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Using machine learning for
healthcare treatment planning
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We present a methodology for using machine learning for planning treatments.

As a case study, we apply the proposed methodology to Breast Cancer. Most

of the application of Machine Learning to breast cancer has been on diagnosis

and early detection. By contrast, our paper focuses on applying Machine Learning

to suggest treatment plans for patients with di�erent disease severity. While the

need for surgery and even its type is often obvious to a patient, the need for

chemotherapy and radiation therapy is not as obvious to the patient. With this in

mind, the following treatment plans were considered in this study: chemotherapy,

radiation, chemotherapy with radiation, and none of these options (only surgery).

We use real data frommore than 10,000 patients over 6 years that includes detailed

cancer information, treatment plans, and survival statistics. Using this data set, we

construct Machine Learning classifiers to suggest treatment plans. Our emphasis

in this e�ort is not only on suggesting the treatment plan but on explaining and

defending a particular treatment choice to the patient.

KEYWORDS

machine learning,ML in healthcare treatment, nearest neighbor classification, explainable

AI, ML in healthcare environments

1. Introduction

Breast cancer is a leading cause of cancer-related deaths among women worldwide. Early

detection and accurate breast cancer diagnosis are crucial for improving patient outcomes

and reducing mortality rates. It is the most commonly diagnosed cancer type, accounting

for 1 in 8 cancer diagnoses worldwide (CDC, 2022). According to the World Health

Organization, in 2020, there were about 2.3 million new cases of breast cancer globally and

about 685,000 deaths from this disease, with large geographical variations observed between

countries and world regions (World health organization, 2022). Doctors often use additional

tests to find or diagnose breast cancer. Breast cancer is treated in several ways. It depends on

the kind of breast cancer and how far it has spread. People with breast cancer often get more

than one kind of treatment.

1. Surgery

2. Chemotherapy

3. Hormonal therapy

4. Biological therapy

5. Radiation therapy

Machine learning (ML) algorithms have shown promise in aiding clinicians in the

diagnosis, prognosis, and treatment of breast cancer. Among the different ML algorithms,

logistic regression (LR), random forest (RF), and K-nearest neighbors (KNN) are widely used

for breast cancer classification and prediction (e.g., Rajbharath and Sankari, 2017). These

models have been shown to improve the accuracy and efficiency of breast cancer diagnosis,

prognosis, and treatment planning.
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Extensive literature (e.g., Ak, 2020) is present that compares

the performance of multiple machine learning algorithms,

including deep learning methods, in predicting breast cancer

recurrence or classification. In our paper, the context is different.

Our paper aims to provide a patient-centric approach to

provide a dialogue between the physician and the patient. And

keeping that as our focus, we concentrate on Machine Learning

algorithms that are both explainable and accurate such as Logistic

Regression.

The peculiarity of our study lies in the fact that the

object of our approach is not a doctor who is offering

the most optimal treatment method but a patient who

is considering options for the treatment offered to

him/her. This condition implies the following requirements

and restrictions:

1. The need for dialogue between patient, doctor, AI.

2. The need to explain the AI decision.

FIGURE 1

Dataset balance.

FIGURE 2

Dataset summary.

3. Explanation of the decision should be in a form and terms

understandable to the patient.

In this regard, an open database based on common and

understandable symptoms and types of treatment was used. KNN

was considered a system of explanation, the most simple and

understandable form for the patient.

2. Methodology

In this paper, we suggest a methodology of using machine

learning to help patients and doctors identify the appropriate

treatment plan. For the case study, we have used breast

cancer (Reddy et al., 2018; Song et al., 2021; van de Sande et al.,

2021).

Our methodology for using Machine Learning consists of 2

stages:
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TABLE 1 Dataset details.

Attributes Attributes description Attributes type

Age at diagnosis Age at the beginning of treatment Numeric

Regional nodes positive (1988+) No. of regional lymph nodes positive, Above 90 unknown Numeric

Total # of in situ/malignant tumors for patient No. of malignant tumors for patient Numeric

Radiation recode Radiation type Categorical

Chemotherapy recode Chemotherapy done? Categorical

Radiation sequence with surgery Radiation sequence Categorical

ER Status Recode Breast Cancer (1990+) Estrogen receptor info Categorical

PR Status Recode Breast Cancer (1990+) Progesterone receptors info Categorical

CS tumor size (2004-2015) Tumor size Numeric

Derived HER2 Recode (2010+) Joint hormone receptor Categorical

Regional nodes examined (1988+) Records the total # of regional lymph nodes that were removed Numeric

COD to site recode Cause of Death Categorical

Race Recode Race categories Categorical

Sex Sex of patient Categorical

Vital status recode (study cutoff used) Patient Status Categorical

Diagnosis_year Year when diagnosis started Numerical

Last_fu _year Last Year of contact for treatment Numerical

Interval_years Number of Intervals the screening was done Numerical

Status_5_years Status of the patient during 5 years Categorical

Stage 1: In the first stage, we use state-of-the-artML algorithms

(Logistic Regression and Random Forest) (Bishop, 2016; Hastle,

2018) to find out the status of the patient after 5 years based on the

Doctor’s suggestion. We want to use a classifier that is sufficiently

accurate and explainable. A good choice for such a classifier would

be Logistic regression. On the other hand, there are classifiers, such

as Random Forest, that often provide higher accuracy but are not

explainable. Unless the accuracy of logistic regression is insufficient,

this would be the classifier of choice. For our particular case study,

the Random Forest classifier gives marginally better results, and

therefore, logistic regression would be used.

Stage 2: In the second stage, we need to examine alternative

treatment plans for a patient. To that end, we examine k-Nearest

Neighbors (Cover and Hart, 1967; Sarkar and Leong, 2000; Bagui

et al., 2003). We use statistics for these neighbors to examine

alternative treatment plans such as:

1. Is chemotherapy required?

2. What is s the best radiation sequence with surgery?

3. What radiation recode should be proposed?

The idea is to help the doctor and the patient chooses a

treatment to maximize the chances of survival after 5 years. We

take k = 25 (neighbor) patients as we believe that this would

be a number that is sufficient to compute statistics on alternative

treatments and, at the same time, would allow the physician to

examine these “neighbor” patients in detail and to explain the

predicted results of alternative treatments.

We do not focus on k-nearest neighbors as an algorithm

for breast cancer diagnosis, as considered in Medjahed et al.

(2013). Our usage of nearest neighbors is to help the physician

explain alternative treatments and outcomes once the prediction

in Stage 1 is established. We should also note that the k-nearest

neighbors require a distance metric, and one could get different

results depending on the distance metrics and classification

rules (Medjahed et al., 2013). In stage 2, we considered a distance

metric where all features have the same weight. It is up to

a physician to assign different weights depending on her/his

expertise. However, it is easier for the patients to understand the

similarity if the weights are the same. In general, to use KNN to

explain the solution, one need’s the concept of proximity from the

user’s point of view (Goldberg and Pinsky, 2022). In our case, the

user is a patient, and the absence of symptoms signs in KNN may

be necessary to start a dialogue with the doctor when explaining the

proposed treatment.

This work also includes an interactive model where a patient

can enter his details and use the model to predict the probability

of his staying alive based on a combination of Radiation Sequence,

Radiation Recode, and Chemotherapy Recode. For a survey of ML

techniques in breast cancer prediction, see Boeri et al. (2020), Alaa

et al. (2021), and Sugimoto1 et al. (2021).

3. The breast cancer dataset

For our research purpose, we requested access to Surveillance,

Epidemiology, and End Results (SEER) custom breast cancer

databases with the radiation and chemotherapy records’

fields (SEER, 2022).
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FIGURE 3

Correlation heatmap.

The data was accessed after signing the Data Use Agreement for

SEER Radiation Therapy and Chemotherapy Information. Using

the SEER*Stat tool, we selected the database named “November

2018 specialized databases,” which had additional treatment fields.

A Case listing session was created in order to fetch individual

cancer records and patient histories. Fetching individual case

listings allowed us to fetch the actual values stored in the database.

We filtered the listings by specifying the cancer site to include only

breast cancer cases.

We also segregated data based on the year of diagnosis and

a selected number of intervals to be 5 years. We only included

cases with a year of diagnosis > 2010 so that we have values for

treatment-related fields.

The final step was to select the attributes/variables related to

demographics, diagnosis, and treatment. The SEER*Stat query was

executed, and the results were exported and saved as the Breast

Cancer dataset.

The dataset can be accessed here: https://github.com/

snehasi2703/BreastCancerSurvivalDataset.

The resulting Breast Cancer dataset consists of 35,349 rows

and 19 attributes (SEER, 2022). This Dataset is imbalanced. Out

of 35,349 rows, 23,404 are alive patients at the end of 5 years, and

11,945 are as dead after different intervals (Figure 1). The dataset

summary in Figure 2 shows the quartiles, medians, minimum,

maximum, and means of all the required features considered at the

time of Data cleaning.
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TABLE 2 Attribute importance and correlation with target variable.

Attribute Importance Correlation with
target variable

Regional nodes positive

(1988+)

0.34 0.45

Radiation sequence with

surgery

0.18 –0.24

PR Status Recode Breast

Cancer (1990+)

0.07 –0.12

ER Status Recode Breast

Cancer (1990+)

0.06 –0.10

Age at diagnosis 0.05 0.29

Total number of in

situ/malignant tumors for

patient

0.05 0.06

CS tumor size (2004-2015) 0.05 0.07

Race recode 0.05 –0.09

Radiation recode 0.03 0.19

Chemotherapy recode 0.03 –0.03

Derived HER2 Recode

(2010+)

0.03 0.04

Regional nodes examined

(1988+)

0.03 0.14

Sex 0.03 0.04

COD to site recode ** 0.65

Diagnosis_year ** 0.56

Last_fu _year ** –0.72

Interva_years ** –0.86

∗∗Feature not considered for study due to high correlation with Target Variable.

3.1. Data cleaning

Out of the 35,349 records, there were 23,404 patients with

Alive status while 11,945 with Dead status. The data set was then

cleansed to remove all the NA values. The field CS Tumor Size

had data with values 999, which meant that the tumor size for that

patient’s instance was unknown, or the size was not stated for that

patient record. The data cleaning for such rows was also done to

ensure only the valid instances where the tumor size is known are

considered. Also, the field Regional Nodes Positive had a 99 in it,

which meant that it is unknown whether the nodes are positive

or not applicable and not stated in the patient record. Such data

instances were also removed from the whole dataset to be used for

model building. Post-data cleansing, the count of the entire dataset

was 32,922 rows with 19 columns. Of these, 22,889 (69.5%) patient

records had the status “Alive” while 10,033 (30.5%) had the status

“Dead.” as shown in Figure 1. A detailed description of the types of

the Features variables and their description is provided in Table 1.

3.2. Feature selection

Feature importance was also taken into account to avoid

missing important features. Out of 19 features, we removed all

the features which were highly correlated with the class label

as shown in Figure 3 since they were contributing 96 percent

to the performance of the model, which was earlier 99 percent.

The correlation was taken into consideration to improve the

reliability of the model. Highly correlated attributes with the Target

Variable contributed to the increased accuracy as they were directly

associated with the Target Variable. Correlation details of the

features with the target variable are shown in detail in Table 2.

Feature importance and their scores are shown in Figure 4.

4. ML models and performance
evaluation

We chose Logistic Regression as the model for its

easier explainability and the fact that it doesn’t require any

hyperparameter tuning and Random Forest to support our

idea that Logistic Regression acts as a good classifier and

results are on par with Random Forest. KNN was used for the

explanation on the basis of past nearest patients having similar

characteristics and to answer the questions of the patients and

look at the previously evaluated patients and what worked in

their cases.

4.1. Logistic regression

Logistic regression is a statistical method used

in machine learning to predict the probability of an

outcome being one of two possible classes, given one or

more independent variables. It is a binary classification

algorithm that estimates the relationship between the

independent variables and the dependent variable,

using a logistic function to transform the output into a

probability value.

4.2. Random forest

Random Forest is a machine learning algorithm used for

both classification and regression problems. It is an ensemble

learning method that combines multiple decision trees, each

trained on a subset of the available features and data. Random

Forest randomly selects features and data samples for each

decision tree and aggregates the output of all the trees to make a

final prediction.

The individual decision trees in a Random Forest model are

trained using a technique called bagging (bootstrap aggregating),

which involves resampling the data with replacement to create

multiple training sets. The output of each decision tree is combined

to produce a more accurate and stable prediction than a single

decision tree.

The default parameters were used to initialize the model, and

then we tuned the parameters to adjust the model to achieve the

best performance, and we settled with max_depth as 10.
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FIGURE 4

Feature importance.

4.3. K nearest neighbors

K Nearest Neighbors (KNN) is a simple machine-learning

algorithm for classification and regression problems. It predicts the

value of an input data point based on the most frequent class or

average value of the k nearest neighbors in the training set. KNN is

often used for small data sets with complex relationships between

input and output variables. However, it can be computationally

expensive and sensitive to the choice of distance metric and the

number of neighbors k.

We took the 25 nearest neighbors because this number is

neither low nor high enough for a the physician to manually go

ahead and verify by looking at 25 patients close to the patient.

4.4. Model training and performance
evaluation

There were a total of 13 features (after removing COD to

Site Recode, Diagnosis_year, Last_fu_year, interva_years, and Vital

Status Recode) that we used to build our ML model for predicting

the status of the patient after 5 years. A detailed description of

these features is given in Table 1. We encoded these features using

Label Encoder for the categorical values and then split the data

into 50/50 with stratified data sampling across stutus_5_years and

random_state as 42.

We built two prediction models: one using a Random Forest

Classifier and another using Logistic regression. Both models

utilized these 13 features to predict the patient’s status after the

number of intervals. The performance of the models was computed

using the Confusion Matrix, Area Under the Curve (AUC), and

F1 Score. We chose the AUC and F1 Score to understand how the

model performs with each label broadly.

AUC is a measure of the performance of a classification model

that quantifies how well the model can distinguish between positive

and negative classes. The AUC represents the area under the

receiver operating characteristic (ROC) curve, which plots the true

positive rate (TPR) against the false positive rate (FPR) at different

classification thresholds (Bishop, 2016). Its formula is given by

AUC =

∫ 1

0
TPR(FPR−1(t)) dt

The AUC ranges from 0 to 1, with a higher AUC indicating a

better performance of the model. An AUC of 0.5 indicates that the

model performs no better than random guessing, while an AUC of

1 indicates perfect classification.

By contrast, the f1-score is a measure of the balance between

the precision and recall of a classification model. It is the harmonic

mean of precision and recall, with a value between 0 and 1, where

a higher value indicates better performance. f1-score is particularly

useful when the data is imbalanced. Formula:

F1 = 2 ·
precision× recall

precision+ recall

where:

precision =
TP

TP + FP
and recall =

TP

TP + FN

A confusion matrix is a table used to evaluate the performance

of a classification model by comparing the actual and predicted

classes of a set of data. The table has four entries: true positives (TP),

false positives (FP), true negatives (TN), and false negatives (FN).
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The detailed results are shown in the results section. We also

wanted to understand how the spread of data points happens across

different age groups and howwill the model performance change or

gets impacted for different age groups of patient records. For that,

we split the data into three ranges of age: 0 − 45, 45 − 65, and age

> 65 years.

We also looked at the cross-validation score of the models to

verify the robustness of the predictive model and their performance

across the different age groups.

5. Results and discussion

Tables 3, 5 present the performancemetrics of the model for the

full dataset, as well as for different age groups.

The specifications column lists the different subsets of the data

based on age, while the remaining columns present the following

performance metrics:

• True Positives: The number of individuals who were correctly

identified as having the condition.

• True Negatives: The number of individuals who were

correctly identified as not having the condition.

• False Positives: The number of individuals who were

incorrectly identified as having the condition (also known as

Type I error).

• False Negatives: The number of individuals who were

incorrectly identified as not having the condition (also known

as Type II error).

• Recall: The proportion of true positives out of all actual

positives. This metric measures how well the model identifies

individuals with the condition.

• Specificity: The proportion of true negatives out of all actual

negatives. This metric measures how well the model identifies

individuals without the condition.

• FPR (False Positive Rate): The proportion of false positives

out of all actual negatives. This is the complement of

specificity.

• FNR (False Negative Rate): The proportion of false negatives

out of all actual positives. This is the complement of the recall.

• Precision: The proportion of true positives out of all predicted

positives. This metric measures how many of the predicted

positives are actually true positives.

• Accuracy: The proportion of correctly classified individuals

out of all individuals.

• AUC (Area Under the Curve): The area under the ROC

curve measures the trade-off between recall and specificity

for different classification thresholds. A higher AUC indicates

better classification performance.

• F1 Score: The harmonic mean of precision and recall. This

metric provides a balanced measure of the model’s ability to

identify both true positives and true negatives.

5.1. Logistic regression performance

Table 3 shows the results of a logistic regression model that was

used to classify individuals as either alive or dead. The confusion
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FIGURE 5

Confusion matrix of logistic regression. (A) Full dataset using LR. (B) Dataset of age < 45 years using LR. (C) Dataset of 45<age<65 years using LR. (D)

Dataset of age > 65 years using LR.

matrix for the same model for the different age groups is shown in

Figure 5.

From the results, we can see that the full dataset achieved

an accuracy of 0.79, with a relatively high AUC of 0.70.

The recall and specificity were 0.80 and 0.75, respectively,

indicating a reasonable balance between identifying true positives

and true negatives. The precision was high at 0.93, indicating

that a large majority of the predicted positives were actually

true positives.

The table also shows the results for different age groups. We

can see that the model performed relatively well for all age groups,

with the highest performance in the 45–65 age group. This group

had the highest recall and specificity, as well as the highest AUC

and F1 score. The age group above 65 years had the lowest

recall, while the 0–45 age group had the lowest precision and

F1 score.

10-fold cross-validation is a common training and validating

method. It randomly divides the dataset into ten subsets, each turn

of a total of ten in the validation process chooses one subset as the

testing dataset, and the remaining nine are the training dataset. The

average value of the accuracy (or error rate) of the ten times the

results were used as the estimation of the accuracy of the algorithm.

We also cross-validated our models for the model robustness,

and we obtained the below results for the different age groups as

shown in Table 4.

5.2. Random forest performance

Table 5 shows the results of a Random Forest model that was

used to classify individuals as either alive or dead. The confusion
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TABLE 4 Logistic regression model cross validation results.

Specifications Cross-val score Average
accuracy

Full dataset 0.78, 0.78, 0.76, 0.80, 0.79,

0.80, 0.78, 0.78, 0.79, 0.79

0.78

0-45 Years age 0.82, 0.83, 0.83, 0.81, 0.81,

0.81, 0.81, 0.79, 0.81, 0.80

0.81

45-65 Years age 0.84, 0.83, 0.83, 0.83, 0.82,

0.83, 0.83, 0.82, 0.84, 0.83

0.83

Age > 65 years 0.77, 0.73, 0.74, 0.73, 0.75,

0.74, 0.75, 0.72, 0.74, 0.77

0.74

matrix for the same model for the different age groups is shown in

Figure 6.

The full dataset has a recall of 0.83, specificity of 0.78, FPR of

0.22, FNR of 0.17, precision of 0.93, the accuracy of 0.82, AUC of

0.75, and F1 score of 0.66. The 0–45 years age group has a recall

of 0.86, specificity of 0.67, FPR of 0.33, FNR of 0.14, the precision

of 0.95, accuracy of 0.83, AUC of 0.67, and F1 score of 0.50. The

45–65 years age group has a recall of 0.87, specificity of 0.75, FPR

of 0.25, FNR of 0.13, the precision of 0.96, accuracy of 0.85, AUC

of 0.72, and F1 score of 0.58. Finally, the age over 65 years group

has a recall of 0.76, specificity of 0.78, FPR of 0.22, FNR of 0.24, the

precision of 0.85, accuracy of 0.76, AUC of 0.75, and F1 score of

0.71.

The results suggest that the model performs well overall, with

high recall and precision scores. However, it appears that the model

performs slightly better for the age 45-65 years group, with higher

scores for most performance metrics compared to the other age

groups.

We also cross-validated our models for the model robustness,

and we obtained the below results for the different age groups as

shown in Table 6.

5.3. Comparing both models

Comparing the results of the logistic regression in Table 3

with the results of the Random Forest classifier in Table 5,

we notice that the Logistic regression gives competitive results.

Models Accuracy for the different age groups for the Logistic

and Random Forest model is shown in Figure 7. Comparison

of AUC Scores of the different age groups for the Logistic and

Random Forest model is shown in Figure 8. While comparison

of F1 Scores of the different age groups for the Logistic and

Random Forest model is shown in Figure 9. These figures clearly

illustrate that the performance of the Logistic Regression model

is at par with Random Forest Model. The True Positives of

Logistic regression on the Full dataset are higher than Random

Forest, 10,658 and 10,644, respectively. Unlike the Random Forest

classifier, the logistic regression is explainable and allows us

to rank the importance of features. Even the results of the

Logistic Regression models can be replicated again on multiple

runs, unlike Random Forest, whose prediction could change on

simultaneous runs, which makes us hesitant to use Random Forest

for medical cases. T
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FIGURE 6

Confusion matrix of random forest. (A) Full dataset using RF. (B) Dataset of age < 45 years using RF. (C) Dataset of 45<age<65 years using RF. (D)

Dataset of age > 65 years using RF.

TABLE 6 Random forest model cross validation results.

Specifications Cross-val score Average
accuracy

Full dataset 0.82, 0.80, 0.79, 0.82, 0.83,

0.82, 0.82, 0.81, 0.81, 0.82

0.81

0–45 Years age 0.86, 0.87, 0.87, 0.81, 0.81,

0.87, 0.83, 0.82, 0.80, 0.84

0.85

45–65 Years age 0.87, 0.85, 0.85, 0.85, 0.85,

0.86, 0.86, 0.86, 0.86, 0.85

0.86

Age > 65 years 0.77, 0.76, 0.75, 0.76, 0.77,

0.77, 0.77, 0.77, 0.77, 0.77

0.77

Therefore, we decided to use the logistic regression for Stage 1

of our analysis.

Once the patient status is predicted, we consider the second

stage: we implemented k-NN to find 25 nearest neighbors to

the patient and advise the patient regarding Chemotherapy and

Radiation sequence treatments. For this, we have included only

the “Alive” patient Dataset to increase the chances of survival for

the patient. We took 25 nearest neighbors because this number

is neither low nor high enough for a physician to manually go

ahead and verify by looking at 25 patients close to the patient

in question.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2023.1124182
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Dubey et al. 10.3389/frai.2023.1124182

FIGURE 7

Models accuracy comparison.

FIGURE 8

Models AUC score comparison.

To illustrate our approach, we consider two patients, Patient_1

and Patient_2. Their features are summarized in Table 7.

We used Logistic Regression for the prediction of the survival

of the patient after 5 years if the patient follows the advice of

the doctor and also the recommendations of the doctor. We are

also predicting the survival chances if the patient decides not

to undergo radiation and chemotherapy. Then using K Nearest

Neighbors, we check the probability of the survival of the patient for

various combinations of Chemotherapy and Type of Radiation and

Radiation Sequence.

We start with the first patient, Patient_1. According

to our model, the doctor has advised the patient to Beam

Radiation and chemotherapy. Based on the Logistic Regression

patient would be alive after 5 years if the patient follows

the doctor’s advice or even if the patient refuses the

doctor’s advice.

k-Nearest Neighbors of 25 resulted in the probability of the

patient being alive after 5 years to 68%. But if the patient refuses

to take the Beam radiation, the model predicts the probability

of the patient being alive after 5 years as 0%. In case the the

patient refuses any radiation and also wants no chemotherapy

too, then the probability of the patient being alive after 5 years

reaches 4%.

Now, consider the second patient, Patient_2. For this specific

patient, according to our model, the doctor has advised the patient

to Beam Radiation and also to take chemotherapy. Based on the

Logistic Regression patient would be dead after 5 years if the patient

follows the doctor’s advice or even if the patient refuses the doctor’s
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FIGURE 9

Models F1 score comparison.

TABLE 7 Sample data for two patients.

Feature Patient_1 Patient_2

Age at diagnosis 67 57

Regional nodes positive (1988+) 2 0

Total # of in situ/malignant tumors 1 1

Radiation recode 0 0

Chemotherapy recode 1 1

Radiation Sequence with Surgery 3 3

ER Status Recode Breast Cancer (1990+) 2 1

PR Status Recode Breast Cancer (1990+) 2 1

CS tumor size (2004–2015) 70 11

Derived HER2 Recode (2010+) 1 2

Regional nodes examined (1988+) 21 1

Race recode 0 2

Sex 0 0

Interval years 5 5

advice. K Nearest Neighbors of 25 resulted in the probability of the

patient being alive after 5 years to 84%. But if the patient refuses

to take the Chemotherapy, the model can predict the probability

of the patient being alive after 5 years as 76%. In case the patient

refuses any radiation and also wants no chemotherapy too, then

the probability of the patient being alive after 5 years reaches

4%.

Using k = 25 Nearest Neighbors, patients and doctors

can examine several combinations of “Chemotherapy

Recode,” “Radiation Recode,” and “Radiation Sequence”

and have the probabilities of survival after 5 years

using the interactive model. This would allow them to

decide on the more appropriate treatment as shown in

Tables 8, 9.

This model hence was able to predict how different treatments

and combinations of various treatment plans can change the

prediction of a patient’s survival probability. Our model was

able to predict what would be the best treatment plan based

on the Nearest Neighbors. An interactive model we built is

shown in Figure 10, which shows how the doctors can enter

patient details to help him/her look at the previous nearest 25

patients’ data.

One of the limitations of our study has been the lack of

biomarkers and genetics data, which might have provided better

results. Still, this study can serve as the foundation for future works

where features like genetics and biomarkers could be taken into

account with patient understanding accounted for.

6. Conclusion

This article proposed a methodology for developing treatment

plans and explaining them to patients using machine learning.

We illustrated the application of this methodology, focusing on

the treatment of breast cancer. A distinguishing feature of our

approach is that the user is the patient, and this imposes some

restrictions on the type and form of the proposed solutions. For

this, a combination of logistic regression and k-nearest neighbors

is used. Logistic Regression is initially used to compute survival

probabilities and explain the importance of features. We then

find k-Nearest Neighbors and use them to explain the choice of

treatment plans based on similar patients. We believe that using

KNN allows the physician to justify his/her choice of treatment

and makes it possible for the patient to understand potential risks

and outcomes. Our future work will test this approach in real-

world conditions to help expand and improve this methodology
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TABLE 8 Scenarios for Patient_1.

Scenario for
patient 1

Radiation recode Chemotherapy recode Radiation sequence with surgery Probability

Scenario 1 Beam Radiation Yes Radiation after Surgery 68

Scenario 2 Beam Radiation No/Unknown Intraoperative rad with other rad before/after surgery 20

Scenario 3 Beam Radiation No/Unknown Intraoperative radiation 56

Scenario 4 Beam Radiation No/Unknown Radiation before and after surgery 8

Scenario 5 Beam Radiation No/Unknown Radiation prior to surgery 40

Scenario 6 Refused No/Unknown Radiation after surgery 4

TABLE 9 Scenarios for Patient_2.

Scenario for
patient 2

Radiation recode Chemotherapy recode Radiation sequence with surgery Probability

Scenario 1 Beam Radiation Yes Radiation after Surgery 84

Scenario 2 Beam Radiation No/Unknown Radiation after Surgery 76

Scenario 3 Beam Radiation No/Unknown Intraoperative rad with other rad before/after surgery 20

Scenario 4 Beam Radiation No/Unknown Intraoperative radiation 56

Scenario 5 Beam Radiation No/Unknown Radiation before and after surgery 8

Scenario 6 Beam Radiation No/Unknown Radiation prior to surgery 40

Scenario 7 Refused No/Unknown Radiation after surgery 4

FIGURE 10

Interactive model.
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with further methods of explaining the results and treatment

options.
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