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Agrifood chain processes are based on a multitude of knowledge, know-how

and experiences forged over time. This collective expertise must be shared to

improve food quality. Here we test the hypothesis that it is possible to design and

implement a comprehensivemethodology to create a knowledge base integrating

collective expertise, while also using it to recommend technical actions required

to improve food quality. The method used to test this hypothesis consists firstly

in listing the functional specifications that were defined in collaboration with

several partners (technical centers, vocational training schools, producers) over

the course of several projects carried out in recent years. Secondly, we propose an

innovative core ontology that utilizes the international languages of the Semantic

Web to e�ectively represent knowledge in the form of decision trees. These

decision trees will depict potential causal relationships between situations of

interest and provide recommendations for managing them through technological

actions, as well as a collective assessment of the e�ciency of those actions. We

show how mind map files created using mind-mapping tools are automatically

translated into an RDF knowledge base using the core ontologicalmodel. Thirdly, a

model to aggregate individual assessments provided by technicians and associated

with technical action recommendations is proposed and evaluated. Finally, a

multicriteria decision-support system (MCDSS) using the knowledge base is

presented. It consists of an explanatory view allowing navigation in a decision tree

and an action view for multicriteria filtering and possible side e�ect identification.

The di�erent types of MCDSS-delivered answers to a query expressed in the action

view are explained. The MCDSS graphical user interface is presented through a

real-use case. Experimental assessments have been performed and confirm that

tested hypothesis is relevant.

KEYWORDS

ontology, decision support systems, Semantic Web, knowledge representation, expertise

integration, cheesemaking

1. Introduction

Agrifood chain processes are based on a multitude of knowledge, know-how and

experiences forged over time. Agrifood companies that manage food product processing

rely on their know-how to tailor their practices to the prevailing raw material variations,

consumer expectations and regulations. The practice of acquiring knowledge through

hands-on experience is a common one in the transformer industry, resulting in a vast

accumulation of expertise among workers. This knowledge is typically passed on through

on-the-job training and learning by doing. However, recent economic and health crises,
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along with internal changes within companies such as increased

turnover and difficulty recruiting in certain sectors, have

made it increasingly challenging to preserve and transmit this

valuable know-how.

The aim of this paper, building upon the work of Buche

et al. (2019), is to develop a new method for gathering and

organizing knowledge, integrated in a software tool that can aid

in preserving, accessing, and regularly updating the collective

knowledge of the food industry for use in technology-related

decision making. By implementing this methodology, we hope to

overcome the challenges faced in preserving and transmitting the

wealth of expertise within the industry and support the continued

development of the food sector. The possibility of sustainably

safeguarding and promoting practitioners’ experience, as well as

the technical expertise and scientific knowledge gained within

a given food processing chain will be demonstrated based on

a long-term collaboration with French cheesemaking companies

with a “geographical indication” label, such as the protected

designation of origin [appellation d’origine protégée (AOP)]

and protected geographical indication [indication géographique

protégée (IGP)].

The emergence of methods based on knowledge engineering

in the field of food and bio-based product processing facilitates

the development of decision-support tools that model complex

reasoning based on processing operators’ expertise (Buche et al.,

2019; Baudrit et al., 2022; Belaud et al., 2022; Munch et al.,

2022). Here we present a new multicriteria decision-support

system (MCDSS) based on collective know-how which enables the

formulation of recommendations on technological actions thatmay

help maintain product quality or correct a product quality defect at

the scale of a given food processing operation.

The MCDSS workflow process presented in Figure 1 consists

of five main steps. The first one is a collaborative mind

mapping activity involving almost all technicians of a given

food chain and coordinated by a technical expert serving as an

adviser in each chain. He/she is responsible for structuring the

knowledge expressed in decision trees using a mind mapping

software tool that respects some simple syntactic conventions

(keyword labels in nodes). One decision tree is associated with

a situation of interest (a product quality or defect) while being

input in a given mind-mapping file. A decision tree represents

potential causal relations between the situation of interest and

explanatory situations associated with recommendations in terms

of technological actions to manage the situation of interest. The

second step involves individually and then collectively determining

the efficiency of actions based on technician feedback. This

information is input in the same mind-mapping file. In the

third step, the mind-mapping file is automatically translated and

stored in the knowledge base implemented as an RDF knowledge

graph. End-users (technicians, food chain operators, students,

etc.) mine, in the fourth step, the knowledge base using two

views available in the MCDSS to deliver recommendations. For

a given situation of interest, the explanatory view displays all

possible explanatory situations, associated analytical parameter

values and technical actions to correct/reach the situation of

interest. The Action View feature enables users to efficiently

filter actions based on multiple criteria within a decision tree,

in order to correct or reach a desired situation. Additionally,

it allows users to identify any potential side effects associated

with a given recommendation. Users can easily switch back and

forth between the two views, facilitating the process of selecting

the best recommendation for a specific situation. The MCDSS

workflow process is iterative (see fifth step in Figure 1), i.e.,

each decision tree including action efficiency indicators may be

easily updated in the mind mapping tool to account for new

experiences which are then automatically translated in the MCDSS

knowledge base.

The Materials and methods section focuses on the

following topics:

• Specifications and architecture of the decision-support system.

• A proposed model to aggregate individual action

efficiency assessments.

• An ontological model to structure MCDSS knowledge

base content.

• Two views of the multicriteria decision-support system.

The Results and Discussion section presents MCDSS

functionality assessments and a comparison with the current state

of the art.

2. Materials and methods

2.1. Specifications and architecture of the
decision-support system

The detailed MCDSS specifications were determined in

collaboration with several technical centers associated with French

cheesemaking, namely Comté, Reblochon, Emmental de Savoie,

Cantal, and Salers in the framework of two research projects

funded by the French government from 2017 to 2023 (CASDAR

Docamex, France Relance Docamex). Hereafter is a list of

target functionalities:

1. For a given situation of interest (targeted food quality or defect),

the MCDSS must provide all known possible explanations

organized in a decision tree starting from the most general

explanatory situations, which must be refined by more specific

explanations until it is precise enough to propose an action

lever and an associated recommended technological action.

It must represent interactions between explanatory situations.

Two kinds of interaction should be considered: (i) conjunctive

interactions of situations S1 and S2 to explain S3, which means

that situation S3 may emerge only if S1 and S2 appear; (ii)

strengthening (resp. weakening) interactions of situation S1 by

situation S2 to explain S3, which means that the effect of S1 on

S3 is strengthened (resp. weakened) if S2 appears. The decision

tree will enable users to consider all possible known explanations

of a given situation of interest. This functionality, which is

mostly geared toward junior technicians, is very important

in cheesemaking chains as they have to deal with growing

turnover rates.

2. It should be possible to associate a situation (“of interest” or

explanatory) with the value of a relevant analytical parameter

that allows verification that the situation is actually happening.
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FIGURE 1

Workflow process associated with the MCDSS (M, manual task; A, automatic task; SA, semi-automatic task). The three stars indicate the action’s

e�ciency is “very e�ective”.

This is of great interest for technicians who have to deal with

several cheese production processes (e.g., Comté and Bleu de

Bresse for the CTFC technical center) without being fully aware

of all of the analytical parameter values associated with the

encountered situations.

3. The MCDSS must be able to determine the possible side effects

of an action: a corrective action for one situation of interest

should not lead another problem.

4. Feedback on technicians’ individual experiences in terms of

technological action efficiency to deal with a given situation

of interest must be registered and aggregated. Indeed, action

ranking is of great importance to help users choose the “best”

action to cope with a given situation of interest. Moreover,

registration of contextual criteria relevant for decision-support

and associated with those assessments is required to facilitate

decision support. For instance, a given action like “Review herd

rationing practices” may be considered very efficient in the

long term (LT), yet not at all efficient in the short term (ST).

The MCDSS must be able to rank actions using a multicriteria

filtering system.

5. It must represent the expert knowledge expressed in decision

trees using international World Wide Web Consortium

(W3C) standards in order to facilitate interoperability between

industry and academic institutes in an Open Science setting.

More particularly, two standard languages are recommended:

(1) Resource Description Framework (RDF) for graph data

description and exchange. RDF provides a variety of syntax

notations and data serialization formats; (2) Web Ontology

Language (OWL), a family of knowledge representation

languages for authoring RDF-based ontologies.

2.2. From mind mapping to formal
knowledge representation

Buche et al. (2019) proposed a method that enables collective

mind mapping dedicated to this MCDSS. Interested readers may

refer to this paper for further details on step 1 implementation (see

Figure 1). In this section, we focus on two new contributions of

the paper. The first concerns a numerical model that aggregates

individual assessments associated with action efficiency expressed

by technicians into a single indicator. This functionality is required

in Specification 4 (see Section 2.1). During step 2, as presented

in Figure 1, the aggregated indicator is discussed and validated

collectively by the team of technicians to determine the final

action efficiency value, which is input in the knowledge base for

decision-making support. The second contribution is an extended

version of the ontology presented in Buche et al. (2019) to

structure the information in the MCDSS knowledge base for

navigation and querying purposes. The extension includes the

efficiency indicators and associated criteria. This extended version

is expressed using the W3C standards to fulfill Specification 5

(see Section 2.1), which is also a novel contribution of this paper

as the ontology presented in Buche et al. (2019) was based on

the Conceptual Graph model (Sowa, 1984; Chein and Mugnier,

2009).

2.2.1. A model to aggregate individual action
e�ciency assessments

Each technician, denoted Ti hereafter, provides two types

of information:
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• His/her experience in terms of number of action

implementations, called Fi, reflecting the reliability of

his/her statements, which takes its value in the set {(N)ever,

(R)arely: 1 < 3, (S)ometimes: 3 < 10, (O)ften): >10}, as

summarized by R= {N, R, S, O}.

• The efficiency of the action, denoted Ei, which takes its value in

{Very effective (A), Moderately effective (B), Not very effective

(C), No effect (D)}, as summarized by E= {A, B, C, D}.

The technician can also select “don’t know” for the

second value.

With the experience of the technician corresponding to the

number of times (roughly) where he/she encountered the situation

of interest, it seems quite natural to interpret his/her answer as

a number of “virtual” observations. We will therefore associate

with each value in R an equivalent number, i.e., N→ 0.5, R→ 2,

S→ 5, O→ 10. In practice, each of these values is chosen to be

within the corresponding interval. For instance, Rarely corresponds

to the interval [1,3], for which we picked the central value 2. We

still assigned a positive value to Never, so as to reflect the fact

that the reported experience may come from sources other than

direct observation. Those choices were made in accordance with

the end user and can in practice be changed according to the

application, as they remain subjective (but not arbitrary) to some

extent. The corresponding intervals could in principle also be kept,

yet processing such information would increase the cognitive load

for users, hence our choice to keep precise numbers representing

the numbers of experiments.

Let ni be the number corresponding to the experience of

technician Ti. For example, if technician Ti answers Fi = R,

therefore rarely, then ni = 2. If k technicians provide an

answer, then total N =
∑k

i=1 nk will denote the total number of

virtual observations.

The aim is then—based on these virtual observations—to

construct a histogram on E, and associate a probability with each

of its elements. Let nA, nB, nC , nD denote the total number of

observations given to A, B, C, D, respectively.

Definition 1: nA the total number of observations given to A is

defined by

nA =
∑

Ti : Ei=A

ni

The probability (subjective and a priori) of A then becomes

p(A) =
nA

Nb

and the same for B, C, D.

Example 1: Suppose three technicians provide their opinions

as follows:

• F1 = R ⇒ n1 = 2; E1 = A (very effective)

• F2 = S ⇒ n2 = 5; E2 = B (moderately effective)

• F3 = R ⇒ n3 = 2; E3 = C (not very effective)

which gives N = 9 and p(A)= 2/9; p(B)= 5/9; p(C)= 2/9.

The information given by the previous distribution is probably

too complex to be readily understood by a technician and requires a

simple summary. This can easily be done through various statistics

and then supplied to the user in graphical and easily interpretable

form. In contrast with number of times a situation has been

encountered, in our case efficiency is not associated with an actual

numerical measure. Moreover, such measures would probably vary

across situations and not be comparable. We therefore chose to

not replace ordered categories A, B, C by numbers, and instead

provided both a central value and its dispersion based on the

quantile notion. More precisely, we will use the median (quantile

at 50%) and two quantiles around the latter (therefore 50% – α and

50%+ α) as a statistical summary.

Definition 2: the quantile of level ∈ [0, 1], denoted iβ , relative

to the distribution p defined on E is the value

iβ =







j ∈ E :





∑

l≤j−1

p(l) < β





∧





∑

l≤j

p(l) ≥ β











where < corresponds to the alphabetical order and with the

convention
∑

l≤0 p
(

l
)

= 0.

Let us get back to our previous example, where we will

conventionally denote P ({A,B}) = p (A) + p(B), etc.

Example 2-1:

P({A})= p(A)= 2/9= 0.2222.

P({A,B})= p(A)+ p(B)= 2/9+ 5/9= 0.77777.

P{A,B,C})= P({A,B,C,D})= 1.

We will therefore have the following quantile i0.1 = A

(first decile) because
∑

l≤0 p
(

l
)

= 0 and
∑

l≤A p
(

l
)

= 0.2222

therefore
{(

∑

l≤0 p
(

l
)

< 0.1
)
∧

(
∑

l≤A p
(

l
)

≥ 0.1
)}

is true.

In the same way, i0.25 = B (first quartile); i0.5 = B (median);

i0.75 = B (third quartile); i0.9 = C (ninth decile).

It is clear that if the technicians all provide the same evaluation,

then all the quantiles will have the value of this evaluation.

Conversely, if the technicians are somewhat divided and of

equivalent experience, the difference between the quantiles will

show this uncertainty. We hence propose to match A, B, C, D to a

number of “stars” (3,2,1,0) and to provide the average of the values

observed in set [i0.1, i0.9] as a reference value. In our example, this

is the set [A, B, C], with the reference value 2. It would also be

useful to show that there is no consensus on this reference value

by highlighting all the intervals [1,3].

Figure 7 presents examples of graphical representations in

terms of stars. The following example illustrates the case where the

reference value is not one of the initial values.

Example 2-2:

Suppose that two technicians provide their opinions as follows:

• F1 = R ⇒ n1 = 2; E1 = A (very effective)

• F2 = P ⇒ n2 = 5; E2 = B (moderately effective)

In this case, p(A)= 2/7, p(B)= 5/7 with i0.5 = B (median) and

[i0.1, i0.9] = [A,B] with 2.5 being the obtained average (stars).

2.2.2. A new ontological model to structure the
MCDSS knowledge base content

Decision trees edited in mind-map files in step 1 and enriched

with action efficiency assessments in step 2 must be stored in the
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FIGURE 2

OWL ontological model used to structure a decision tree in the MCDSS knowledge base.

MCDSS knowledge base. As indicated in Specification 5, Semantic

Web language standards created by W3C must be used for

knowledge base implementation. The OWL ontology—an original

contribution of this paper—designed to structure and instantiate a

decision tree in the RDF knowledge base is presented in this section.

The OWL definition of classes and properties presented in

Figure 2 is available in Buche et al. (2022). Hereafter we explain how

this ontological model takes the specifications expressed in Section

2.1 into account.

As expressed in Specification 1, a situation S1, an instance

of the Situation OWL class, is explained by a situation S2
through an instance of the CausalityNode class linked to S1
(resp. S2) by the OWL hasForCause (resp. hasForConsequence)

object property. Note that S1 may be an instance of the

SituationOfInterest class that is a kind of Situation. A situation S

may be associated with an action A via the hasForAction object

property. An action A is associated with its lever through the

hasForLever object property. A conjunctive interaction CI1, an

instance of the SituationConjunction class, is linked to conjunctive

causal situations S1 and S2 (and other situations if required)

by the isComposedOf property. CI1 is linked to an instance

of the CausalityNode class by the hasForCause property. This

CausalityNode class instance is linked to the consequence situation

S3 by the hasForConsequence property. The strengthening (resp.

weakening) interaction of situation S1 by situation S2 to explain S3
is also represented using a conjunctive interaction CI1, an instance

of the SituationConjunction class. The asymmetric role of situations

is achieved in the following way: the altered situation S1 is linked

to altering situation S2 via the SpecificationOfWeakening (resp.

SpecificationOfReinforcement) object property if the alteration type

is weakening (resp. strengthening).

The isDetectedBy datatype property associated with an instance

of the Situation class implements Specification 2. An instance

of Action is associated with an instance of the Efficiency class

to implement Specification 4. The hasForKeyCriterion datatype

property permits determination of the list of criteria values

associated with a single Efficiency instance. The hasForScore,

hasForObservations, and hasForTechniciansAgreement datatype

properties are associated with an Efficiency class instance which

is linked to an Action instance. The hasForConsequenceCriterion

object property links an Efficiency instance with a set of pairs (name,

value) that are used for decision support. The refersToDefect object

property links an Efficiency instance with the situation of interest to

which it refers.

Figure 3 is an excerpt of a mind-mapping file representing

the decision tree associated with the situation of interest Excessive

salting achieved by the blue node at the bottom left part of the

figure. The entire mind-mapping file is available in Buche et al.

(2022). This situation of interest may be explained by the Significant

salt intake situation. Then four explanations are possible. Hereafter

we will consider the one whose node is white, i.e., Conditions

favoring salt uptake in brine and its associated branch, whose nodes

are also white, until reaching the two nodes Put the brine tank in

the dryer and EFFICIENCY: ST. Figure 4 shows a zoom on the table

associated with the node EFFICIENCY: ST. This table includes the

aggregated efficiency indicator with the number of observations

(see Section 2.2.1) and contextual criteria associated with them. In

Figure 5, we present a part of the MCDSS RDF knowledge base

corresponding to the translation of the branch whose nodes are

white in the decision tree presented in Figure 3. The entire RDF

graph corresponding to the mind-mapping file is available in Buche

et al. (2022).

In Figure 5, to facilitate the understanding of the translation of

Figures 3, 4 into RDF, instances of OWL classes are represented by

rectangles, with the class name in the header complemented by a

pseudo-label representing its URI (as the real one is too long) or the

associated value of the rdfs:label property. Values associated with

datatype properties are framed in black.

2.3. Multicriteria decision-support system

The decision-support system (see step 4 in Figure 1) consists of

two complementary access modes to the knowledge base content,

i.e., the explanatory and action views. The explanatory view
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FIGURE 3

An excerpt of the mind-mapping file associated with the Excessive salting situation of interest.

FIGURE 4

Zoom on the table associated with the EFFICIENCY: ST node present in the mind-mapping file associated with the Put the brine tank in the dryer

node.

displays the decision tree associated with a given situation of

interest, including all possible explanatory situations, associated

analytical parameter values and technical actions to correct/reach

the situation of interest. The action view displays the list of actions

related to a given decision tree to correct/reach the associated

situation of interest. It enables multicriteria filtering, action ranking

and side effect identification.

Both views may be used independently and jointly depending

on the usage case. For instance:

• A systematic review of all possible explanatory situations is

carried out using the explanatory view.

• Solving a contextualized problem is carried out

using the action view through the multicriteria
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FIGURE 5

An excerpt of the MCDSS knowledge base corresponding to the selected branch in Figure 3.

filtering mode, sometimes complemented with the

explanatory view.

Hereafter we define a multicriteria (MCDSS) query executed

in the action view and the associated answers. Then we present

the MCDSS graphical user interface (GUI) using an illustrative

example based on a real case from a French protected designation

of origin (AOP) chain.

2.3.1. MCDSS query definition
We define in this section the notion of MCDSS query Q

executed on the KB knowledge base. Then the answer to Q, called

AN, and the two complementary AN-inter and AN-intra answers

are defined for side effect identification.

Definition 3: The MCDSS knowledge base (KB) is defined as

the 9-tuple (S, Vk, Cc, Vc, A, L, E, Ag, O), with:

• S= the set of instances of the SituationOfInterest class;

• Vk = the set of key criteria labels associated with the

hasForKeyCriterion datatype property;

• Cc = the set of consequence criteria names associated with the

hasForName datatype property;

• Vc = the set of consequence criteria values associated with the

hasForValue datatype property;

• A= the set of Action class instances implemented using Lever

class instances;

• L= the set of Lever class instances;

• E= the set of action efficiency labels associated with the

hasForScore datatype property;

• Ag= the set of action efficiency consensus labels associated

with the hasForTechnicianAgreement datatype property;

• O= the set of action efficiency labels associated with the

hasForObservations datatype property.

Definition 4: Given KB defined in Def. 3, the set of input

conjunctive filtering parameters associated with an MCDSS query

Q executed in KB is defined by the 6-tuple:

(s ∈ S, {v1, · · · , vm} ∈ Vk, {(c1, v1) , · · · , (cn, vn)} ǫ (Cc,Vc)
n ,

{e1, · · · , eo} ∈ E,
{

ag1, · · · , agp
}

∈ Ag,
{

o1, · · · , oq
}

∈ O)

Note: multivalued parameters are considered to be aggregated

disjunctively in the querying.

Example 3: Q1 = (excessive

salting,{∅},{∅} ,
{

very effective
}

,
{

good, average
}

, {∅}) represents

the querying of the excessive salting situation of interest with

the action efficiency being very effective and the action efficiency

consensus being good or average. The SPARQL query generated

by the MCDSS and corresponding to is available in Buche et al.

(2022).

Definition 5: The answer AN associated with an MCDSS

query Q executed in KB is defined by a set of 2-tuples:
{(

a1, l1
)

, · · · ,
(

an, ln
)

ǫ (A, L)n
}

, with
(

ai, li
)

related to the decision

tree associated with the situation of interest s.

Example 4: AN1 = {(dilute the brine, Brine salt concentration),

(acidify the brine to pH 5.4, Brine acidity), (practice brining on a

rack, Brining equipment), (reduce brining time, Brine duration)} is

the answer that includes the four recommended actions associated

with the query of Example 1. The triples results of the SPARQL

query corresponding to is available in Buche et al. (2022).

Two complementary answers with AN are provided by

the MCDSS when the Q query is executed. The objective,

corresponding to Specification 3 (see Section 2.1), is to identify two
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types of potential side effects that could occur if a recommended

action related to AN is implemented:

• AN-inter: potential side effects with other situations of interest

related to KB. Situations where the associated decision tree

recommends the use of a lever associated with a given AN

action are selected.

• AN-intra: potential side effects with other actions related to the

decision tree associated with the situation of interest expressed

in Q.

Definition 6: Given the AN answer to a query Q, the AN-inter

answer associated with a recommended ai action implemented

using a given li lever with
(

ai, li
)

∈ AN is defined by a set

of 2-tuples:

(s′ ∈ S,
{(

a1, li
)

, · · · ,
(

an, li
)

ǫ (A, L)n
}

) with s′ 6= s, with

s being the situation of interest associated with the Q query and
(

aj, li
)

, j=1, . . . n being related to the decision tree associated with

the s’ situation of interest.

Example 5: AN-inter1 associated with the recommendation

(reduce brining time, Brine duration) related to AN1 is {(unpleasant

taste or odor, {(extend the brining time to 2 h maximum, Brine

duration)}),(brown paste,{(extend the brining time to 2 h maximum,

Brine duration)}), (excessive proteolysis,{(extend the brining time to

2 h maximum, Brine duration)}), (insufficient salting, {(extend the

brining time to 2 h maximum, Brine duration)})}.

AN-inter1 means that implementing the recommendation

reduce brining time to solve the excessive salting situation

may create a side effect with four other situations of interest

likely to occur: unpleasant taste or odor, brown paste, excessive

proteolysis, insufficient salting. Indeed, the same Brine duration

lever is recommended to solve these situations but it is used

in an opposite way (extend the brining time to 2 h maximum),

which could potentially trigger those situations of interest if the

recommendation is applied. MCDSS users may query the decision

trees associated with those situations of interest to find a good

trade-off to avoid triggering unwanted side effects.

Definition 7: The AN-intra answer associated with an

a recommended action implemented using a given l lever to solve

the s ∈ S situation of interest is defined by a 4-tuple:

(
{(

a11, l1
)

, · · · ,
(

a1n, ln
)

}ǫ (A, L)n
}

,
{(

a21, l1
)

, · · · ,
(

a2n, ln
)

}ǫ

(A, L)n
}

,
{(

a31, l1
)

, · · · ,
(

a3n, ln
)

}ǫ (A, L)n
}

,
{(

a41, l1
)

, · · · ,
(

a4n, ln
)

}ǫ (A, L)n
}

) with a1i actions (resp. a2i actions)

corresponding to potential weakening actions of the recommended

a action (resp. potential actions weakened by the recommended

a action) and a3i actions (resp. a4i actions) corresponding

to potential reinforcement actions of the recommended a

action (resp. potential actions reinforced by recommended

a action).

Example 6: AN-intra1 associated with the recommendation

(reduce brining time, Brine duration) related to AN1 is ({(practice

desalting on a rack, Brining equipment))}),{∅},{∅}{∅}).

AN-intra1 means that implementing the reduce brining

time recommendation to solve the excessive salting situation

may be weakened by the practice desalting on a rack action.

Complementary information about this possible interactionmay be

found using the explanatory view.

2.3.2. MCDSS graphical user interface
Using an illustrative example, we show how the MCDSS

graphical user interface has been implemented to propose both

complementary access modes to the knowledge base content, i.e.,

the explanatory and action views.

The explanatory view proposes navigation in a decision tree

associated with a given situation of interest to query all possible

explanatory situations. Figure 6 shows an excerpt of the explanatory

view for the Excessive salting situation of interest. Analytical values

associated with situations are shown in red. For example, NaCl rate

> XXX 1g/100g is the value associated with the Excessive salting

situation. The first high-level explanatory situation is Significant

salt intake by the cheese during its production, while several

others specify this high-level explanation. For instance, it could be

explained by the Conditions favoring salt uptake in brine situation.

By following this branch of the decision tree, we reach a more

detailed explanation, i.e., Too much salt added in brine. This latter

explanation is associated with the Dilute the brine action. Its

associated analytical value is Density to reach XXX-YYY◦B.

The action view enables knowledge base querying and filtering

to solve a contextualized problem. Figure 7 shows a query presented

in example 3 concerning the Excessive salting situation of interest.

Filtering criteria used regarding the action efficiency indicator and

agreement level enable filtering of three actions out of a total of 15

present in the decision tree.

Complementary answers identifying possible side effects may

be obtained using buttons (see the two buttons at the bottom of

Figure 7 corresponding to AN-intra and AN-inter answers for the

Reduce brining time action). Figure 8 shows a list of four situations

of interest presented in Example 5 above: unpleasant taste or odor,

brown paste, excessive proteolysis, and insufficient salting. The Brine

duration lever is recommended to solve these situations, while using

it in an opposite way (extend the brining time to 2 h maximum)

compared to that recommended for the Excessive salting situation

of interest. Figure 9 shows the action presented in Example 5, which

may weaken the recommended Reduce brining time action.

3. Results

In this section, we present the assessment results of

Specifications 1, 2, and 4, which were performed with end-users.

3.1. Reviewing all possible technological
actions associated with a situation of
interest (Specifications 1 and 2)

In a technological reasoning task, for a given situation of

interest (targeted quality or defect), a technician must be able

to check all possible explanatory situations and corresponding

analytical parameters to check that this situation will happen.

Moreover, he/she must be aware of the associated recommended

technological action. The protocol presented in Figure 10 was

1 The actual numerical values have been anonymized to avoid recognition

of the cheese chain.
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FIGURE 6

MCDSS explanatory view showing an excerpt of the decision tree associated with the Excessive salting situation of interest.

FIGURE 7

MCDSS action view showing an excerpt of the list of filtered actions related to the decision tree associated with the Excessive salting situation of

interest. The three stars indicate the action’s e�ciency is “very e�ective”.

designed to assess the impact of MCDSS use in this reasoning task.

It was tested with technicians from three different food chains. The

protocol includes the following steps:

• Fifteen people related to three different chains passed this test.

Figure 11 shows that 39% of the technological actions were

noted without the MCDSS and 66.5% after its use, which

represents 27% enhancement. Only two chains (10 people)

undertook the analytical value tests as chain 1 corresponds

to generic knowledge associated with a situation of interest

learned in technical schools. As analytical values highly

depend on a given cheesemaking process, it was not possible to

conduct this test on this generic knowledge. Figure 12 shows

that 18.33% of the correct answers were obtained without the

MCDSS. The score increased to 76.25% after its use, which

represents 60% enhancement. Both tests showed a good (even

very good for the second one) enhancement with regard to the

answers provided via use of the MCDSS.
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FIGURE 8

MCDSS action view showing a list of four situations of interest using the same lever but in an opposite way compared to that recommended to solve

the Excessive salting situation of interest. The three stars indicate the action’s e�ciency is “very e�ective”.

FIGURE 9

MCDSS action view showing a list of actions related to the decision tree associated with the Excessive salting situation of interest which could

potentially weaken the recommended action. The three stars indicate the action’s e�ciency is “very e�ective”.

• Unfortunately, the MCDSS prototype was not finished when

the assessment campaign was carried out during the project.

Consequently, it was not possible to assess the implementation

corresponding to Specification 3 (identification of side effects

associated with a recommended action). This will be of course

done as soon as possible in the future. Nevertheless, the

assessment results presented above suggest that these results

will be also good. Indeed, finding all side effects between

situations of interest (see Section 2.3, ANS-inter) may be a

huge manual task as more than a 100 decision trees may be

defined for a given cheese chain.

3.2. Technological e�ciency aggregation
assessment (Specification 4)

This assessment was conducted with a group of five technicians,

all of whom were experts of a real cheesemaking process. It was

focused on a set of three decision trees corresponding to three

situations of interest (Excessive dripping, Excessive acidification,

and Excessive salting). The five technicians provided individual

assessments for 44 actions related to the three decision trees. Each

action was assessed twice (88 assessments), with each assessment

corresponding to two different production approaches: production
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FIGURE 10

Protocol designed to assess the impact of MCDSS use in the

reasoning task.

FIGURE 11

Test results (blue without MCDSS, brown with MCDSS) for

recommended technological action findings: the y-axis represents

the number of correct answers (mean value) in the three chains and

on average.

approach 1 and production approach 2. Aggregated values were

computed using the model presented in Section 2.2.1. In parallel,

this group of experts collectively determined an assessment for

each action without using the model. Computed assessments

were compared to collective assessments. The associated data are

available in Buche et al. (2022). Two assessments were considered

to be in disagreement when there was a difference of at least

two modalities (e.g., <no effect, moderately effective>, <very

effective, not very effective>, etc.). The results presented in

Table 1 show an error rate of around 5.7% (Total number of

disagreements/Total number of actions), which is rather low. In

practice, the method was considered relevant enough to compute

an aggregated efficiency indicator associated with an action in a

given decision tree. This aggregated indicator was discussed and

validated collectively by the group of technicians during monthly

meetings before being input in decision trees stored in the MCDSS

knowledge base.

As already said above, the MCDSS prototype was not finished

when the assessment campaign was carried out. Consequently, it

was not possible to assess the implementation corresponding to

Specification 4 about multicriteria filtering (identification of side

effects associated with a recommended action).

4. Discussion

We discuss in this section the original contributions of the

paper compared to the current state of the art, summarize and

provide complementary information about key contributions and

present some future directions of the research.

4.1. Comparison to the current state of the
art

A lot of progress has been achieved in knowledge integration

and multicriteria analysis methods and tools in the food science

and technology field, yet they remain fragmented and incomplete

(Aceves Lara et al., 2018; Thomopoulos et al., 2019). Different

methods have been developed to gather scientific and technological

knowledge and data for different purposes, but this information

has only been general and focused solely on elementary processing

operations, which do not take into account the entire processing

operation. For example, Kansou et al. (2014) proposed a qualitative

model of a unitary mixing operation using an expert system to

predict the quality of wheat flour dough. Baudrit et al. (2015)

modeled preharvest grape berry maturity—a critical characteristic

for the wine industry—using expert knowledge and data and

probabilistic graphical approaches. Belna et al. (2022) optimized

microfiltration unit operation to integrate conflicting stakeholder

objectives, such as maximizing product output quality while

minimizing cost inputs and addressing environmental impacts.

Baudrit et al. (2022) used data from scientific articles describing

the entire milk microfiltration process including several unit

operations in addition to the milk microfiltration step as skimming,

heat treatment or storage. Those data are available in Buche et al.

(2021). But the method presented in Baudrit et al. (2022) only

proposes to learn a predictive model of the milk microfiltration

unit operation in large-scale operational conditions including

different membranes.
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TABLE 1 Assessment of the e�ciency aggregation method.

Decision tree Number of
action

assessments

Number of
disagreements

Excessive dripping 36 2

Excessive acidification 28 1

Excessive salting 24 2

Total 88 5

In a circular economy context, Belaud et al. (2022) proposed

a decision-support system to rank alternative lignocellulosic waste

transformation processes based on knowledge engineering tools

to compile experimental data to assess potential environmental

impacts. Munch et al. (2021) and Munch et al. (2022) combined

ontology, probabilistic models and linked open data to generate,

through a reverse engineering approach, agricultural wastes well-

suited for processing biocomposites for food packaging. In both

cases, ontological models facilitated analysis of the impact of

the entire processing operation on the end-product quality or

on indicators associated with the process, but the approaches

required gathering of a substantial set of numerical experimental

data to obtain good results. These approaches are unsuitable to

achieve the objectives outlined in this paper because they are

over-demanding in terms of obtaining sufficient numerical data to

represent the entire range of collective knowledge at the level of a

given food chain.

Fault tree analysis (FTA), which targets fault event risk

assessment (Baig et al., 2013), may be compared to our approach.

FTA enables computation of a level of risk represented by the

occurrence probability of an undesired event. FTA also helps

identify critical safety solutions to avoid the risk. For instance, in

Pahasup-anan et al. (2021), the authors analyzed different situations

that could trigger a dust explosion in an extruded food production

facility. Kim et al. (2020) used FTA to assess the level of risk of

four situations which could help determine the risk of microbial

contamination of food by E. coli. A fault tree includes a root

node representing the undesired event. The branches of the tree

represent the explanatory scenarios, which may explain the fault

event starting from basic events representing situations that would

likely contribute to the overall fault defined in the roots. A whole

fault tree could be considered as a set of scenarios associated with

a probability of occurrence. Risk analysis is of course essential.

However, FTA quantitative analysis requires collection of basic

event occurrence measurements.

Our core ontology, which defines the decision tree structure, is

comparable to the tree structure used in FTA as we also represent

a decision tree linking explanatory situations to a given situation

of interest. However, our objectives are quite different (see Section

2.1). Our original contribution compared to FTA consists of: (i)

proposing a semantic decision tree representation using Semantic

Web languages to enable easier open data linkage with other

sources of information available on the Web; (ii) representing

levers and associated technological actions to solve a situation of

interest; (iii) representing the action efficiency based on individual

experience; (iv) representing contextual criteria associated with

recommendations to help filter recommendations in a multicriteria

way; and (v) identifying possible side effects associated with

the implementation of a recommendation. Moreover, FTA aims

to estimate the probabilistic risk of failure, which requires the

availability and collection of a substantial amount of numerical

data, whereas our approach is based on collecting and representing

the collective technical know-how available for a given domain

(company, food chain, etc.).

Our ontological model may be compared with the COOK

ontology (Ghrab et al., 2017), the Core Ontology of Organization

Know-How and Knowing-That. In COOK, Know-How is defined

as the capacity/disposition to perform an action. The COOK

Know-How concept is similar to our Situation concept. COOK

proposes a rich taxonomy to categorize different kinds of know-

how (individual, collective, internal, external, crucial, etc.). From

this viewpoint, we could consider that in the MCDSS the Situation

concept is a specialization of CollectiveKnow-How. Our ontology

enables us to represent complex interactions between Situations

(conjunction, reinforcement, weakening) which is not possible in

COOK. In COOK, the Knowing-That concept—a kind of belief—

represents the relation between a proposition and a thinker. It

assigns a truth value to the proposition. It is harder to compare this

part of the COOK ontology to ours. Indeed, in our ontology, we

implicitly consider that we represent a collective belief state, i.e., a

COOK concept. On the other hand, we propose a more elaborate

representation of the COOK Proposition concept as we represent

expert reasoning using the notion of causality between situations,

the efficiency of an action and associated contextual criteria. In

conclusion, there are several similarities between both ontologies

with a richer description of kinds of know-how in COOK and an

explicit representation of expert reasoning in our ontology, which is

not present in COOK. The part of our ontology which more or less

corresponds to the Knowing-That concept part of COOK is more

detailed because we have proposed a complete and operational

MCDSS based on our ontology. Our ontology, like that of COOK,

may be applied to any application domain based on know-how.

Compared to Buche et al. (2019), i.e., preliminary research

that gave rise to the study described in this paper, several

new contributions are proposed and assessed: (i) a model to

aggregate action efficiency based on individual experience; (ii) an

extended version of the ontology expressed in OWL, including

the representation of action efficiency and associated information

(key and complementary criteria); and (iii) the definition and

implementation of the action view.

4.2. Key contributions

Here we showcased a new multicriteria decision-support

system based on collective know-how in food chains to enhance

food quality during the production process. This MCDSS is

currently being used in production conditions in 13 AOP

cheesemaking chain organizations involving professional

stakeholders (cheese producers, experts working in technical

centers) and professors from technological schools (ENILs),

thereby comprising more than 60 users. Note that the model

used to represent the decision trees may be refined in a flexible
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FIGURE 12

Test results (blue without MCDSS, brown with MCDSS) for analytical value findings: the y-axis represents the percentage of correct answers (mean

value) in two chains and on average.

way until the level of detail sought by the expert is reached.

This flexibility has been successfully used in the project as

professors from technological schools have created generic cheese-

making decision-trees. Operators introducing new chains in the

project have tailored these generic decision trees to their specific

cheese-making process.

Most of the MCDSS functionalities implemented to fulfill

the specifications have been assessed, with promising results

overall. All of the ontological model concepts are required to

implement the MCDSS specifications. The choice to represent the

causality relation between situations may be discussed. Indeed,

a HasCausality semantic relation between two Situation nodes

would have also been possible and simpler. However, as presented

below in the perspectives of this work, it would be useful for

advanced users conducting statistical analyses to be able to qualify

the causality relation between situations in a future version of the

MCDSS. By example, we would like to distinguish between types

of sources, which contain the statistical analysis (internal study,

bibliographical study). This metadatum should be associated with

Causality nodes.

This justifies the modeling choice to set the stage for this

future development. The comparison with and without theMCDSS

was important to convince technicians of the MCDSS relevance.

There are currently many obstacles to innovation, especially when

it comes to know-how of which experts are sometimes afraid

of losing (loss of employment, of power, etc.). Moreover, the

direct use of mind maps without MCDSS assistance could be

questioned. From our viewpoint the relevance is limited since

the use of a simple mind map does not allow for three kinds of

computerized analysis:

• The first corresponds to numerical aggregation of individual

action efficiency assessments (see Specification 4). It provides

an aggregated indicator, which is discussed and validated

collectively by the technician team to determine the

final action efficiency value, especially in the event of

major disagreement. This value enriches the decision tree

associated with a given situation of interest registered in the

knowledge base.

• The second consists of the action multicriteria filtering

mechanism generated by MCDSS queries, which reduces the

list of candidate actions for a given situation of interest (see

Specification 4).

• The third corresponds to the computing of complementary

answers to enable assessment of the potential side effects with

other actions and situations of interest (see Specification 3).

A typical use case of theMCDSS, which illustrates the relevance

of those computerized analysis, is the following. A cheese maker

has a problem of excessive salting. He/she queries the MCDSS on

his/her phone using the excessive salting decision tree. First, using

the Action view (see Figure 7), he/she selects the three corrective

actions, which are very effective with a good/average agreement

between experts of the chain. Clicking on the button identifying

possible side effects (see Figure 8), he/she understands that using

the Brine duration lever could be risky as four other defects may

appear. Therefore, he/she navigates in the Explanatory view (see

Figure 6) to compare the two remaining recommended actions

(acidify or dilute the brine) will be able to verify if the analytical

value associated with the situation High brine density corresponds

to his/her actual situation to choose the action he/she will use.

Collected know-how consistency checking is consolidated and

enriched throughout the workflow presented in Figure 1. First

note that Buche et al. (2019) proposed a method that enables

collective mind mapping dedicated to this MCDSS. Consequently,

decision trees which are outcomes of this collective mind mapping

activity are already validated as they contain the consolidated

knowledge of the food chain experts resulting from collective

discussion. Secondly, it is possible to verify that recommended

actions are relevant by checking the technicians’ feedbacks

(Specification 4) after implementation of the recommendations.

If the actions are good, then the recommendation remains valid.

Conversely, further investigation may be required to understand

why a recommended action failed. Thirdly, criteria associated with
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action efficiency assessments may contain information to verify

action’s relevance. For instance, an advanced chain has defined

two criteria using the MCDSS: (1) StatisticalResults (yes/no),

meaning that statistical results validating the recommendation

have been obtained in the food chain; (2) BibliographicalResults

(yes/no), meaning that results published in a scientific paper

have validated the recommendation. In both cases, a link to a

complementary website may be embedded in the decision tree

branch to provide more information. Fourthly, it is possible to

determine if certain suggestions delivered by the MCDSS were not

executed. Indeed, this kind of action may be identified if the Never

modality is associated with the “number of action implementations”

information (hasForObservations property associated with the

Efficiency concept). Explanations may be provided by analyzing

values associated with the ConsequenceCriteria associated with

the Efficiency concept. For instance, a given action has never

been executed because it could generate a sanitary risk or be

costly to implement. Fifthly, the collective mind mapping activity

conducted to create and maintain decision trees may identify

knowledge gaps. This means that in a given situation the experts

may not know which action to recommend or may disagree on

the action to recommend. Sometimes, they may know the action

to recommend to solve a given situation of interest, without being

able to explain why. In all of those cases, new experiments may be

conducted to unlock knowledge gaps. Learning improvement in

novel knowledge gap cases is a natural outcome of the collective

mind mapping activity, which is the first step of the MCDSS

workflow process.

In terms of upscaling, more advanced chains manage around

a 100 decision trees and they will certainly increase to several

hundreds. But big data are not involved and no scalability problems

in terms of volumes should arise because we only represent

expert knowledge. The problem would arise if we were to seek

to represent the numerical experimental data so as to be able to

create/assess this expert knowledge. But this is beyond the scope

of this work.

5. Conclusion and perspectives

The perspectives of this project are numerous. In AOP

cheesemaking chain organizations, the priority has been toward

recommendations to correct organoleptic defects. But in the future

the method will enable us to create decision trees to recommend

actions to solve food safety problems or to achieve a given

food quality. Moreover, we will extend know-how representation

to the upstream part of the chain, including milk production.

New methodological challenges will be tackled to take spatio-

temporal knowledge representation into account. Advanced users

who conduct statistical analyses may like to be able to qualify

the causality relation between situations in a future version of

the MCDSS. This extension will be easy to design thanks to the

choice made in the ontology model to represent causality relations.

Another prospect will be to take newMCDSS sustainability criteria

into account. We will focus specifically on the environmental

impact of cheese production. Using Semantic Web languages

to implement the knowledge base will facilitate interoperability

management with new sources of information that are also

managed with those languages (Pénicaud et al., 2019; Cortesi et al.,

2022a,b).

This MCDSS is a generic tool, which could potentially be used

in different food and bio-product chains. Encouraging preliminary

tests, as reported in Buche et al. (2019), have been conducted

in the cereal (couscous) and dairy sectors (instant milk powder).

Consequently, new dissemination activities will be conducted in

the future.
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