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Disembodied AI and the limits to
machine understanding of
students’ embodied interactions

Mitchell J. Nathan*

MAGIC Lab, Wisconsin Center for Education Research, Educational Psychology Department, School of

Education at the University of Wisconsin–Madison, Madison, WI, United States

The embodiment turn in the Learning Sciences has fueled growth of multimodal

learning analytics to understand embodied interactions and make consequential

educational decisions about students more rapidly, more accurately, and

more personalized than ever before. Managing demands of complexity and

speed is leading to growing reliance by education systems on disembodied

artificial intelligence (dAI) programs, which, ironically, are inherently incapable

of interpreting students’ embodied interactions. This is fueling a potential crisis

of complexity. Augmented intelligence systems o�er promising avenues for

managing this crisis by integrating the strengths of omnipresent dAI to detect

complex patterns of student behavior from multimodal datastreams, with the

strengths of humans to meaningfully interpret embodied interactions in service

of consequential decision making to achieve a balance between complexity,

interpretability, and accountability for allocating education resources to children.
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1. Introduction

The primary objective of this Perspectives article is to expose a looming crisis of

complexity: educational systems are becoming more dependent on artificial intelligence (AI)

programs to make consequential decisions about learning and learners from rich streams of

multimodal data that emerge frommany sources, including students’ embodied interactions.

However, disembodied AI (dAI) programs–I argue–are fundamentally incapable of

understanding people’s embodied interactions in the ways that humans understand them.

Furthermore, the emergent dAI models are of such complexity that end users (and often the

original programmers) cannot understand the models or recreate the chain of reasoning that

led to these decisions. Therefore, dAIs should not be directing consequential educational

decisions affecting the lives of children. The secondary objective is to offer potential paths

forward from this crisis. One promising approach is the development of “augmented

intelligence” systems (AISs) that amplify human performance using dAI resources while

relying ultimately on human decision making.
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2. Theoretical framework: The
embodied turn and growth of
multimodal learning analytics

2.1. The embodied turn in the learning
sciences and education

Empirical evidence and arguments from philosophy,

psychology, neuroscience, education, and critical theorists in

education effectively dismantle the view of learning as information

processing of ungrounded symbol systems by dAI that are

amodal (i.e., non-sensorial), arbitrary (i.e., non-historical and

non-cultural), and abstract (i.e., ungrounded) (Harnad, 1990;

Varela et al., 1991; Glenberg, 1997; Shapiro, 2019). To the

contrary, humans make meaning of events, ideas, and cultural and

scientific inscriptions by grounding them to their sensorimotor

experiences that are interpreted within sociocultural and

historical contexts (Wilson, 2002; Barsalou, 2008; Newen et al.,

2018).

In psychology, Glenberg and Robertson (2000) found that

human readers judge the sensibility of sentences based on the

sensorimotor affordances invoked by the actions described

in the sentences, rather than their lexical interconnections

in high-dimensional spaces, as modeled by dAI systems

widely applied in education areas such as automated essay

grading (LSA; Burgess and Lund, 1997; Landauer and Dumais,

1997).

Neural imaging data show that reading words with

motor associations—such as kick, lick, and pick—selectively

activates the motor areas of the brain for one’s feet, tongue,

and fingers, respectively (Pulvermüller, 2005). Botox patients

whose injections temporarily paralyze the facial corrugator

supercilli muscle used in frowning showed selective impairment

in processing sentences that invoke anger but not those

that invoked joy or were emotionally neutral (Havas et al.,

2010).

Critical theorists in education reject the disembodied

view that neglects the central role of culture in language,

thinking, symbols, and emotion for educational attainment.

McKinney de Royston et al. (2020) expressly identify the

essential nature of embodied cultural experiences by framing

learning as rooted in bodies and brains that are embedded in

social and cultural practices and shaped by lifelong culturally

organized activities.

Drawing on these critiques, some education scholars

conclude that the knowledge and educational practices of

students and teachers are fundamentally determined by people’s

individual and collective embodied processes in order to

make sense of their school-based learning experiences (e.g.,

Shapiro and Stolz, 2019; Nathan, 2021; Macrine and Fugate,

2022). This has led to innovative designs in embodied

learning through educational technology (Papert, 2020;

Abrahamson and Lindgren, 2022), embodiment in AI and

education (Timms, 2016) and embodied conversational

agents (Cassell, 2001) that promote student learning and

intellectual development.

2.2. Growth of multimodal learning
analytics

With the embodiment turn has emerged methods for collecting

and analyzing multimodal data to model embodied interactions

(Worsley and Blikstein, 2018; Abrahamson et al., 2021). These

include data for analyzing gestures (Closser et al., 2021), eye

gaze (Schneider and Pea, 2013; Shvarts and Abrahamson, 2019),

facial expression (Monkaresi et al., 2016; Sinha, 2021), grip

intensity (Laukkonen et al., 2021), and so on, coupled with

traditional statistical methods, qualitative methods, and deep

learning algorithms that model human behavior based on massive

amounts of mouse click and text-based data (e.g., Facebook’s

DeepText, Google’s RankBrain). This shift in research methods

has been enabled by the proliferation of low-cost, high-bandwidth

cameras and sensors that track biometrics, facial, and body

movement that supplement field notes, speech, text chat, and click

log data (Schneider and Radu, 2022).

Work with multimodal data has historically been labor-

intensive and subject to the severely limited processing capacities

of humans that constrain the amount of data under consideration,

its dimensionality, and the cycle time between data collection,

interpretation, and action. This restricted the ability to use

multimodal data to identify latent patterns and inform practitioners

in real time about embodied interactions relevant to on-task and

off-task behavior. Some of the forces that propelled educational

data mining and learning analytics (Aldowah et al., 2019; Baker

and Siemens, 2022) have motivated the creation of more efficient

data analytic tools and algorithms to process massive multimodal

corpora (e.g., An et al., 2019; Järvelä et al., 2019). This is leading

to the emergence of new methodological practices of multimodal

learning analytics and data mining (hereafter MMLA; Blikstein and

Worsley, 2016).

3. Analytic method and evidence: The
disconnect between dAI and human
meaning making

An analysis of the computational architectures of classical

and contemporary AI systems that underly the tools for MMLA

reveals that they are fundamentally incapable of understanding the

meaning of people’s embodied interactions, even as they give the

appearance of mimicking intelligent embodied behavior.

Classical, symbol-based AI systems were designed and

implemented by human programmers to emulate human

intelligence. The arbitrary, amodal, and abstract nature of these

symbol systems was a feature, not a bug, and key to the power

of these computational algorithms to operate consistently and

efficiently, across a wide range of domains. For example, semantic

nets presumably could model any organization of memory (Collins

and Loftus, 1975). Although classical AI systems excelled at the

analytic tasks that are the signature of adult intellect, such as

complicated calculations and hierarchical inference-making, they

were wholly inadequate at performing culturally familiar tasks well

within reach of children, such as balance, face recognition, and
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basic social interactions (e.g., Resnick, 1987) and struggled to be

adaptive in the face of task, environmental, and user variation.

Connectionist architectures arose that addressed many

limitations of classical AI. Often, these drew on parallel and

distributed forms of computation that adapted to training

experiences through the adjustment of strengths of connections

among simple nodes in large networks, mediated by hidden layers

(McClelland et al., 1986; Rumelhart et al., 1988). These systems

excelled at simple pattern learning and prediction, and at many

of the sensorimotor skills that eluded early symbolic AI systems.

Yet these connectionist systems found many symbol analytic

tasks cumbersome. These systems depended heavily on carefully

cultivated training sets and pre-coded sensory inputs for successful

learning, underscoring their disembodied nature.

New approaches arose that exploited high-dimensional spaces

for computing variability and similarity, greatly expanding the

training sets they could accommodate and the complexity of

the associations they could encode (e.g., Burgess and Lund,

1997; Landauer and Dumais, 1997). Thus, attention in AI

development turned to the importance of training experiences and

the sheer number of nodes and inter-nodal connections used by

these systems.

This fueled the current movement to Foundation AI systems

such as BERT, GPT-3, and DALL-E that are built to accommodate

enormous training corpora with massive numbers of internodal

connections (Bommasani et al., 2021). Foundation AI systems are

designed to learn on their own and be adaptive to completely

new, untrained conditions—often in ways that their creators cannot

foresee. For example, GPT-3 is built on 175 billion parameters

trained on 570 Gigabytes of text. GPT-3 can learn to write original

essays, produce computer code, and generate reasonable responses

to novel discourse (not just novel syntactic structures) it has never

been trained on.

Still, these systems are working from disembodied patterns

extracted from the regularities of how words and images occur

in the training datastreams. GPT-3, as a representative example,

“lacks intentions, goals, and the ability to understand cause and

effect” [Percy Liang, Director of Stanford’s Center for Research on

Foundation Models (CRFM), in CRFM, 2021] that naturally come

from human being’s embodied interactions with one’s environment

and other people. Newer language models, such as ChatGPT, are

based on GPT-3 architecture and develop their language generation

and comprehension capabilities through these same basic analytic

methods, coupled with a mechanism of Reinforcement Learning

from Human Feedback (RLHF; Ouyang et al., 2022) from human

labelers. Despite its fascination in the media, RLHF has significant

limitations as noted by the developers (Ouyang et al., 2022).

Its future performance is based on a number of subjective and

untested sources of human bias; specifically: unaccounted for

biases of the human labelers and the researchers who initially

developed the instructions used by the labelers; the prompts

provided by the developers and early users; and that the same

human biases are present in the training and model evaluation

process. Furthermore, foundation models like GPT-3, ChatGPT,

and the like are completely opaque: the creators do not know

how the models will work in new domains and cannot predict

the future interactions of their creations What’s more, in what is

both a profound strength and a serious weakness, architectural and

training decisions made early on influence a system throughout

its lifetime. Thus, when key considerations such as embodiment

are neglected, one cannot simply go back and retrofit changes

(Bommasani et al., 2021).

These issues of disembodiment, opaqueness, and

developmental fixedness all converge to shape a distorted

image of what the educational community should be drawn

to. As Liang notes in a recent webinar (CRFM, 2021), ideally,

“the ethical and social awareness needs to be integrated into the

technological development.” However, the norm for social and

ethical considerations is to follow after the technology is built,

trained, and deployed. Liang laments “At that point I think it’s

too late [Because of emergence and homogenization] some of the

critical decisions have been made already, in a structural way”

(CRFM, 2021).

Despite their enormous computing power, dAI programs for

MMLA are fundamentally incapable of deriving human-centered

meaning from embodied interactions. dAI programs fail along

philosophical grounds to achieve intentionality (Searle, 1980).

Instead, they generate ungrounded models of behavior linked to

high-dimensional statistical regularities of behavior, rather than

the meaningful embodied experiences they purport to model

(Harnad, 1990). They fall short phenomenologically by relying on

mathematical redescriptions that intervene between sensation and

action (Gallagher, 2018). And the symbol structures they generate

to describe human behavior have no cultural or historical bases

(McKinney de Royston et al., 2020). As Barsalou (1999, p. 608)

states, “computers should not be capable of implementing a human

conceptual system, because they do not have the requisite sensory-

motor systems for representing human concepts.”

4. Urgency of the problem of dAI in
educational decision making

A variety of automated detectors have been developed that

use non-invasive methods to classify students’ emotional states,

engagement, and cognitive presence during their participation in

on-line classes (e.g., Baker et al., 2010; Liu et al., 2019, 2023).

The increasing availability of multimodal data has coincided

with growing expectations for computers to deliver data-driven,

real-time directives for education, such as personalized learning

(Walkington, 2013) and assessment, added pressures from a global

pandemic that disrupted standard, in-person learning, and a lack

of oversight or regulation on the access and use of such data by

machines in educational settings (Crawford, 2021). The response

has been a proliferation of dAI-based solutions to traditional

educational problems such as formative and summative assessment

and differentiated curricula using tools, such as 4 Little Trees, that

uses eye gaze, facial expression, and body movement to make

educational decisions and evaluations about student attentiveness

and level of engagement (Chan, 2021; Harper et al., 2022); and

systems such as TalkMoves, that collect recordings of classroom

discourse but ignore students’ non-verbal interactions (Suresh

et al., 2021).

The urgency is that school leaders and classroom teachers

looking to manage their workloads with limited resources see

dAI-based systems as ready-made solutions (e.g., Tyson, 2020).
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However, school leaders and teachers may be ill-informed about the

actual inner workings of dAI systems and the inherent limitations

of these systems to understanding people’s embodied interactions

in the ways that humans understand them, as described in section

2. This needs to change before educational practices become too

dependent on dAI systems without proper considerations of ways

to address these limitations (as outlined in the next section).

The potential risks are that students’ embodied ways of

expressing their reasoning are disregarded, thus providing

impoverished accounts of their engagement and learning; or, that

these non-verbal behaviors are incorrectly classified due to the

limitations and biases built into the dAI systems. In both scenarios,

dAI systems would be given authority over consequential decisions

about students’ educational experiences that can have lifelong

consequences without adequate oversight by educators.

5. Pathways forward

Given dAI limitations, alternatives are needed to manage

the complexities of embodied interactions while still offering

time-sensitive, human-centered interpretations and accountable

decision-making. The emergence of augmented intelligence

systems (AISs; Dubova et al., 2022) in areas such as healthcare

with high-levels of personal interactions (Crigger et al., 2022)

and need for trust ([HLEG-AI] High-Level Expert Group on

Artificial Intelligence, 2019) offer promising avenues for education.

One exemplar is detector-driven interviewing (DDI) methods.

DDIs use dAIs to continually monitor human behavior using

non-invasive methods for cognitive and affective patterns that

signal learning and engagement events of importance to educators

(e.g., frustration detectors), then alert human researchers and

practitioners of these events to trigger personalized attention,

natural human interactions, and customized pedagogical support

(Baker et al., 2021; Ocumpaugh et al., 2021; Hutt et al., 2022).

Successful DDIs in the learning system Betty’s Brain (Leelawong

and Biswas, 2008) demonstrates its ability to improve educational

responsiveness that enhances student engagement and contributes

to scientific models of the cognitive and affective processes that

shape learning.

6. Discussion

The embodiment turn in the Learning Sciences dismantles

accounts of intellectual behavior that equates cognition with

disembodied computation. The rise of MMLA applied to

student education is fueling a quiet movement to accede human

educational decision making to dAI systems. This essay uses

an embodiment framework to argue that autonomous dAI

systems are fundamentally incapable of understanding embodied

interactions the ways that humans understand embodied

interactions due to their disconnect from sensorimotor and

sociocultural interactions with their environments, and therefore

should not be directing consequential educational decisions.

Thus, there is a looming crisis of complexity as dAI systems

fundamentally incapable of understanding embodied interactions

will be enlisted to manage the enormous complexities of the

multimodal models used to describe those embodied interactions

and make consequential educational decisions for students.

Ethical and embodied AI systems seem a long way off. The time

is ripe to invest in alternatives such as augmented intelligence

systems that cultivate the omnipresence and computational

power of dAIs with the embodied meaning making of human

interpreters and decision makers (as illustrated by approaches

such as detector-driven interviewing) as a means to achieve

an appropriate balance between complexity, interpretability,

and accountability for allocating education resources to

our children.
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