classifiers, so we ignore how

they are obtained, e.g., by hand or from data (subject to whichever bias), and

how they perform computation.

C given input x as PC(Ci|x) = argmaxω∈�Ci
P(Ci = ω|x). Table 1

gives a probabilistic classifier for a (toy) financial setting where

the values of class variables problematic external event and drop in

consumer confidence are determined based on the feature variables

company share price trend, devaluation of currency, healthy housing

market and negative breaking news cycle. Here, for any variable

Vi ∈ V, �Vi = {+,−}.

For Xi ∈ X, we will abuse notation as follows, to simplify some

of the formal definitions later in the paper: PC(Xi|x) = x(Xi)

(basically, the “resulting value” for a feature variable, given an input,

is the value assigned to that variable in the input) and P(Xi =

x(Xi)) = 1 (basically, the probability of a feature variable being

assigned its value, in the given input, is 1).Wewill also use notation:

P(V=v|x, set(Vi=vi))=

{

P(V = v|x′), if Vi ∈ X,

P(V = v|x,Vi = vi), if Vi ∈ C,

where, in the first case, x′(Vi) = vi and x′(Vj) = x(Vj) for

all Vj ∈ X \ {Vi}. Basically, this notation allows to gauge the

effects of changes in value for (input or class) variables on the

probabilities computed by the classifiers (for assignments of values

to any variables).

Various types of probabilistic classifiers exist. In Section 7

we will experiment with (explanations for) a variety of (discrete)

Bayesian Classifiers (BCs, see Bielza and Larrañaga, 2014 for an

overview), where the variables in V constitute the nodes in a

Bayesian network, i.e., a directed acyclic graph whose edges indicate

probabilistic dependencies amongst the variables.4 We will also

experiment with (explanations for) chained probabilistic classifiers

(CCs, e.g., as defined by Read et al. (2009) for the case of BCs).

These CCs result from the combination of simpler probabilistic

classifiers (possibly, but not necessarily, BCs), using an ordering≻C

over C such that the value of any Ci ∈ C is treated as a feature value

for determining the value of any Cj ∈ C with Cj ≻C Ci, and thus

a classifier computing values for Ci can be chained with one for

computing values for Cj. For illustration, in Table 2 we re-interpret

the classifier from Table 1 as a CC amounting to a chain of two

classifiers, using e ≻C c: the classifier (a) determines the value of c as

an additional input for the classifier (b). Then, the overall classifier

determines the value of c first based on the feature variables d, h

and n, and then e based on s and c (treated as a feature variable

in the chaining, thus implicitly taking into account d, h and n).

Note that, in Table 2 and throughout the paper, we abuse notation

and use inputs for overall (chained) classifiers (x in the caption of

the table) as inputs of all simpler classifiers forming them (rather

than the inputs’ restriction to the specific input variables of the

simpler classifiers).

For some families of probabilistic classifiers (e.g., for BCs)

it is possible to provide a graphical representation which gives

a synthetic view of the dependence and independence relations

between the variables. In these cases, we will assume that the

classifier is accompanied by a structural description, namely a set

SD ⊆ V × V. The structural description identifies for each

variable Vj ∈ V a (possibly empty) set of parents PA(Vj) =

{Vi | (Vi,Vj)} ∈ SD with the meaning that the evaluation of

4 BCs determine probabilities based on prior and conditional probabilities,

e.g., using maximum a posteriori estimation. Given that our focus is on

explaining, we ignore here how BCs are obtained.
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TABLE 1 An example of probabilistic classifier with X={s,d,h,n} and C={c, e}.

s + + + + + + + + − − − − − − − −

d + + + + − − − − + + + + − − − −

h + + − − + + − − + + − − + + − −

n + − + − + − + − + − + − + − + −

c + − + + + − + − + − + + + − + −

P .60 .65 1 .60 .60 1 1 .65 .60 .65 1 .60 .60 1 1 .65

e + − + + + − + − + − + + + − + −

P .60 1 .60 .60 .60 1 .60 1 1 .65 1 1 1 .65 1 .65

Here, e.g., for x (highlighted in bold) such that x(s) = x(d) = x(h) = x(n) = +,PC(c|x) = + (as P(c = +|x) = .60), andPC(e|x) = + (as P(e = +|x) = .60).

TABLE 2 An example of chained probabilistic classifier (CC) with (a) the

first probabilistic classifierPC1 with X1 ={d,h,n}, C1 = {c}, and (b) the

second probabilistic classifierPC2 with X2 = {s, c}, C2 = {e} (both inputs

highlighted in bold).

(a)

d + + + + − − − −

h + + − − + + − −

n + − + − + − + −

c + − + + + − + −

P .60 .65 1 .60 .60 1 1 .65

(b)

s + + − −

c + − + −

e + − + −

P .60 1 1 .65

(c)

Here, e.g., for x as in the caption of Table 1, PC(c|x) = PC1(c|x) = + and PC(e|x) =

PC2(e|x, set(c = PC1(c|x))) = +. (c) A structural description for the CC in (a, b), shown as

a graph.

Vj is completely determined by the evaluations of PA(Vj) in the

classifier. In the case of BCs, the parents of each (class) variable

correspond to the variables in its unique Markov boundary (Pearl,

1989; Neapolitan and Jiang, 2010) M :V → 2V, where, for any

Vi ∈ V, M(Vi) is the ⊆-minimal set of variables such that Vi is

conditionally independent of all the other variables (V \ M(Vi)),

given M(Vi). In the case of CCs, even when no information is

available about the internal structure of the individual classifiers

being chained, a structural description may be extracted to reflect

the connections between features and classes. For illustration,

for the CC in Tables 2a, b, the structural description is SD =

{(d, c), (h, c), (n, c), (s, e), (c, e)}, given in Table 2c as a graph.

We remark that notions similar to structural descriptions have

been considered earlier in the literature. For instance, in Timmer

et al. (2015) the argumentative notion of a support graph derived

from a Bayesian network has been considered. This support graph

however is built with reference to a given variable of interest and is

meant to facilitate the construction of arguments which provide a

sort of representation of the reasoning inside the network. In our

case we provide a structural description which does not refer to a

single variable of interest and is not used for building explanations

but rather to verify whether they satisfy structural DA, as will be

described later.

In the remainder, unless specified otherwise, we assume as

given a probabilistic classifier PC with feature variables X and class

variables C, without making any assumptions.

5. Formalizing descriptive accuracy

We aim to define DA, using argumentative notions as a basis, in

a way which is independent of any specific explanationmethod (but

with a focus on the broad class of local explanations, and specifically

feature attribution methods to obtain them).

At a very abstract level, an explanation, whatever its structure is,

can be regarded as including a set of explanation elementswhich are

provided by the explainer to the explainee in order to justify some

system outcome. Relationships between explanations under this

abstract understanding and argumentative notions can be drawn

at different levels. According to a first basic interpretation, the

main components of an explanation can be put in correspondence

with the essential parts of Toulmin’s argument model (Toulmin,

1958): the system outcome can be regarded as an argument claim,

while the explanation elements are the data supporting the claim;

claim and data are connected (implicitly) by a warrant, namely the

assumption on which the validity of the link from the data to the

claim relies. In a more articulated interpretation, one can consider

the existence of distinct argumentative relations underlying the

explanation. Specifically, as mentioned in Section 2, we will focus

on the fundamental relations of attack and support encompassed in

bipolar argumentation frameworks (Amgoud et al., 2008).

According to both interpretations, the property of DA can be

understood as the requirement that the argumentative structure

underlying the explanation has a correspondence in the system

being explained, and hence can be regarded as accurate. In

particular, in the basic interpretation, we regard an explanation as

satisfying DA if a suitable warrant, linking the explanation elements

with the outcome, can be identified in the behavior of the system,

while in the more articulated interpretation we require that the
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relations of attack and support correspond to the existence of

suitable bipolar influences within the system.

In order to convert these high-level considerations into

formal definitions for both argumentative interpretations, we

will consider different abstractions of the notion of (local)

explanation, able to encompass a broad range of existing notions

in the literature as instances. The abstractions we define are

based on the combinations of alternative choices along two

dimensions. On one hand, we consider two basic elements that

an explanation may refer to: (1) input features; (2) pairs of

variables representing relations between variables.When only input

features are used then the resulting explanations are flat/shallow,

only describing input/output behavior, whereas the inclusion of

relations potentially allows for deeper explanation structures. On

the other hand, we assume that the basic elements inside an

explanation can be: (a) regarded as an undifferentiated set (we

call these elements unsigned, in contrast with (b)); (b) partitioned

into two sets according to their positive or negative role in the

explanation. The combinations (1)-(a) and (2)-(a) will correspond

respectively to the abstract notions of unipolar and relational

unipolar explanations while the combinations (1)-(b) and (2)-(b)

will correspond respectively to the notions of bipolar and relational

bipolar explanations.5

Driven by argumentative interpretations for these forms of

explanations, in terms of Toulmin’s argument model and bipolar

argumentation as highlighted above, we will introduce a notion of

naive DA for all the kinds of abstract explanations we consider and

a notion of dialectical DA tailored to the two cases of relational

explanations. We see naive DA as a very weak pre-requisite for

explanations, and prove that it is implied by dialectical DA for

both bipolar and relational bipolar explanations (Propositions 1

and 2, resp.): thus, naive DA can be seen as a step toward defining

dialectical DA. (Naive and) Dialectical DA are applicable to any

probabilistic classifiers. In the specific setting of classifiers with

underlying graph structures, such as BCs and CCs, we will also

define a notion of structural DA for relational unipolar/bipolar

explanations. Table 3 summarizes the definitions from this section,

given below.

5.1. Unipolar explanations and naive DA

We begin with a very general notion of unipolar explanation:

we only assume that, whatever the nature and structure of the

explanation, it can be regarded at an abstract level as a set of features:

Definition 1. Given an input x ∈ X and the resulting value ω =

PC(C|x) for class C ∈ C given x, a unipolar explanation (for C = ω,

given x) is a triple 〈F,C, x〉 where F ⊆ X.

5 We stress that what we call here explanations are in fact abstractions of

what full-fledged explanations typically are (e.g., feature attribution methods

such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017) include,

in addition to positive and negative features, a numerical value therefor).

In this sense, we could more appropriately refer to our abstractions as

explanation skeletons, but refrain to do so for simplicity of exposition.

It is easy to see that it is straightforward to derive unipolar

explanations from the outcomes produced by existing explanation

methods when they return features accompanied by additional

information (e.g., feature importance as in the case of the

attribution methods LIME and SHAP): basically, in these settings

the unipolar explanations disregard the additional information, and

amount to (a subset of) the set of features alone (e.g., the k most

important features).

From an argumentative perspective, the features in a unipolar

explanation can be regarded as the grounds (somewhat in

Toulmin’s sense) for justifying the resulting value assigned by the

classifier to a class variable, for the input under consideration.

Accordingly, we require that some form of warrant justifying the

link of these grounds with the resulting value can be identified.

This corresponds to the simplest form of DA, i.e., naive DA, whose

intuition is that the features included in a unipolar explanation

should be “relevant,” i.e., should play a role in the underlyingmodel,

as formally defined in the following.

Property 1. A unipolar explanation 〈F,C, x〉 satisfies naive

descriptive accuracy iff for every Xi ∈ F there exists an input x′ ∈ X

with x′(Xj) = x(Xj) for every Xj 6= Xi and with x
′(Xi) 6= x(Xi), such

that, lettingω = PC(C|x), it holds that P(C = ω|x) 6= P(C = ω|x′).

Naive DA holds when, for each individual feature, there is at

least one case (i.e., an alternative input x′ to the input x being

explained) where a change in the value of the feature has an effect on

the probability of the value of the class variable: thus, it is a rather

weak requirement as it excludes individually “irrelevant” features

from playing a role in the explanation. Note that this property

can also be interpreted as a rudimentary form of counterfactual

reasoning (of the form “what happens when the value of some

variable changes?”). However, it is too weak to define counterfactual

explanations (e.g., as first modeled in Tolomei et al., 2017; Wachter

et al., 2017). Indeed, changes in probabilities, as in naive DA, may

not lead to changes in classification, as required when defining

counterfactual explanations. Furthermore, the notion of naive

DA disregards considerations of “actionability” for counterfactual

explanations, e.g., as addressed by Karimi et al. (2021). We leave

formalization of DA for counterfactual explanations to future work.

For illustration, given the probabilistic classifier in Table 1 and

x as in the table’s caption, the unipolar explanation 〈{s, d, h, n}, c, x〉

does not satisfy naive DA, given that both s and d are “irrelevant”

here: changing the value of either does not affect the probability of

c. Instead, it is easy to see that 〈{h, n}, c, x〉 satisfies naive DA.

5.2. Bipolar explanations and dialectical DA

Unipolar explanations consist of “minimal” information, i.e.,

just the features playing a role in explanations. At a finer level

of granularity, corresponding to a greater degree of articulated

argumentative interpretation, we consider bipolar explanations,

where the features are partitioned into two sets: those having a

positive, or supporting, effect on the resulting value and those

having a negative, or attacking, effect. The notions of positive

and negative effect may admit different specific interpretations

in different contexts, the general underlying intuition being that
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TABLE 3 Explanations with the characteristics they hold (as combinations of (1)-(2) and (a)-(b)) represented byX and their DA properties (in italics)

represented by ⋆.

Unip. Rel. Unip. Bip. Rel. Bip.

(Section 5.1) (Section 5.2) (Section 5.3) (Section 5.4)

(1) input features X X

(2) relations X X

(a) unsigned X X

(b) positive or negative X X

Basic DA ⋆ ⋆ ⋆ ⋆

Dialectical DA ⋆ ⋆

Structural DA ⋆ ⋆

the corresponding features provide, resp., reasons for and against

the resulting value being explained. Whatever the interpretation,

we assume that positive and negative features are disjoint, as a

feature with a twofold role in an explanation could be confusing

for the user.

Definition 2. Given an input x ∈ X and the resulting value ω =

PC(C|x) for class C ∈ C given x, a bipolar explanation (for C = ω,

given x) is a quadruple 〈F+, F−,C, x〉 where F+ ⊆ X, F− ⊆ X, and

F+∩F− = ∅; we refer to features in F+ and F− resp. as positive and

negative reasons.

It is easy to see that existing explanation methods can be

regarded as producing bipolar explanations when those methods

return features accompanied by additional positive or negative

information (e.g., positive and negative feature importance as in

the case of attribution methods such as LIME and SHAP): in

these settings, as in the case of unipolar explanations, bipolar

explanations disregard the additional information, and amount to

(a subset of) the set of features with their polarity (e.g., the k features

with the highest positive importance as positive features and the k

features with the lowest negative importance as negative features).

Taking into account the distinction between positive and

negative reasons, we introduce a property requiring that the

dialectical role assigned to features is justified:

Property 2. A bipolar explanation 〈F+, F−,C, x〉 satisfies dialectical

descriptive accuracy iff for every Xi ∈ F+ ∪ F−, for every x′ ∈ X

with x′(Xj) = x(Xj) for all Xj 6= Xi and x′(Xi) 6= x(Xi), letting

ω = PC(C|x), it holds that

if Xi ∈ F+ then P(C = ω|x)>P(C = ω|x′);

if Xi ∈ F− then P(C = ω|x)<P(C = ω|x′).

In words, if a feature is identified as a positive (negative) reason

for the resulting value for a class variable, given the input, the

feature variable’s value leads to increasing (decreasing, resp.) the

posterior probability of the class variable’s resulting value (with all

other feature values unchanged). This has a direct correspondence

with the properties of monotonicity considered in the literature for

gradual argumentation semantics (Amgoud and Ben-Naim, 2018;

Baroni et al., 2019) and we posit that this requirement ensures that

each reason has a cognitively plausible dialectical meaning, faithful

to human intuition, as we will examine in Section 8.

For illustration, in the running example withPC in Table 1, the

bipolar explanation 〈{d, n}, {h}, c, x〉, given input x as in the table’s

caption does not satisfy dialectical DA. Indeed, d is a positive reason

in the explanation but, for x′ agreeing with x on all features other

than d (with x′(d) = −), we obtain P(c = +|x) = .60 6< P(c =

+|x′) = .60. Instead, it is easy to see that the bipolar explanation

〈{n}, {h}, c, x〉, satisfies dialectical DA.

Note that the property of dialectical DA may not be satisfied

by all re-interpretations of existing forms of explanations as bipolar

explanations. As an example, consider contrastive explanations of

the form proposed by Dhurandhar et al. (2018). Here, features are

split into pertinent positives and negatives, which are those whose

presence or absence, resp., is “relevant” to the resulting value being

explained. If these pertinent positives and negatives are understood,

resp., as positive and negative reasons in bipolar explanations, the

latter do not satisfy dialectical DA, since both positive and negative

pertinent features support the resulting value being explained. If,

instead, pertinent positives and negatives are both understood

as positive reasons, then the resulting bipolar explanations may

satisfy dialectical DA: we leave the analysis of this aspect, and

the definition of additional forms of DA e.g., able to distinguish

between pertinent positives and negatives, for future work.

In general, unipolar explanations can be directly obtained from

bipolar explanations by ignoring the distinction between positive

and negative reasons, and the property of naive DA can be lifted:

Definition 3. A bipolar explanation 〈F+, F−,C, x〉 satisfies naive

descriptive accuracy iff the unipolar explanation 〈F+ ∪ F−,C, x〉

satisfies naive descriptive accuracy.

It is then easy to see that dialectical DA strengthens naive DA:6

Proposition 1. If a bipolar explanation 〈F+, F−,C, x〉 satisfies

dialectical DA then it satisfies naive DA.

5.3. Relational unipolar explanations and
naive DA

Moving toward a notion of deeper explanations, we pursue the

idea of providing a more detailed view of the relations between

6 All proofs not included in the paper can be found in Appendix 1.
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variables of a probabilistic classifier, reflecting influences possibly

occurring amongst them. To this purpose, we first introduce

relational unipolar explanations as follows.

Definition 4. Given x ∈ X and the resulting value ω = PC(C|x)

for C ∈ C given x, a relational unipolar explanation (for C = ω,

given x) is a triple 〈R,C, x〉 whereR ⊆ V× V.

In words, a relational unipolar explanation includes a set R of

pairs of variables (i.e., a relation between variables) where (Vi,Vj) ∈

R indicates that the value of Vi has a role in determining the value

of Vj, given the input.

For illustration, for PC in Table 1, 〈{(s, e), (c, e)}, e, x〉 may

be a relational unipolar explanation for x in the table’s caption,

indicating that s and c both influence (the value of) e. Note

that relational unipolar explanations admit unipolar explanations

as special instances: given a unipolar explanation 〈F,C, x〉, it

is straightforward to see that 〈F × {C},C, x〉 is a relational

unipolar explanation. However, as demonstrated in the illustration,

relational unipolar explanationsmay include relations besides those

between feature and class variables found in unipolar explanations.

From an argumentative perspective, this corresponds to regarding

the explanation as composed by a set of “finer grain” arguments,

identifying not only the grounds for the explained outcome, but

also for intermediate evaluations of the classifier, which in turn

may provide grounds for the explained outcome and/or other

intermediate evaluations.

The notion of naive DA can be naturally extended to

relational unipolar explanations by requiring that a warrant

based on relevance can be identified for each of the (implicit)

finer arguments.

Property 3. A relational unipolar explanation 〈R,C, x〉 satisfies

naive descriptive accuracy iff for every (Vi,Vj) ∈ R, letting vi =

PC(Vi|x) and vj = PC(Vj|x), there exists v
′
i ∈ �Vi , v

′
i 6= vi, such

that P(Vj = vj|x) 6=P(Vj = vj|x, set(Vi = v′i)).

For illustration, for PC in Table 1, 〈{(s, e), (n, e)}, e, x〉 satisfies

naive DA for x in the table’s caption, but 〈{(s, e), (d, e)}, e, x〉 does

not, as changing the value of d to − (the only alternative value to

+), the probability of e = + remains unchanged.

It is easy to see that, for relational unipolar explanations

〈F × {C},C, x〉, corresponding to unipolar explanations 〈F,C, x〉,

Property 1 is implied by Property 3.

5.4. Relational bipolar explanations and
dialectical DA

Bipolarity can be directly enforced on relational explanations

as follows.

Definition 5. Given an input x ∈ X and the resulting value ω =

PC(C|x) for class C ∈ C given x, a relational bipolar explanation

(RX) is a quadruple 〈R+,R−,C, x〉 where:

R+ ⊆ V× V, referred to as the set of positive reasons;

R− ⊆ V× V, referred to as the set of negative reasons;

R+ ∩R− = ∅.

An RX can be seen as a graph of variables connected by

edges identifying positive or negative reasons, i.e., as a bipolar

argumentation framework (Cayrol and Lagasquie-Schiex, 2005).

Here DA consists in requiring that the polarity of each edge is

justified, which leads to the following definition, extending to

relations the idea expressed in Property 2.

Property 4. An RX 〈R+,R−,C, x〉 satisfies dialectical descriptive

accuracy iff for every (Vi,Vj) ∈ R+ ∪ R−, letting vi = PC(Vi|x),

vj = PC(Vj|x), it holds that, for every v
′
i ∈ �Vi \ {vi}:

if (Vi,Vj) ∈ R+ then P(Vj = vj|x) > P(Vj = vj|x, set(Vi =

v′i));

if (Vi,Vj) ∈ R− then P(Vj = vj|x) < P(Vj = vj|x, set(Vi =

v′i)).

Similarly to dialectical descriptive accuracy for bipolar

explanations, if, given the input, a variable Vi is categorized as a

positive (negative) reason for the resulting value of another variable

Vj, Vi’s value leads to increasing (decreasing, resp.) the posterior

probability of Vj’s resulting value (with all values of the other

variables playing a role in Vj’s value remaining unchanged).

Examples of RXs for the running example are shown as graphs

in Figure 1 (where the nodes also indicate the values ascribed to

the feature variables in the input x and to the class variables by any

of the toy classifiers in Tables 1, 2). Here, (iii) satisfies dialectical

DA, since setting to − the value of any variable with a positive

(negative) reason to another variable will reduce (increase, resp.)

the probability of the latter’s value being +, whereas (ii) does not,

since setting d to− does not affect the probability of c’s value being

+ and (i) does not since setting d to− does not affect the probability

of e’s value being+.

Similarly to the case of unipolar/bipolar explanations, relational

unipolar explanations can be directly obtained from RXs by

ignoring the distinction between positive and negative reasons, and

the property of dialectical DA can be lifted:

Definition 6. An RX 〈R+,R−,C, x〉 satisfies naive descriptive

accuracy iff the relational unipolar explanation 〈R+ ∪ R−,C, x〉

satisfies naive descriptive accuracy.

It is then easy to see that dialectical DA strengthens naive DA:

Proposition 2. If an RX 〈R+,R−,C, x〉 satisfies dialectical DA then

it satisfies naive DA.

Note that bipolar explanations 〈F+, F−,C, x〉 can be regarded as

special cases of RXs, i.e., 〈{(X,C)|X∈F+}, {(X,C) | X ∈ F−},C, x〉

(indeed, the RX in Figure 1i is a bipolar explanation). Thus, from

now on we will often refer to all forms of bipolar explanation

as RXs.

5.5. Relational explanations and structural
DA

When a classifier is equipped with a structural description, one

can require that the relations used for explanation purposes in RXs

are subsets of those specified by the structural description, so that

the RXs correspond directly to (parts of) the inner working of the

model. This leads to the following additional form of DA:
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FIGURE 1

Example RXs (shown as graphs, with positive and negative reasons given by edges labeled + and −, resp.) with input x such that

x(s) = x(d) = x(h) = x(n) = + (represented as s+, d+, h+, n+) and (resulting) class values c = + (represented as c+) and e = + (represented as e+).

Property 5. Given a probabilistic classifier PC with structural

description SD:

• a relational unipolar explanation 〈R,C, x〉 satisfies structural

descriptive accuracy iffR ⊆ SD; and

• an RX 〈R+,R−,C, x〉 satisfies structural descriptive accuracy

iffR+ ∪R− ⊆ SD.

For instance, suppose that SD is the structural description in

Table 2c. Then, the RXs in Figures 1ii, iii satisfy structural DA, since

all of the relations are contained within the structural description,

while the RX in Figure 1i does not, since the relations from d, h and

n to e are not present in the structural description.

6. Achieving descriptive accuracy in
practice

In this section, we study the satisfaction of the proposed

properties by explanation methods. We focus in particular on two

existing methods in the literature, namely LIME (Ribeiro et al.,

2016) and SHAP (Lundberg and Lee, 2017) , and variants thereof

that we design so that they satisfy structural DA. After showing

that none of these methods satisfies all the properties introduced in

Section 5, we introduce a novel form of explanation guaranteed to

satisfy them, by definition. Thus, this novel form of explanation can

be seen as a “champion” for our proposed forms of DA, showing

that they can be satisfied in practice.

We start with LIME and SHAP. The explanations they produce

(given an input x and a classifier, computing C = ω, given x)

basically consist in computing, for each feature Xi ∈ X, a real

number w(x,Xi,C) indicating the importance of Xi, which has

assigned value x(Xi) in the given input x, toward the probability

of the class variable C being assigned value ω = PC(C|x) by the

classifier, in the context of x.7 The absolute value of this number

can be interpreted as a measure of the feature importance in the

explanation, while its sign, in the context of explaining probabilistic

7 We omit the formal definitions of how these well-known methods

compute w, as the considerations in this paper on property satisfaction

for LIME and SHAP are mostly based on empirical evaluation, supported

by the standard implementations of LIME and SHAP, rather than their

formal definition.

classifiers, indicates whether the feature has a positive or negative

role wrt the classifier’s resulting value for the explained instance.

Features which are assigned a value of zero can be regarded

as irrelevant.8 Clearly, such explanations correspond to bipolar

explanations 〈F+, F−,C, x〉 as in Definition 2, with

• F+ = {Xi ∈ X | w(x,Xi,C) > 0} and

• F− = {Xi ∈ X | w(x,Xi,C) < 0}.

In the remainder, with an abuse of terminology, we call

these bipolar explanations LIME/SHAP explanations, depending on

whether w is calculated using, resp., the method of LIME/SHAP.

For illustration, consider the classifier in Table 1 and x such that

x(s) = x(d) = x(h) = x(n) = +, as in the caption of Figure 1,

for which the classifier computes e = +. In this simple setting,

SHAP computes w(x, s+, e+) = −0.20, w(x, d+, e+) = 0.03,

w(x, h+, e+) = −0.05, and w(x, n+, e+) = 0.25 (adopting here the

same conventions on variable assignments as in the caption of the

Figure). This results in the SHAP explanation in Figure 1i. Thus

features d and n (with their current values) are ascribed positive

roles and s and h are ascribed negative roles in determining the

outcome PC(e|x) = +. However, as stated earlier, for feature

d this is in contrast with the property of naive DA. In fact, by

inspection of Table 1, it can be noted that changing the value of

this variable individually we would still have P(e = +|x) = 1.

To put it in intuitive terms, assigning a positive importance to

this variable suggests to the user that its current value (namely

+) has a role (though minor) in determining the outcome e =

+, which is misleading. The following proposition generalizes

these considerations:

8 While our property of naive DA requires that features included in an

explanation are, in fact, relevant, a dual requirement would be that features

not included in an explanation are, in fact, irrelevant. Addressing also

this requirement corresponds to considering the implicit contents of an

explanation too, i.e., all the features which are not presented to the user.

However, the choice of features to be presented to the users may be

determined also by their importance degree. In this sense, a feature which

is not included does not necessarily need to be completely irrelevant,

while a feature which is included definitely needs to be relevant. Based on

this considerations, in this paper we focus on naive DA as a fundamental

requirement, while we leave the investigation of more articulated versions

of this property to future work.
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Proposition 3. In general, LIME and SHAP explanations are not

guaranteed to satisfy naive nor dialectical DA.

The illustration above proves this result for SHAP explanations,

by providing a counterexample to naive (and hence dialectical)

DA in the context of the classifier in Table 1. The result for

LIME explanations can be proved by introducing spurious features

within trained probabilistic classifiers and showing that they play

a role within LIME (see Appendix 1). As a side observation,

in the appendix we also show empirically that approximate

implementations of SHAP (the ones being used in practice, as an

exact implementation of SHAP is practically unfeasible) also violate

naive (and hence dialectical) DA.

Concerning structural DA, LIME and SHAP explanations may

in general satisfy it only if X × C ⊆ SD, i.e., if the structural

description includes all the possible relations from feature variables

to class variables. This is, for instance, the case for naive BCs

(Maron and Kuhns, 1960), but not for more general BCs or CCs.

To overcome this limitation, generalizations of LIME and SHAP

explanations can be defined so that they are guaranteed to satisfy

structural DA by construction. This requires that the computation

of (LIME/SHAP) w is applied not only to pairs with a feature

and a class, but also, more generally, to any pairs of variables,

following the underpinning structural description: in this way a

bipolar argumentation framework satisfying structural DA is built.

Definition 7. Let PC be a probabilistic classifier with structural

description SD. Given an input x ∈ X and the resulting value

ω = PC(C|x) for class C ∈ C given x, a LIME/SHAP explanation

satisfying structural DA (SDA-LIME/SDA-SHAP in short) is an RX

〈R+,R−,C, x〉 such thatR+ ∪R− ⊆ SD and

• R+ = {(Vi,Vj) ∈ SD|w(x,Vi,Vj) > 0}, and

• R− = {(Vi,Vj) ∈ SD|w(x,Vi,Vj) < 0}

where w is calculated, resp., using LIME/SHAP iteratively on the

sub-classifiers induced by the structural description.

In practice, SDA-LIME and SDA-SHAP result from applying

the attribution methods not on “black box” reasons (i.e., explaining

class variables in terms of input features alone) but rather on

reasons drawn from the structural description. In a nutshell,

this amounts to applying LIME and SHAP by following the

dependencies included in SD, namely treating parents of class

variables as features, in the context of sub-classifiers induced by

SD, step-wise. In the first iteration, for each class variable whose

parents are all features (note that at least one such variable must

exist), LIME and SHAP are applied to the sub-classifier consisting

of the variable and its parents, and the weight computed for each

parent is assigned to the link from the parent to the variable. Then,

for the purposes of the subsequent iterations, each class variable

to which this computation has been applied is marked as covered.

As a consequence, new variables whose parents are all features or

covered will be identified and LIME and SHAPwill be applied to the

relevant sub-classifiers as above. The process will terminate when

reaching the coverage of all variables.

As a simple example, Figure 1ii gives an illustration of the

application of SDA-SHAP for the structural description in Table 2c.

In the first iteration, SHAP is applied to the sub-classifier consisting

of variable c (the only one whose parents are all features) and its

parents, i.e., to the classifier in Table 2a, giving rise to w(x, d, c) =

0.04, w(x, h, c) = −0.19, w(x, n, c) = 0.18. Then c is covered and

SHAP can be applied to the classifier consisting of variable e and its

parents (Table 2b), obtaining w(x, s, e) = −0.19, w(x, c, e) = 0.31

and completing the coverage of the variables.

Note that, like SDA-SHAP, Shapley Flow, recently proposed

by Wang et al. (2021), generalizes SHAP so that reasons, rather

than feature variables, are assigned a numerical weight. This is

done using a causal model as the structural description for features

and classes, in order to remove the risk that features not used

by the model are assigned non-zero weights. Though featuring a

similar high-level goal and sharing some basic idea, Shapley Flow

significantly differs from SDA-SHAP. As a first remark, Shapley

Flow is limited to single class variables, whereas SDA-SHAP can

be used with probabilistic classifiers with any number of class

variables. More importantly, in Shapley Flow the weights assigned

to edges correspond to a notion of global flow rather than to a

notion of importance of local influences, and hence have a different

meaning wrt SDA-SHAP.

SDA-LIME and SDA-SHAP of course satisfy structural DA (by

design) but fail to satisfy naive and dialectical DA.

Proposition 4. SDA-LIME & SDA-SHAP satisfy structural but are

not guaranteed to satisfy naive nor dialectical DA.

The results above show that in order to guarantee the

satisfaction of all the DA properties, an alternative approach to the

construction of bipolar argumentation frameworks for explanation

is needed. To this purpose, we introduce the novel dialectically

accurate relational explanations (DARXs), whose definition is

driven by the set of requirements we have identified.

Definition 8. Given a probabilistic classifier with structural

description SD, a dialectically accurate relational explanation

(DARX) is a relational bipolar explanation 〈R+,R−,C, x〉 where,

letting vx = PC(Vx|x) for any Vx ∈ V:

• R+ = {(Vi,Vj) ∈ SD|∀v′i ∈ �Vi \ {vi} it holds that P(Vj =

vj|x) > P(Vj = vj|x, set(Vi = v′i))};

• R− = {(Vi,Vj) ∈ SD|∀v′i ∈ �Vi \ {vi} it holds that P(Vj =

vj|x) < P(Vj = vj|x, set(Vi = v′i))}.

Proposition 5. DARXs are guaranteed to satisfy naive, structural

and dialectical DA.

For illustration, suppose SD corresponds exactly to the links in

Figure 1iii. Then, this figure shows the DARX for e given the input

in the figure’s caption and the classifier in Table 1 (or Table 2). Here,

the satisfaction of naive DA ensures that no spurious reasons, i.e.,

where the corresponding variables do not, in fact, influence one

another, are included in the DARX. Note that, when explaining e

with the same input, SHAP may draw a positive reason from d

to e (as in Figure 1i) when, according to SD, d does not directly

affect e. Further, the satisfaction of dialectical DA means that each

of the reasons in the DARX in Figure 1iii is guaranteed to have the

desired dialectical effect (e.g., that the current value of n renders

the (positive) prediction of c more likely, while the value of h has
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the opposite effect). Meanwhile, the RXs (Figures 1i, ii) include

the positive reasons from d, which have no bearing on either

classification for this input.

Note that the bipolar argumentation frameworks representing

DARXs are conceived as local explanations, i.e., they are meant to

explain the behavior of the classifier given a specific input, not the

behavior of the classifier in general. In other words, they assign a

positive or negative role to variables with reference to the specific

input considered and it may of course be the case that, given a

different input, the same variable has a different role.

While DARX provides a notion of local explanation based

on bipolar argumentation frameworks which is fully compliant

with DA requirements, one may wonder whether its advantages

are significant when applied to actual instances of probabilistic

classifiers and whether it is viable in terms of performance. These

questions are addressed by the empirical evaluation presented in

next section.

7. Empirical evaluation

As mentioned in Section 4, we experiment with (chains of)

BCs as well as chains (in the form of trees) of tree-based classifiers

(referred to as C-DTs below). As far as BCs are concerned,

we experiment with different types, corresponding to different

restrictions on the structure of the underlying Bayesian network

and conditional dependencies: naive BCs (NBC) (Maron and

Kuhns, 1960); tree-augmented naive BCs (TAN) (Friedman et al.,

1997); and chains of BCs (Zaragoza et al., 2011), specifically in

the form of chains of the unrestricted BCs suggested in Provan

and Singh (1995) (CUBC). We choose C-DTs and (chains of) BCs

because they are naturally equipped with underlying structural

descriptions, which allows us to evaluate structural DA, while they

are popular methods with tabular data, e.g., in the case of BCs, for

medical diagnosis (Lipovetsky, 2020; McLachlan et al., 2020; Stähli

et al., 2021).9

Our experiments aim to evaluate the satisfaction/violation of

structural and dialectical DA empirically for various concrete RXs

(i.e., LIME, SHAP and their structural variants) when they are not

guaranteed to satisfy the properties, as shown in Section 6.

The main questions we aim to address concern actual DA and

efficiency, as follows. Actual DA. While some approaches may not

be guaranteed to satisfy DA in general, theymay for themost part in

practice. How much DA is achieved in the concrete settings of SHAP,

LIME, SDA-SHAP and SDA-LIME explanations? We checked the

average percentages of reasons in LIME and SHAP explanations

and in their structural counterparts which do not satisfy our

notions of descriptive accuracy. The results are in Table 4. We

9 We use several datasets or (pre-computed) Bayesian networks, and

deploy the best-performing type of the chosen type of classifier for each.

Dataset sources were as follows: Shuttle (UCI, 2020), German (UCI, 2020),

California (Kelley Pace and Barry, 1997), Child (BNlearn, 2020), Insurance

(BNlearn, 2020), HELOC (Community, 2019) and LendingClub (LC) (Club,

2019). As structural descriptions, we use those described in Section 4. When

training classifiers on datasets, we split them into train/test sets and optimize

the hyper-parameters. See Appendix 2 for details on the datasets, training and

performance, and for further details on the experiments.

note that: (1) LIME often violates naive descriptive accuracy, e.g.,

in the Child and Insurance BCs, whereas SDA-LIME, SHAP and

SDA-SHAP do not; (2) LIME and SHAP systematically violate

structural descriptive accuracy; (3) LIME, SHAP and their structural

counterparts often violate dialectical descriptive accuracy.

Efficiency. Wehave definedDARXs so that they are guaranteed

to satisfy structural and dialectical DA. Is the enforcement of these

properties viable in practice, i.e., how expensive is it to compute

DARXs? Formally, the computational cost for DARXs can be

obtained as follows. Let tp be the time to compute a prediction

and its associated posterior probabilities.10 The upper bound

of the time complexity to compute a DARX is TDARX(�) =

O
(

tp ·
∑

Vi∈V
|�Vi |

)

, which is linear with respect to the sum of the

number of variables’ values, making DARXs efficient.

8. Human experiment

Toward the goal of complying with human-centric

requirements for explanations, we introduced dialectical descriptive

accuracy as a cognitively plausible property supporting trust and

fairness but lacking in some popular model-agnostic approaches.

We hypothesize that dialectical DA aligns with human judgement.

To assess our hypothesis, we conducted experiments on Amazon

Mechanical Turk through a Qualtrics questionnaire with 72

participants. Of these, only 40 (56%) passed attention checks

consisting of (1) basic questions for trivial information visualized

on the screen and (2) timers checking whether the user was

skipping very quickly through the questions. We used the Shuttle

dataset to test our hypothesis. Indeed, this captures a setting with

categorical (not only binary) observations, keeping participants’

cognitive load low with an underlying classification problem easily

understandable to lay users (see information about user expertise

in Appendix 3).

We presented users with six questions, each accompanied by

a DARX in the form exemplified in Figure 2 left, with six feature

variables (i.e.,WindDirection,Wind Strength, Positioning,Altimeter

Error Sign, Altimeter Error Magnitude and Sky Condition) assigned

to various values and with corresponding predicted probability p

for the (shown value of the) class variable Recommended Control

Mode, as computed by our NBC for Shuttle (in Figure 2 left,

p = 0.979 for the Automatic value of the class variable, given

the values of the feature variables as shown). The graphical view

demonstrated in the figure is a representation of a DARX as

defined in Definition 8, with the green/red edges representing

the positive/negative resp. reasons. We asked the users how they

expected p to change when adding a positive (green arrow labeled

with +) or negative (red arrow labeled with -) reason, e.g., Figure 2

shows how we asked the users what effect they thought that adding

the positive reason Altimeter Error Magnitude would have (as in

the DARX on the right). Specifically, we asked users to choose

among options:

(a) p increases;

10 In our experiments, using a machine with Intel i9-9900X at 3.5Ghz and

32GB of RAM with no GPU acceleration, tp ranges from 3µs for the simplest

NBC to 436ms for the most complex chain classifier.
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TABLE 4 Average percentages of reasons (over 100 samples) violating DA (i.e., |{(Vi,Vj)∈R−∪R+ such that(Vi,Vj) violates DA}|/|R− ∪ R+|) for several

instantiated RXs.

Dataset Classifier∗
SHAP LIME SDA-SHAP SDA-LIME

Naive Structural Dialectical Naive Structural Dialectical Naive Dialectical Naive Dialectical

Shuttle NBC 0% 0%† 16.43% 0% 0%† 17.14% ‡ ‡ ‡ ‡

German NBC 0% 0%† 54.56% 0% 0%† 49.55% ‡ ‡ ‡ ‡

California TAN 0% 0%† 16.75% 0% 0%† 16.75% ‡ ‡ ‡ ‡

Insurance CUBC 0% 67.07% 78.77% 59.56% 89.26% 93.07% 0% 41.77% 0% 42.56%

Child CUBC 0% 70.97% 75.35% 63.74% 89.59% 91.16% 0% 21.18% 0% 21.18%

HELOC C-DTs 51.77% 100% 94.42% 62.21% 100% 97.87% 25.60% 77.88% 31.21% 82.09%

LC C-DTs 16.19% 100% 94.47% 72.95% 100% 98.57% 0% 52.26% 0% 57.63%

(∗) NBC (Naive BC), TAN (Tree-Augmented NBC), CUBC (Chain of Unrestricted BCs), C-DTs (Chain of Decision Trees); (†) results must be 0.0% due to the BC type; (‡) SDA-LIME and

SDA-SHAP explanations are equal to LIME and SHAP, resp., due to the BC type.

FIGURE 2

Example question as presented to users in the human experiment.

(b) p decreases;

(c) p remains unchanged; and

(d) I don’t know,

as indicated in Figure 2. For our hypothesis to hold we expected

users to select answer (a) when adding positive reasons (as in

Figure 3) and to select answer (b) when adding negative reasons.

We also assessed how consistent users were, dividing the results

based on the number of questions (out of 6) users answered

following the same pattern, e.g., consistency of 6 means either

all answers aligned with our hypothesis or all answers did not,

while consistency of 3 means half of the answers aligned and half

did not.

The results are shown in Figure 3: here, when computing

the p-values against the null hypothesis of random answers

(50%-50%) we used the multinomial statistical test. We note

that: (1) in all cases users’ answers were predominantly in line

with our expectations; and (2) participants that were consistent

in answering more questions were more likely to agree with

our hypothesis.
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FIGURE 3

Results of the experiments with 40 participants; all results are significant (p << 0.001) against the null hypothesis of random answers. Here,

“Negative/Positive reasons” refers to adding negative/positive contributions, resp., from features, as illustrated in Figure 2. (†) Consistency represents

the number of questions (out of 6) users answered following the same pattern (also unexpected ones, e.g., that negative reasons increase

probability). (§) We aggregated all results for unexpected answers in these bar plots.

9. Conclusions

In this paper we have studied how to define and enforce

properties of explanations for the outputs of AI models (focusing

on probabilistic classifiers), so that they can be deemed trustworthy

and fair, in the sense that they do not mislead their users.

Specifically, we have introduced a three-fold notion of DA

for explanations of probabilistic classifiers, which, despite its

intuitiveness, is often not satisfied by prominent explanation

methods, and shown that it can be satisfied, by design, by the novel

explanation concept of DARXs.We have performed a wide-ranging

evaluation with theoretical results and experiments in a variety of

data-centric settings and with humans wrt explanation baselines,

highlighting the importance of our most demanding notion of DA

(dialectical DA), from a human perspective. This demonstrates how

DA, which has thus far been overlooked in the explainable AI

literature, could be a critical component in achieving trustworthy

and fair systems, in line with the principles of human-centric AI.

We have built our definitions of DA and DARX around notions

inspired by formal notions of argumentation, thus providing some

instantiated evidence about the foundational role of argumentation

for human-centric AI, on which the present special issue is focused.

Our work opens several avenues for future work. It would

be interesting to experiment with other forms of probabilistic

classifiers, including (chained) neural networks, possibly in

combination with methods for extracting causal models from

these classifiers (e.g., as in Kyono et al., 2020) to provide

structural descriptions for satisfying structural DA. It would

also be interesting to study the satisfaction of (suitable variants

of) DA , e.g., those incorporating zero-valued variables as

mentioned previously, by other forms of explanations, including

minimum cardinality explanations (Shih et al., 2018) and set-

based explanations (Dhurandhar et al., 2018; Ignatiev et al.,

2019). We also note that our proposed methodology in this

paper can support human users’ full understandings of model

intricacies toward leading to their outputs. However, as with other

explanation models, there is a fine line between explainability

and manipulability. Thus, it would be interesting to explore

potential risks in revealing the inner workings of probabilistic

classifiers to end users, as this may empower users to manipulate

them. We would also like to extend the human experiment

described in Section 8 to present a more rigorous assessment of

our notions of DA, e.g., assessing structural DA, which would

require users who are able to appreciate the model’s underpinning

structure. Last but not least, while the human experiment provided

encouraging indications about the cognitive plausibility of the

proposed approach, the present research needs to be complemented

by an investigation focused on the Human-Computer Interaction

(HCI) aspects involved in properly conveying explanations to users.

The fact that HCI principles and methodologies are of paramount

importance in human-centric AI has been pointed out by several

works in the literature (see e.g., Xu, 2019; Shneiderman, 2020),

which also stress the need to properly take into account human

and ethical factors. In particular, interactivity is a key factor to

address the basic tension between interpretability and accuracy,

especially when dealing with complex models (Weld and Bansal,

2019). This is demonstrated, for instance, in case studies where

suitable interaction mechanisms are used to allow users to combine

global and local explanation paradigms (Hohman et al., 2019) or

to enable heuristic cooperation between users and machine in a

challenging context like the analysis of complex data in the criminal

justice domain (Lettieri et al., 2022).

Author’s note

This paper extends (Albini et al., 2022) in various ways;

in particular we introduce novel variants of LIME and SHAP,

which satisfy structural DA by design, and we undertake a

human experiment examining our approach along the metric

of consistency.
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