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Modeling virtual agents with behavior style is one factor for personalizing human-

agent interaction.We propose an e�cient yet e�ectivemachine learning approach

to synthesize gestures driven by prosodic features and text in the style of

di�erent speakers including those unseen during training. Our model performs

zero-shot multimodal style transfer driven by multimodal data from the PATS

database containing videos of various speakers. We view style as being pervasive;

while speaking, it colors the communicative behaviors expressivity while speech

content is carried by multimodal signals and text. This disentanglement scheme

of content and style allows us to directly infer the style embedding even of a

speaker whose data are not part of the training phase, without requiring any

further training or fine-tuning. The first goal of our model is to generate the

gestures of a source speaker based on the content of two input modalities–

Mel spectrogram and text semantics. The second goal is to condition the source

speaker’s predicted gestures on the multimodal behavior style embedding of a

target speaker. The third goal is to allow zero-shot style transfer of speakers

unseen during training without re-training the model. Our system consists of two

main components: (1) a speaker style encoder network that learns to generate

a fixed-dimensional speaker embedding style from a target speaker multimodal

data (mel-spectrogram, pose, and text) and (2) a sequence-to-sequence synthesis

network that synthesizes gestures based on the content of the input modalities—

text and mel-spectrogram—of a source speaker and conditioned on the speaker

style embedding. We evaluate that our model is able to synthesize gestures of

a source speaker given the two input modalities and transfer the knowledge of

target speaker style variability learned by the speaker style encoder to the gesture

generation task in a zero-shot setup, indicating that the model has learned a high-

quality speaker representation. We conduct objective and subjective evaluations

to validate our approach and compare it with baselines.
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multimodal gesture synthesis, zero-shot style transfer, embodied conversational agents,
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1. Introduction

Embodied conversational agents are virtually embodied agents

with a human-like appearance that are capable of autonomously

communicating with people in a socially intelligent manner using

multimodal behaviors (Lugrin, 2021). The field of research in ECAs

has emerged as a new interface between humans and machines.

ECAs behaviors are often modeled from human communicative

behaviors. They are endowed with the capacity to recognize

and generate verbal and non-verbal cues (Lugrin, 2021) and are

envisioned to support humans in their daily lives. Our study

revolves around modeling multimodal data and learning the

complex correlations between the different modalities employed in

human communication. More specifically, the objective is to model

the multimodal ECAs’ behavior with their behavior style.

Human behavior style is a socially meaningful clustering of

features found within and across multiple modalities, specifically

in linguistics (Campbell-Kibler et al., 2006), spoken behavior such as

the speaking style conveyed by speech prosody (Obin, 2011; Moon

et al., 2022), and nonverbal behavior such as hand gestures and body

posture (Wagner et al., 2014; Obermeier et al., 2015).

Behavior style involves the ways in which people talk differently

in different situations. The same person may have different

speaking styles depending on the situation (e.g., at home, at

the office or with friends). These situations can carry different

social meanings (Bell, 1984). Different persons may also have

different behavior styles while communicating in similar contexts.

Behavior style is syntagmatic. It unfolds over time in the course

of an interaction and during one’s life course (Campbell-Kibler

et al., 2006). It does not emerge unaltered from the speaker. It

is continuously attuned, accomplished, and co-produced with the

audience (Mendoza-Denton, 1999). It can be very self-conscious

and at the same time can be extremely routinized to the extent

that it resists attempts of being altered (Mendoza-Denton, 1999).

Movements and gestures are person-specific and idiosyncratic in

nature (McNeill et al., 2005), and each speaker has his or her own

non-verbal behavior style that is linked to his/her personality, role,

culture, etc.

A large number of generative models were proposed in the

past few years for synthesizing gestures of ECAs. Style modeling

and control in gesture is receiving attention in order to propose

more expressive ECAs behaviors that could possibly be adapted to

a specific audience (Neff et al., 2008; Karras et al., 2017; Cudeiro

et al., 2019; Ginosar et al., 2019a; Ahuja et al., 2020; Alexanderson

et al., 2020; Ahuja et al., 2022). They assume that behavior style

is encoded in the body gesturing. Some of these works generate

full-body gesture animation driven by text in the style of one

specific speaker (Neff et al., 2008). Other approaches (Karras et al.,

2017; Cudeiro et al., 2019; Ginosar et al., 2019a; Alexanderson

et al., 2020) are speech-driven. For some of these approaches,

the behavior style of the synthesized gestures is changed by

exerting direct control over the synthesized gestures’ velocity and

force (Alexanderson et al., 2020). For others (Karras et al., 2017;

Cudeiro et al., 2019; Ginosar et al., 2019a), they produced the

gestures in the style of a single speaker by training their generative

models on one single speaker’s data and synthesized the gestures

corresponding to this specific speaker’s audio. Moreover, verbal

and non-verbal behavior plays a crucial role in communication

in human-human interaction (Norris, 2004). Generative models

that aim to predict communicative gestures of ECAs must produce

expressive semantically-aware gestures that are aligned with speech

(Cassell, 2000).

We propose a novel approach to model behavior style in ECAs

and to tackle the different behavior style modeling challenges. We

view behavior style as being pervasive while speaking; it colors

the communicative behaviors expressivity while speech content is

carried by multimodal signals and text. To design our approach,

we make the following assumptions for the separation of style and

content information: style is possibly encoded across all modalities

(text, speech, and pose) and varies little or not over time; content

is encoded only by text and speech modalities and varies over

time. Our approach aims at (1) synthesizing natural and expressive

upper body gestures of a source speaker, by encoding the content

of two input modalities—text semantics and Mel spectrogram,

(2) conditioning the source speaker’s predicted gesture on the

multimodal style representation of a target speaker, and therefore

rendering the model able to perform style transfer across speakers,

and finally (3) allowing zero-shot style transfer of newly coming

speakers that were not seen by the model during training. The

disentanglement scheme of content and style allows us to directly

infer the style embedding even of speakers whose data are not part

of the training phase, without requiring any further training or

fine-tuning.

Our model consists of two main components: first (1) a

speaker style encoder network which goal is to model a specific

target speaker style extracted from three input modalities—Mel

spectrogram, upper-body gestures, and text semantics and second

(2) a sequence-to-sequence synthesis network that generates a

sequence of upper-body gestures based on the content of two input

modalities—Mel spectrogram and text semantics—of a source

speaker and conditioned on the target speaker style embedding.

Our model is trained on the multi-speaker database PATS, which

was proposed in Ahuja et al. (2020) and designed to study gesture

generation and style transfer. It includes three main modalities that

we are considering in our approach: text semantics represented by

BERT embeddings, Mel spectrogram, and 2D upper body poses.

Our contributions can be listed as follows:

1. We propose the first approach for zero-shot multimodal style

transfer approach for 2D pose synthesis. At inference, an

embedding style vector can be directly inferred frommultimodal

data (text, speech, and poses) of any speaker by simple

projection into the embedding style space [similar to the one

used in Jia et al. (2018)]. The style transfer performed by our

model allows the transfer of style from any unseen speakers,

without further training or fine-tuning of our trained model.

Thus, it is not limited to the styles of the speakers of a given

database.

2. Unlike the work of Ahuja et al. (2020) and previous works,

the encoding of the style takes into account three modalities:

body poses, text semantics, and speech—Mel spectrograms,

which are important for gesture generation (Ginosar et al.,

2019a; Kucherenko et al., 2019) and linked to style. We encode

and disentangle content and style information from multiple

modalities. On the one hand, a content encoder is used to encode
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a content matrix from text and speech signal; on the other

hand, a style encoder is used to encode a style vector from all

text, speech, and pose modalities. A fader loss is introduced

to effectively disentangle content and style encodings (Lample

et al., 2017).

In the following sections, we first discuss the related works and

more specifically the existing behavior stylemodeling approaches as

well as their limitations. Next, in Section 3, we dive into the details

of our model’s architecture, describe its training regime and the

objective and subjective evaluations we conducted.We then discuss

in Section 4 the objective and subjective evaluation results. Next, in

Section 5, we review the key findings of our study, compare it to

prior research, and discuss its main limitations. We conclude by

discussing future directions for our study.

2. Related Work

Since few years, a large number of gesture generative models

have been proposed, principally based on sequential generative

parametric models such as hidden Markov models (HMM)

and gradually moving toward deep neural networks enabling

spectacular advances over the last few years. Hidden Markov

models were previously used to predict head motion driven by

prosody (Sargin et al., 2008) and body motion (Levine et al., 2009;

Marsella et al., 2013).

Chiu and Marsella (2014) proposed an approach for predicting

gesture labels from speech using conditional random fields (CRFs)

and generating gesture motion based on these labels, using

Gaussian process latent variable models (GPLVMs). These studies

focus on the gesture generation task driven by either one modality,

namely, speech or by the two modalities—speech and text. Their

study focuses on producing naturalistic and coherent gestures that

are aligned with speech and text, enabling a smoother interaction

with ECAs and leveraging the vocal and visual prosody. The non-

verbal behavior is therefore generated in conjunction with the

verbal behavior. LSTM networks driven by speech were recently

used to predict sequences of gestures (Hasegawa et al., 2018)

and body motions (Shlizerman et al., 2018; Ahuja et al., 2019).

LSTMs were additionally employed for synthesizing sequences of

facial gestures driven by text and speech, namely, the fundamental

frequency (F0) (Fares, 2020; Fares et al., 2021a). Generative

adversarial networks (GANs) were proposed to generate realistic

head motion (Sadoughi and Busso, 2018) and body motions (Ferstl

et al., 2019). Furthermore, transformer networks and attention

mechanisms were recently used for upper-facial gesture synthesis

based on multimodal data—text and speech (Fares et al., 2021b).

Jonell et al. (2020) proposed a probabilistic approach based on

normalizing flows for synthesizing facial gestures in dyadic settings.

Facial (Fares, 2020; Fares et al., 2021b) and hand (Kucherenko et al.,

2020) gestures driven by both acoustic and semantic information

are the closest approaches to our gesture generation task; however,

they cannot be used for the style transfer task.

Beyond the realistic generation of human non-verbal behavior,

style modeling and control in gesture is receiving more attention

in order to propose more expressive behaviors that could possibly

adapted to a specific audience (Neff et al., 2008; Karras et al.,

2017; Cudeiro et al., 2019; Ginosar et al., 2019a; Ahuja et al., 2020;

Alexanderson et al., 2020; Ahuja et al., 2022). Neff et al. (2008)

proposed a system that produces full-body gesture animation

driven by text, in the style of a specific performer. Alexanderson

et al. (2020) proposed a generative model for synthesizing speech-

driven gesticulation, and they exerted directorial control over the

output style such as gesture level and speed. Karras et al. (2017)

proposed a model for driving 3D facial animation from audio.

Their main objective is to model the style of a single actor by

using a deep neural network that outputs 3D vertex positions of

meshes that correspond to a specific audio. Cudeiro et al. (2019)

also proposed a model that synthesizes 3D facial animation driven

by speech signal. The learned model, VOCA (Voice Operated

Character Animation), takes any speech signal as input–even

speech in languages other than English and realistically animates

a wide range of adult faces. Conditioning on subject labels during

training allows the model to learn a variety of realistic speaking

styles. VOCA also provides animator controls to alter speaking

style, identity-dependent facial shape, and pose (i.e., head, jaw, and

eyeball rotations) during animation.

Ginosar et al. (2019a) proposed an approach for generating

gestures given audio speech; however, their approach uses models

trained on single speakers. The aforementioned studies have

focused on generating non-verbal behaviors (facial expression,

head movement, and gestures in particular) aligned with speech

(Neff et al., 2008; Karras et al., 2017; Cudeiro et al., 2019; Ahuja

et al., 2020). They have not considered multimodal data when

modeling style as well as when synthesizing gestures.

To the best of our knowledge, the only attempts to model

and transfer the style from multi-speakers database have been

proposed by Ahuja et al. (2020, 2022). Ahuja et al. (2020) presented

Mix-StAGE, a speech-driven approach, that trains a model from

multiple speakers while learning a unique style embedding for each

speaker. They created PATS, a dataset designed to study various

styles of gestures for a large number of speakers in diverse settings.

In their proposed neural architecture, a content and a style encoder

are used to extract content and style information from speech

and pose. To disentangle style from content information, they

assumed that style is only encoded through the pose modality, and

the content is shared across speech and pose modalities. A style

embeddingmatrix whose each vector represents the style associated

to a specific speaker from the training set. During training, they

further proposed a multimodal GAN strategy to generate poses

either from the speech or pose modality. During inference, the pose

is inferred by only using the speech modality and the desired style

token.

However, their generative model is conditioned on gesture

style and driven by audio. It does not include verbal information.

It cannot perform zero-shot style transfer on speakers that were

not seen by their model during training. In addition, the style is

associated with each unique speaker, which makes the distinction

unclear between each speaker’s specific style—idiosyncrasy, the

style that is shared among a set of speakers of similar settings (i.e.,

TV show hosts, journalists, etc...), and the style that is unique to

each speaker’s prototype gestures that are produced consciously

and unconsciously. Moreover, the style transfer is limited to the

styles of PATS speakers, which prevents the transfer of style from

an unseen speaker. Furthermore, the proposed architecture is based
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on the disentangling of content and PATS style information, which

is based on the assumption that style is only encoded by gestures.

However, both text and speech also convey style information, and

the encoding of style must take into account all the modalities

of human behavior. To tackle those issues, Ahuja et al. (2022)

presented a few-shot style transfer strategy based on neural domain

adaptation accounting for a cross-modal grounding shift between

the source speaker and target style. This adaptation still requires 2

min of the style to be transferred. To the best of our knowledge, our

approach is the first to synthesize gestures from a source speaker,

which are semantically-aware, speech driven, and conditioned on a

multimodal representation of the style of target speakers in a zero-

shot configuration i.e., without requiring any further training or

fine-tuning.

3. Materials and methods

3.1. Model architecture

We propose ZS-MSTM (Zero-Shot Multimodal Style Transfer

Model), a transformer-based architecture for stylized upper-body

gesture synthesis, driven by the content of a source speaker’s

speech—text semantics represented by BERT embeddings and

audio Mel spectrogram—and conditioned on a target speaker’s

multimodal style embedding. The stylized generated gestures

correspond to the style of target speakers that have been seen and

unseen during training.

As depicted in Figure 1, the system is composed of three main

components:

1. A speaker style encoder network that learns to generate

a fixed-dimensional speaker embedding style from a target

speakermultimodal data: 2D poses, BERT embeddings, and Mel

spectrogram, all extracted from videos in a database.

2. A sequence-to-sequence gesture synthesis network that

synthesizes upper-body behavior (including hand gestures and

body poses) based on the content of two input modalities—

text embeddings and Mel spectrogram—of a source speaker

and conditioned on the target speaker style embedding. A

content encoder is presented to encode the content of the Mel

spectrogram along with BERT embeddings.

3. An adversarial component in the form of a fader network

(Lample et al., 2017) is used for disentangling style and content

from the multimodal data.

At inference time, the adversarial component is discarded,

and the model can generate different versions of poses when fed

with different style embeddings. Gesture styles for the same input

speech can be directly controlled by switching the value of the style

embedding vector hstyle or by calculating this embedding from a

target speaker’s multimodal data fed as input to the Style Encoder.

ZS-MSTM illustrated in Figure 1 aims at mapping multimodal

speech and text feature sequences into continuous upper-body

gestures, conditioned on a speaker style embedding. The network

operates on a segment-level of 64 timesteps: the inputs and output

of the network consist of one feature vector for each segment S

of the input text sequence. The length of the segment-level input

features (text and audio) corresponds to t = 64 timesteps (as

provided by PATS Corpus). The model generates a sequence of

gestures corresponding to the same segment-level features given

as inputs. Gestures are sequences of 2D poses represented by x

and y positions of the joints of the skeleton. The network has an

embedding dimension dmodel equal to 768.

3.1.1. Content encoder
The content encoder Econtent illustrated in Figure 1 takes as

inputs BERT embedding Xtext and audio Mel spectrograms Xspeech

corresponding to each S. Xtext is represented by a vector of length

768 - BERT embedding size used in PATS Corpus.Xspeech is encoded

using Mel Spectrogram Transformer (AST) pre-trained base384

model (Gong et al., 2021).

AST operates as follows: the input Mel spectrogram which has

128 frequency bins is split into a sequence of 16 × 16 patches

with overlap and then is linearly projected into a sequence of

1D patch vectors, which is added with a positional embedding.

We append a [CLS] token to the resulting sequence, which is

then input to a Transformer Encoder. AST was originally proposed

for audio classification. Since we do not intend to use it for

a classification task, we remove the linear layer with sigmoid

activation function at the output of the transformer encoder. We

use the transformer encoder’s output of the [CLS] token as the

Mel spectrogram representation. The transformer encoder has an

embedding dimension equals to dmodel, Nenc equal to 12 encoding

layers, and Nh equals to 12 attention heads.

The segment-level encoded Mel spectrogram is then

concatenated with the segment-level BERT embedding. A self-

attention mechanism is then applied on the resulting vector. The

multi-head attention layer hasNh equal to four attention heads, and

an embedding size datt is equal to datt = dmodel + 768. The output

of the attention layer is the vector hcontent , a content representation

of the source speaker’s segment-level Mel spectrogram and text

embedding, and it can be written as follows:

hcontent = sa
([

Econtentspeech (Xspeech),Xtext

])
(1)

where sa(.) denotes self-attention.

3.1.2. Style encoder
As discussed previously, behavior style is a clustering of features

found within and across modalities, encompassing verbal, and

non-verbal behavior. It is not limited to gestural information. We

consider that behavior style is encoded in a speaker’s multimodal -

text, speech, and pose–behavior. As illustrated in Figure 1, the style

encoder Estyle takes as input, at the segment-level, Mel spectrogram

Xspeech, BERT embedding Xtext , and a sequence of (X, Y) joints

positions that correspond to a target speaker’s 2D poses Xpose.

AST is used to encode the audio input spectrogram. Nlay equal

to three layers of LSTMs with a hidden-size equal to dmodel are

used to encode the vector representing the 2D poses. The last

hidden layer is then concatenated with the audio representation.

Next, a multi-head attention mechanism is applied on the resulting

vector. This attention layer has Nh equal to four attention heads

and an embedding size equal to datt . Finally, the output vector

is concatenated with the 2D poses vector representation. The
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FIGURE 1

ZS-MSTM (Zero-Shot Multimodal Style Transfer Model) architecture. Content encoder (further referred to as Econtent) is used to encode content

embedding hcontent from BERT text embeddings Xtext and speech Mel-spectrograms Xspeech using a speech encoder Econtentspeech . Style encoder (further

referred to as Estyle) is used to encode style embedding hstyle from multimodal text Xtext, speech Xspeech, and pose Xpose using speech encoder E
style

speech

and pose encoder E
style
pose. The generator G is a transformer network that generates the sequence of poses Ẑpose from the sequence of content

embedding hcontent and the style embedding vector hstyle. The adversarial module relying on the discriminator Dis is used to disentangle content and

style embeddings hcontent and hstyle.

FIGURE 2

Fader network for multimodal content and style disentangling.

resulting vector hstyle is the output speaker style embedding that

serves to condition the network with the speaker style. The final

style embedding hstyle can therefore be written as follows:

hstyle =
[
sa

([
Xtext ,E

style

speech
(Xspeech)

])
,E

style
pose(Xpose)

]
(2)

where sa(.) denotes self-attention.

3.1.3. Sequence to sequence gesture synthesis
The stylized 2D poses are generated given the sequence

of content representation hcontent of the source speaker’s Mel

spectrogram and text embeddings obtained at the S-level and

conditioned by the style vector embedding hstyle generated from

a target speaker’s multimodal data. For decoding the stylized 2D-

poses, the sequence of hcontent and the vector hstyle are concatenated

(by repeating the hstyle vector for each segment of the sequence)
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and passed through a Dense layer of size dmodel. We then give the

resulting vector as input to a transformer decoder. The transformer

decoder is composed of Ndec = 1 decoding layer, with Nh = 2

attention heads, and an embedding size equal to dmodel. Similar to

the one proposed in Vaswani et al. (2017), it is composed of residual

connections applied around each of the sub-layers, followed by

layer normalization. Moreover, the self-attention sub-layer in the

decoder stack is altered to prevent positions from attending to

subsequent positions. The output predictions are offset by one

position. This masking makes sure that the predictions for position

index j depends only on the known outputs at positions that are less

than j. For the last step, we perform a permutation of the first and

the second dimensions of the vector generated by the transformer

decoder. The resulting vector is a sequence of 2D-poses which

corresponds to

Ẑpose = G(hcontent , hstyle), (3)

where G is the transformer generator conditioned on latent content

embedding hcontent and style embedding hstyle. The generator loss of

the transformer gesture synthesis can be written as

L
gen
rec (Econtent ,Estyle,G) = EẐpose

||̂Zpose − G(hcontent , hstyle)||2. (4)

3.1.4. Adversarial component
Our approach of disentangling style from content relies on

the fader network disentangling approach (Lample et al., 2017),

where a fader loss is introduced to effectively separate content

and style encodings, as depicted in Figure 2. The fundamental

feature of our disentangling scheme is to constrain the latent

space of hcontent to be independent of the style embeddings hstyle.

Concretely, it means that the distribution over hcontent of the latent

representations should not contain the style information. A fader

network is composed of an encoder which encodes the input

informationX into the latent code hcontent , a decoder which decodes

the original data from the latent, and an additional variable hstyle
used to condition the decoder with the desired information (a

face attribute in the original paper). The objective of the fader

network is to learn a latent encoding hcontent of the input data

that is independent on the conditioning variable hstyle while both

variables are complementary to reconstruct the original input data

from the latent variable hcontent and the conditioning variable hstyle.

To do so, a discriminator Dis is optimized to predict the variable

hstyle from the latent code hcontent ; on the contrary, the auto-

encoder is optimized using an additional adversarial loss so that

the classifier Dis is unable to predict the variable hstyle. Contrary

to the original fader network in which the conditional variable

is discrete within a finite binary set (0 or 1 for the presence or

absence attribute), in this study, the conditional variable hstyle is

continuous. We then formulate this discriminator as a regression

on the conditional variable hstyle: the discriminator learns to predict

the style embedding hstyle from the content embedding hcontent as

ĥstyle = Dis(hcontent). (5)

While optimizing the discriminator, the discriminator loss Ldis

must be as low as possible, such as

L
dis(D) = Eĥstyle

||hstyle − Dis(hcontent)||2. (6)

In turn, optimizing the generator loss including the fader

loss L
gen

adv
, the discriminator must not be able to predict correctly

the style embedding hstyle from the content embedding hcontent
conducting to a high discriminator error and thus a low fader loss.

The adversarial loss can be written as

L
gen

adv
(Econtent ,Estyle,G) = Eĥstyle

||1− (hstyle − Dis(hcontent))||2. (7)

To be consistent, the style prediction error is preliminary

normalized within 0 and 1 range.

Finally, the total generator loss can therefore be written as

follows:

L
gen

total
(Econtent ,Estyle,G) = L

gen
rec (Econtent ,Estyle,G)

+ λL
gen

adv
(Econtent ,Estyle,G), (8)

where λ is the adversarial weight that starts off at 0 and is linearly

incremented by 0.01 after each training step.

The discriminator Dis and the generator G are then optimized

alternatively as described in Lample et al. (2017).

All ZS-MSTM hyperparameters were chosen empirically and

are summarized in Table 1.

3.2. Training regime

This section describes the training regime we follow for training

ZS-MSTM. We trained our network using the PATS Corpus (Ahuja

et al., 2020). PATS was created to study various styles of gestures.

The dataset contains upper-body 2D pose sequences aligned with

corresponding Mel spectrogram and BERT embeddings. It offers

251 hours of data, with a mean of 10.7 s and a standard deviation

of 13.5 s per interval. PATS gathers data from 25 speakers with

different behavior styles from various settings (e.g., lecturers and

TV shows hosts). It contains also several annotations. The spoken

text has been transcribed in PATS and aligned with the speech. The

2D body poses have been extracted with OpenPose.

Each speaker is represented by their lexical diversity and the

spatial extend of their arms. While in PATS, arms and fingers have

been extracted, we do not consider finger data in our study; that is

we do not model and predict 2D finger joints. This choice arises as

the analysis of finger data is very noisy and not very accurate. We

model 11 joints that represent upper body and arm joints.

We consider two test conditions: seen speaker and unseen

speaker. The seen speaker condition aims to assess the style transfer

correctness that our model can achieve when presented with

speakers that were seen during training as target style. On the other

hand, the unseen speaker condition aims to assess the performance

of our model when presented with unseen target speakers to

perform zero-shot style transfer. Seen and unseen speakers are

specifically selected from PATS to cover a diversity of stylistic

behavior with respect to lexical diversity and spatial extent as

reported by Ahuja et al. (2020).

For each PATS speaker, there is a train, validation, and test

set already defined in the database. For testing the seen speaker

condition, our test set includes the train sets of 16 PATS speakers.

Six other speakers are selected for the unseen speaker condition, and

their test sets are also used for our experiments. These six speakers
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TABLE 1 ZS-MSTM hyperparameters.

Component Hyperparameter Value

AST (base384 model) Embedding size dmodel 768

Encoding layers Nlay 12

Attention heads Nh 12

Content Encoder Attention heads Nh 4

Embedding size datt 1,536

Style Encoder 2D Pose LSTMs Nlay 3

Nhid 768

Attention heads Nh 4

Embedding size datt 1,536

Sequence to Sequence

Component

Transformer Decoder Ndec 1

Attention heads Nh 2

Embedding size dmodel 768

TABLE 2 Seen and unseen PATS speakers.

Condition Speakers

Seen “Shelly”, “Jon”, “Fallon”, “Bee”, “Ellen”,

“Oliver”, “Lec_cosmic”, “Lec_hist”, “Ytch_prof”,

“Ytch_dating”,

“Seth”, “Conan”, “Angelica”, “Rock”, “Noah”, and

“Lec_law”

Unseen “Lec_evol”, “Almaram”, “Huckabee”, “Maher”

“Ytch_charisma”, “Minhaj”, and “Chemistry

differ in their behavior style and lexical diversity. Seen and unseen

speakers are listed in Table 2.

We developed our model using Pytorch and trained it

on an NVIDIA Corporation GP102 (GeForce GTX 1080 Ti)

machine. Each training batch contains BS = 24 pairs of word

embeddings, Mel spectrogram, and their corresponding sequence

of (X, Y) joints of the skeleton (of the upper-body pose). We

use Adam optimizer with β1 = 0.95,β2 = 0.999. For

balanced learning, we use a scheduler with an initial learning

rate Lr equal to 1e-5, with Wsteps equal to 20,000. We train

the network for Nep = 200. All features values are normalized

so that the dataset mean and standard deviation are 0 and 0.5,

respectively. Table 3 summarizes all hyperparameters used for

training.

3.3. Objective evaluation

To validate our approach and assess the stylized generated

gestures, we conducted an objective evaluation for the two

conditions seen speakers and unseen speakers.

TABLE 3 Training hyperparameters.

Hyperparameter Value

Batch Size BS 24

Number of epochs Nep 200

Adam Optimizer β1 0.95

β2 0.999

Scheduler Wsteps 20,000

Lr 1e-5

3.3.1. Objective metrics
In our study, we have defined behavior style by the behavior

expressivity of a speaker. To evaluate objectively our studies, we

define metrics to compare the behavior expressivity generated by

ourmodel, with the target speaker’s behavior expressivity and source

speaker’s behavior expressivity.

Following studies on behavior expressivity by Wallbott (1998)

and Pelachaud (2009), we define four objective behavior dynamics

metrics to evaluate the style transfer of different target speakers:

acceleration, jerk, and velocity that are averaged over the values of

all upper-body joints, as well as the speaker’s average bounding box

perimeter (BB perimeter) of his/her body movements extension.

In addition, we compute the acceleration, jerk, and velocity of

only the left and right wrists to obtain information on the arms

movements expressivity (Wallbott, 1998; Kucherenko et al., 2019).

For both conditions SD and SI, we define two sets of

distances:

1. Dist.(Source, Target): representing the average distance between

the source style and the target style.

2. Dist.(ZS-MSTM, Target): representing the average distance

between our model’s gestures style and the target style.

More specifically, after computing the behavior expressivity and

BB perimeter of our model’s generated gestures, the ones of source

speakers and the ones of the target speakers, we calculate the

average distance as follows:

Distavg(x, Target)

=
Dist.(x, Target)

Dist.(Source, Target)+Dist.(ZS-MSTM, Target)
× 100,

(9)

where x denotes Source for computing Distavg(Source,Target) and

ZS-MSTM for computingDistavg(ZS-MSTM,Target).

To investigate the impact of each input modality on our

style encoder, we conducted ablation studies on different versions

of our model. Specifically, we performed ablations of the pose

modality, text modality, and audio modality. We also compared the

performance of the full model with that of the baseline DiffGAN

Ahuja et al. (2022). We employed two metrics to evaluate the

correlation and timing between gestures and spoken language:

Probability of Correct Keypoints (PCK) and L1 distance. For

PCK, we averaged the values over α = 0.1 and 0.2, as suggested

in Ginosar et al. (2019b). L1 distance was calculated between
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TABLE 4 Comparison of our ZS-MSTMmodel with Di�GAN (Ahuja et al., 2022) used as a baseline, as well as with di�erent versions of our model where

we removed the text, audio, and pose modalities from the style encoder.

L1 PCK

Models Source:
Target:

Oliver
Chemistry

Maher
Chemistry

Oliver
Maher

Maher
Oliver

Oliver
Chemistry

Maher
Chemistry

Oliver
Maher

Maher
Oliver

ZS-MSTM–Text ablation 0.51± 0.05 0.58± 0.07 0.56±

0.07

0.36±

0.08

0.89± 0.78 0.95± 0.98 0.87±

0.89

0.97±

0.76

ZS-MSTM–Audio ablation 0.65± 0.08 0.71± 0.08 0.91±

0.07

0.89±

0.08

0.85± 0.78 0.82± 0.98 0.84±

0.89

0.95±

0.76

ZS-MSTM–Pose ablation 0.87± 0.08 0.91± 0.08 1.11±

0.12

0.76±

0.08

0.81± 0.78 0.9± 0.98 0.82±

0.89

0.92±

0.76

DiffGAN (Ahuja et al., 2022) 1.36± 0.03 0.88± 0.03 1.48±

0.01

0.53±

0.02

0.29± 0.01 0.31± 0.01 0.26±

0.01

0.45±

0.02

ZS-MSTM–Full model 0.34 ± 0.04 0.36 ± 0.04 0.49 ±

0.05

0.11 ±

0.03

0.96 ± 0.91 0.96 ± 0.99 0.89 ±

0.92

0.97 ±

0.98

Please note that we report here the values for DiffGAN from Ahuja et al. (2022).

the generated gestures and the corresponding target ground

truth gestures.

3.4. Human perceptual studies

We conduct three human perceptual studies.

1. Study 1—To investigate human perception of the stylized

upper-body gestures produced by our model, we conduct a

human perceptual study that aims to assess the style transfer of

speakers seen during training—seen speaker condition.

2. Study 2—We conduct another human perceptual study that

aims to assess the style transfer of speakers unseen during

training—unseen speaker condition.

3. Study 3—We additionally conduct a third human perceptual

study to compare ZS-MSTM’s produced stylized gestures in seen

speaker and unseen speaker conditions to Mix-StAGE which we

consider our baseline.

The evaluation studies are conducted with 35 participants

that were recruited through the online crowd-sourcing website

Prolific. Participants are selected such that they are fluent in

English. Attention checks are added in the beginning and the

middle of each study to filter out inattentive participants. All

the animations presented in these studies are in the form of

2D sticks.

Study 1 and 2. For Study 1 and 2, we presented 60 stimuli of

2D stick animations. Each study included 30 stimuli. A stimulus is

a triplet of 2D animations composed of those as follows:

• a 2D animation with the source style

• a 2D animation with the target style

• a 2D animation of ZS-MSTM’s prediction after performing the

style transfer.

Figure 3 illustrates the three animations we present for each set

of questions. The animation of the target style is the Reference. The

animation of our model’s predictions, and the source style is either

Animation A or Animation B (randomly chosen).

For each triplet of animations, we asked six questions to

evaluate six factors related to the resemblance of the produced

gestures w.r.t the the source style and target style:

1. Please rate the overall resemblance of the Referencew.r.t A and

B (Factor 1 - Overall resemblance).

2. Please rate the resemblance of the Left (L) and Right (R) arms

gesturing of the Reference w.r.t the left and right arm gesturing

of A and B (Factor 2 - Arms gesturing).

3. Please rate the resemblance of the body orientation of the

Referencew.r.t the body orientation of A and B (Factor 3 - Body

orientation).

4. Please rate the resemblance of the gesture amplitude of the

Reference w.r.t the gesture amplitude of A and B (Factor 4 -

Gesture amplitude).

5. Please rate the resemblance of the gesture frequency of the

Reference w.r.t the gesture frequency of A and B (Factor 5 -

Gesture frequency).

6. Please rate the resemblance of the gesture velocity of Reference

w.r.t the gesture velocity of A and B (Factor 6 - Gesture velocity).

Each factor is rated on a 5 likert scale, as follows:

1. Reference is very similar to A.

2. Reference is mostly similar to A.

3. Reference is in between A and B.

4. Reference is mostly similar to B.

5. Reference is very similar to B.

Training. Each study includes a training at its beginning. The

training provides an overview of the 2D upper-body skeleton of

the virtual agent, its composition, and gesturing. The goal of the

training is to get the participants familiarized with the 2D skeleton

before starting the study. More specifically, the training included a

description of how the motion of a speaker in a video is extracted

by detecting his/her facial and body motion and extracting his/her

2D skeleton of joints and stated that in a similar fashion, the eyes

and upper-body movement of a virtual agent are represented by a

2D skeleton of joints, as depicted in Figure 4.

Moreover, we present and describe different shots of the 2D

skeleton gesturing with its right/left arms, and with different body
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FIGURE 3

Three 2D stick animations: Animation A, Reference, and Animation B. The target style is represented by Reference. ZS-MSTM’s predictions and the

source style are illustrated in Animation A or B.

FIGURE 4

(a, b) Upper-body 2D skeleton of a speaker vs. a virtual agent.

orientation, which is described as the orientation of the shoulders

and neck.

Pre-tests. We conducted pre-tests to make sure that the

2D animations are comprehensible by participants as well

as the questions. Participants reported that the training,

stimuli, and questions are coherent and comprehensible;

however, each study was too long, as it lasted for 30 min. For

this reason, we divided each study to three, such that each

study includes only 10 stimuli, and is conducted by different

participants. Hence, six studies including a pre-training and the

evaluation of 10 stimuli were conducted by 35 participants that

are different.

Study 3. For Study 3, we present 20 stimuli consisting of triplets

of 2D stick animations. Similar to Study 1 and Study 2, for each

triplet, we present: Animation A, Reference, and Animation B. The

animation of the target style is the Reference. The animation of

Mix-StAGE’s predictions, and the source style is either Animation

A or Animation B (randomly chosen). We note that these stimuli

include the same source and target styles that were used in Study

1 and Study 2 and which were randomly chosen. Study 3 also

included training at its beginning, which is the same as the one

previously described.

4. Results

4.1. Objective evaluation results

Objective evaluation experiments are conducted for evaluating

the performance of our model in the seen speaker and unseen

speaker conditions. For seen speaker condition, experiments are

conducted on the test set that includes the 16 speakers that are

seen by our model during training. For unseen speaker condition,

experiments are also conducted on another test set that includes

the six speakers that were not seen during training.
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FIGURE 5

Distances between the target speaker style and each of the source

style and our model’s generated gestures style for seen target

speakers.

Figure 5 reports the experimental results on the seen speaker

test set. It illustrates the results of Dist.(Source, Target) in

terms of behaviors dynamics and speaker bounding box

perimeter between the target speaker style and the source

speaker style.

For seen speaker condition (Figure 5), Dist.(Source, Target) is

higher than 70% of the total distance for all behavior dynamics

metrics.; thus, Dist.(ZS-MSTM, Target) is less than 30% of the

total distance for all behavior dynamics metrics. Wrists velocity,

jerk, and acceleration results reveal that the virtual agent’s arm

movements show the same expressivity dynamics as the target style

[Dist.(ZS-MSTM, Target) < 22%].

The style transfer from target speaker “Shelly” to source speaker

“Angelica”—knowing that Angelica is a Seen Speaker—shows that

the distance of predicted gestures’ behavior dynamics metrics are

close (distance < 20%) to “Shelly” (target style), while the ones

between “Angelica” and “Shelly” are far (distance > 80%).

The perimeter of the prediction’s bounding box (BB) is closer

(distance < 30%) to the target speaker’s BB perimeter than the

source. The closeness between predictions dynamics behavior

metrics values are shown for all speakers in the seen speaker

condition, specifically for the following style transfers—target to

source: “Fallon” to “Shelly,” “Bee” to “Shelly,” “Conan” to “Angelica,”

and “Oliver” to “lec_cosmic” which are considered having different

lexical diversities, as well as spatial average extent, as reported by

the authors of PATS (Ahuja et al., 2020).

Experimental results for the unseen speaker test set are depicted

in Figure 6. Results reveal that our model is capable of reproducing

the style of the six unseen speakers. As depicted in Figure 6, for all

behavior dynamics metrics, as well as the bounding box perimeter,

Dist.(Source, Target) is higher than 50% of the total distances for all

metrics. Results show that for wrists velocity, jerk, and acceleration,

Dist.(ZS-MSTM, Target) is less than 33%. Thus, arm movement’s

expressivity produced by ZS-MSTM is close to the one of the target

speaker style. Moreover, the perimeter of the prediction’s bounding

box is close (distance < 30%) to the target speaker’s, while the

distance between the BB perimeter of the source and the target is

far (distance > 70%). While our model has not seen “Lec_evol”’s

multimodal data during training, it is yet capable of transferring

FIGURE 6

Distances between the target speaker style and each of the source

style and our model’s generated gestures style for unseen target

speakers.

his behavior expressivity style to the source speaker “Oliver.” It

is also capable of performing zero-shot style transfer from the

target speaker “Minhaj” to the source speaker “Conan.” In fact,

results show that wrists acceleration and jerk values of our model’s

generated gestures are very close to those of the target speaker

“Minhaj.” We observe the same results for the six speakers for the

unseen speaker condition.

We additionally conducted Fisher’s LSD test to do pair-

wise comparisons on all metrics, for the two set of distances—

Dist.(Source, Target), and Dist.(ZS-MSTM, Target)—in both

conditions. We find significant results (p < 0.003) for all distances

in both conditions.

The results of our ablation studies are summarized in Table 4.

Specifically, we trained three versions of our ZS-MSTMmodel, each

with one modality (either text, audio, or pose) removed from the

style encoder. We evaluated the performance of each model using

the L1 distance and PCK metrics, comparing the predictions to

the target ground truth in all conditions. Our results (see Table 4)

show that the L1 distance between the predictions of the ablated

models and the ground truth is higher compared to the full model

condition, for both seen (Oliver) and unseen (Chemistry, Maher)

target styles. This trend was observed across all three ablation

conditions. In addition, we compared our results to the baseline

DiffGAN (Ahuja et al., 2022) and found that our ZS-MSTM model

consistently outperforms DiffGAN in terms of L1 distance, with

higher confidence intervals reported as standard deviation on all

source-target pairs. Furthermore, we evaluated the PCK metric

for all source-target pairs and found that our ZS-MSTM model

achieves higher accuracy than the ablated models for all style

transfers, with higher confidence intervals. This indicates that our

model produces joint positions that are accurate and closely match

the ground truth. When comparing ZS-MSTM with DiffGAN,

our model outperforms DiffGAN in terms of PCK, with higher

confidence intervals.

4.1.1. Additional t-SNE analysis
In this study, the style encoder is agnostic: it

is the attention weights that make it possible to
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FIGURE 7

2D TSNE analysis of the generated Mel Embeddings, Pose Embeddings, Text Embeddings, and the final Style Embeddings.

exploit the different modalities given as input to the

style encoder.

We conducted a t-SNE post-hoc analysis of the distributions of

the style vectors at the output of each modality. Figure 7 illustrates

the 2D t-SNE plots of Mel Embeddings, Pose Embeddings, Text

Embeddings, and the final Style Embeddings produced by our

modelZS-MSTM. We found that themotion style dependsmost on

the pose modality, followed by the speech, then the text semantics.

4.2. Human perceptual studies results

Study 1—Seen Speakers.

Our first perceptive study (Study 1) aims to evaluate the style

transfer of speakers seen during training. Figure 8 shows the mean

scores obtained on the six factors for the condition "seen speakers".

On a 5-point Likert scale, the overall resemblance factor obtained

a score of 4.32, which means that the ZS-MSTM’s 2D animations

closely resemble the 2D animations of the seen target style. The

resemblance is also reflected by the mean scores of arms gesturing,

body orientation, gesture amplitude, gesture frequency, as well as

gesture velocity, which is between 3.99 and 4.2. We observed that

for all factors, most of the participants gave a score between 3.8 and

5, as depicted in Figure 9.

We additionally performed post-hoc paired samples t-tests

between all the factors and found significant results between overall

resemblance and all the other factors (p ≤ 0.008).

Study 2—Unseen Speakers.

Our second perceptive study (Study 2) aims to evaluate the style

transfer of speakers unseen during training. Figure 10 illustrates the

mean scores obtained on the six factors for the condition "unseen

speakers." On a 5-point Likert scale, the overall resemblance factor

obtained a score of 3.45, which means that there is an overall

resemblance between ZS-MSTM’s 2D animations and the unseen

target style. The resemblance is also reflected by the mean scores

of arms gesturing, body orientation, gesture amplitude, gesture

frequency, as well as gesture velocity, which is between 3.28 and

3.41. We observed that for all factors, most of the participants gave

a score between 3 and 4, as depicted in Figure 11.

We additionally performed post-hoc paired samples t-tests

between all the factors and found significant results between overall

resemblance and all the other factors (p ≤ 0.014).

Study 3—Comparing with Mix-StAGE. The third perceptive

study aims to compare the performance of our model with respect

to the State of the Art, Mix-StAGE. Figure 12 illustrates the mean

scores obtained for the two conditions Mix-StAGE and ZS-MSTM,

w.r.t the six factors.

As shown in Figure 12, for all the factors, our model obtained

higher mean scores than Mix-StAGE. Our model performs better

than Mix-StAGE in terms of the overall resemblance of the

generated gestures w.r.t the animations produced with the target

style (mean score ZS-MSTM (4.2) ≥mean scoreMix-StAGE (3.6)).

More specifically, the resemblance between the synthesized 2D

gestures of ZS-MSTM and the target style is greater than the one

betweenMix-StAGE and the target style. This result is also reflected

in the resemblance of the arms gesturing, body orientation, gesture

amplitude, gesture frequency, and gesture velocity of our model’s

produced gestures w.r.t the target style. More specifically, ourmodel

obtained a mean score between 4 and 4.2 for all the factors, while

Mix-StAGE obtained a mean score between 3.8 and 3.6 for all the

factors. We additionally conducted post-hoc paired t-tests between

the factors in condition Mix-StAGE and those in ZS-MSTM. We

found significant results between all the factors in the condition

Mix-StAGE and those in ZS-MSTM (p < 0.001 for all). These

results show that the mean scores for all the factors in condition

ZS-MSTM are significantly greater than those Mix-StAGE. Thus,

we can conclude that our model ZS-MSTM can successfully render

animations with the style of another speaker, going beyond the state

of the artMix-StAGE.

5. Discussion and conclusion

We have presented ZS-MSTM, the first approach for zero-

shot multimodal style transfer for 2D pose synthesis that allows
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FIGURE 8

Mean scores of all the factors for Seen Speakers condition.

FIGURE 9

Density plots of overall resemblance, arms gesturing, body orientation, gesture amplitude, gesture frequency, and gesture velocity for seen

speakers condition.

the transfer of style from any speakers seen or unseen during the

training phase. To the best of our knowledge, our approach ZS-

MSTM is the first to synthesize gestures from a source speaker,

which are semantically-aware, speech driven, and conditioned on a

multimodal representation of the style of target speakers, in a zero-

shot configuration i.e., without requiring any further training or

fine-tuning. ZS-MSTM can learn the style latent space of speakers,

given their multimodal data, and independently from their identity.

It can synthesize body gestures of a source speaker, given the

source speaker’s mel spectrogram and text semantics, with the style

of another target speaker given the target speaker’s multimodal

behavior style that is encoded through the mel spectrogram,

text semantics, and pose modalities. Moreover, our approach

is zero-shot, thus is capable of transferring the style of unseen

speakers. It is not limited to PATS speakers and can produce gesture

in the style of any newly coming speaker without further training or

fine-tuning, rendering our approaches zero-shot. Behavioral style is

modeled based on multimodal speakers’ data and is independent

from the speaker’s identity ("ID"), which allows our model to

generalize style to new unseen speakers. We validated our approach

by conducting objective and subjective evaluations. The results of

these studies showed that ZS-MSTM generates stylized animations

that are close to the target style for target speakers that are seen

and unseen by our model. The results of our ablation studies (see

Table 4) suggest that all three modalities (text, audio, and pose) are

important for the performance of our ZS-MSTM model in style

transfer tasks. When any one of these modalities is removed from

the style encoder, the L1 distance between the model’s predictions

and the ground truth increases, indicating lower performance. This

shows the importance of incorporating multiple modalities for

better style transfer in our model. Moreover, we compared the

performance of ZS-MSTM w.r.t the state of the art Mix-StAGE

and results showed that ZS-MSTM performs better in terms of

overall resemblance of the generated gestures w.r.t the animations

produced with the target style. ZS-MSTM can generalize style to

new speakers without any fine-tuning or additional training unlike
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FIGURE 10

Mean scores of all the factors for Unseen Speakers condition.

FIGURE 11

Body orientation, gesture amplitude, gesture frequency, and gesture velocity for unseen speakers condition.

Mix-StAGE. Its independence from the speaker’s identity "ID"

allows the generalization without being constrained and limited to

the speakers used for training the model. DiffGAN was later on

proposed by Ahuja et al. (2022) as an extension toMix-StAGE and

an approach that performs few-shot style transfer strategy based on

neural domain adaptation accounting for cross-modal grounding

shift between the source speaker and target style. However, this

adaptation still requires 2 min of the style to be transferred which

is not required by our model. Our comparison with the baseline

DiffGAN model shows that our ZS-MSTM model outperforms it

in terms of both L1 distance and PCK metrics. This shows that our

model is better at generating accurate human poses, especially when

transferring styles that it has not seen during training. Overall,

our results suggest that our ZS-MSTM model is a promising

approach for style transfer tasks in human pose estimation

as it can leverage multiple modalities to generate poses that

are accurate.

Our approach allows the transfer of style from any speakers

seen or unseen during the training phase. Behavior style was

never viewed as being multimodal; previous works limit behavior

style to arm gestures only. However, both text and speech

convey style information, and the embedding vector of style must

consider the three modalities. Our assumption was confirmed

by our post-hoc t-SNE analysis of the distributions of the style

vectors at the output of each modality. We found that the

motion style depends mainly on the body pose modality, followed

by the speech modality, then the text semantics modality. We

conducted an objective evaluation and three perceptive studies.

The results of these studies show that our model produces stylized

animations that are close to the target speakers style even for

unseen speakers.

While we have made some strides, there are still some

limitations. The main limitation of ZS-MSTM is that it was

not evaluated on an ECAs. The main reason is that it was
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FIGURE 12

ZS-MSTM vs. Mix-StAGE.

trained on the PATS Corpus, which include 2D poses. The

graphical representation of the data as 2D stick figure is not

always readable even when being projected on the video of a

human speaker. The main reason behind this problem is that

the animation is missing information on the body pose in

the Z direction (the depth axis). An interesting direction for

future work is to extend our model to capture the different

gesture shapes and motion. Gesture shapes convey different

meanings. For example, a pointing index can indicate a direction.

Hand shapes and arm movement can describe an object, an

action, etc. Several attempts have looked at modeling metaphoric

gestures (Ravenet et al., 2018) or iconic gestures (Bergmann

and Kopp, 2009). Most generative models of gestures do not

compute the gesture shapes and motions for those specific

gesture types. Extending our model to capture gesture shapes and

motion would require extending the Corpora PATS to include

specific annotations related to gestures shapes and to identify

better representations (such as image schemas (Grady, 2005) for

metaphoric gestures).
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