
TYPE Original Research

PUBLISHED 17 April 2023

DOI 10.3389/frai.2023.1153083

OPEN ACCESS

EDITED BY

Chirag Patel,

National Cancer Institute at Frederick (NIH),

United States

REVIEWED BY

Prasanth Kumar,

Gujarat University, India

Muktesh Chandra,

Allahabad University, India

*CORRESPONDENCE

Anuja K. Antony

anu@simbiosys.com

SPECIALTY SECTION

This article was submitted to

Medicine and Public Health,

a section of the journal

Frontiers in Artificial Intelligence

RECEIVED 28 January 2023

ACCEPTED 27 March 2023

PUBLISHED 17 April 2023

CITATION

Cook D, Biancalana M, Liadis N,

Lopez Ramos D, Zhang Y, Patel S, Peterson JR,

Pfei�er JR, Cole JA and Antony AK (2023) Next

generation immuno-oncology tumor profiling

using a rapid, non-invasive, computational

biophysics biomarker in early-stage breast

cancer. Front. Artif. Intell. 6:1153083.

doi: 10.3389/frai.2023.1153083

COPYRIGHT

© 2023 Cook, Biancalana, Liadis, Lopez Ramos,

Zhang, Patel, Peterson, Pfei�er, Cole and

Antony. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Next generation
immuno-oncology tumor
profiling using a rapid,
non-invasive, computational
biophysics biomarker in
early-stage breast cancer

Daniel Cook, Matthew Biancalana, Nicole Liadis,

Dorys Lopez Ramos, Yuhan Zhang, Snehal Patel,

Joseph R. Peterson, John R. Pfei�er, John A. Cole and

Anuja K. Antony*

SimBioSys, Inc., Chicago, IL, United States

Background: Immuno-oncology (IO) therapies targeting the PD-1/PD-L1 axis,

such as immune checkpoint inhibitor (ICI) antibodies, have emerged as promising

treatments for early-stage breast cancer (ESBC). Despite immunotherapy’s clinical

significance, the number of benefiting patients remains small, and the therapy

can prompt severe immune-related events. Current pathologic and transcriptomic

predictions of IO response are limited in terms of accuracy and rely on

single-site biopsies, which cannot fully account for tumor heterogeneity. In

addition, transcriptomic analyses are costly and time-consuming. We therefore

constructed a computational biomarker coupling biophysical simulations and

artificial intelligence-based tissue segmentation of dynamic contrast-enhanced

magnetic resonance imaging (DCE-MRIs), enabling IO response prediction across

the entire tumor.

Methods: By analyzing both single-cell andwhole-tissue RNA-seq data fromnon-

IO-treated ESBCpatients, we associated gene expression levels of the PD-1/PD-L1

axis with local tumor biology. PD-L1 expression was then linked to biophysical

features derived from DCE-MRIs to generate spatially- and temporally-resolved

atlases (virtual tumors) of tumor biology, as well as the TumorIO biomarker of

IO response. We quantified TumorIO within patient virtual tumors (n = 63) using

integrative modeling to train and develop a corresponding TumorIO Score.

Results: We validated the TumorIO biomarker and TumorIO Score in a small,

independent cohort of IO-treated patients (n = 17) and correctly predicted

pathologic complete response (pCR) in 15/17 individuals (88.2% accuracy),

comprising 10/12 in triple negative breast cancer (TNBC) and 5/5 in HR+/HER2-

tumors. We applied the TumorIO Score in a virtual clinical trial (n = 292) simulating

ICI administration in an IO-naïve cohort that underwent standard chemotherapy.

Using this approach, we predicted pCR rates of 67.1% for TNBC and 17.9% for

HR+/HER2- tumors with addition of IO therapy; comparing favorably to empiric

pCR rates derived from published trials utilizing ICI in both cancer subtypes.

Conclusion: The TumorIO biomarker and TumorIO Score represent a

next generation approach using integrative biophysical analysis to assess

cancer responsiveness to immunotherapy. This computational biomarker

performs as well as PD-L1 transcript levels in identifying a patient’s
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likelihood of pCR following anti-PD-1 IO therapy. The TumorIO biomarker allows

for rapid IO profiling of tumors and may confer high clinical decision impact to

further enable personalized oncologic care.

KEYWORDS

computational biomarker, ESBC, ICI, immuno-oncology, biophysical simulation, virtual

tumors, virtual clinical trial, immune checkpoint inhibitor

Introduction

Immunotherapy represents the leading edge in targeted

therapeutics in early-stage breast cancer (ESBC), and immune

checkpoint inhibitor (ICI) strategies are rapidly being integrated

into the medical oncologist’s repertoire of therapies (Gennari

et al., 2021; Rizzo et al., 2022). Deployment of immuno-

oncology (IO) treatment in ESBC is gaining momentum, with ICI

antibodies targeting the PD-1/PD-L1 axis (namely pembrolizumab,

nivolumab, and durvalumab) garnering substantial clinical

attention and designation as the standard of care (SOC) within

some cancer subtypes (Nanda et al., 2020; Schmid et al., 2020).

Although ICI has proven to be a powerful therapeutic avenue, only

12.5% of patients overall successfully respond to IO (Haslam and

Prasad, 2019; Haslam et al., 2020). As toxicity and adverse events

from these potent IO agents are non-trivial, predicting patient

response to immunotherapy is a pivotal next step in advancing

precision IO therapies (Savas and Loi, 2020; Magbanua et al., 2022;

Tarantino et al., 2022).

Determining a tumor’s responsiveness to IO prior to

initiating immunotherapy is a significant hurdle for precision IO

implementation in ESBC. The cell surface protein programmed

death ligand 1 (PD-L1) expressed on many cancer cells is a

well-investigated biomarker of tumor responsiveness to ICI

therapies targeting the PD-1/PD-L1 pathway. Frustratingly,

currents methods to assess levels of PD-1/PD-L1 in ESBC are

only marginally prognostic (Vranic et al., 2021; Zhao et al.,

2022), highlighting the complexity of capturing the immune

response and correlating it to the likelihood of IO success.

Immunohistochemistry (IHC), although widely used to assess

PD-L1 pathology, is nevertheless highly variable and dependent

on experimental methodology (Patel and Kurzrock, 2015). An

opportune moment therefore exists for employing innovative

approaches incorporating mathematical modeling (Caballo

et al., 2022; Howard et al., 2022), with the intent to develop

novel biomarkers to determine tumor IO responsiveness, with a

forthcoming need in ESBC (Franzoi et al., 2021).

To date, attempts at IO biomarker development have focused

on single-site biopsy-derived tumor cell surface markers and

tumor genetics. Use of gene microarrays (Bonsang-Kitzis et al.,

2016) and next generation RNA sequencing (RNA-seq) to analyze

the continuously changing cellular transcriptome has emerged

to attempt to capture the dynamic patient immune response in

ESBC (Iwase et al., 2021; Saltman et al., 2022; Seitz et al., 2022).

Despite RNA-seq’s enriched capacity, transcriptomic properties

from a focal region may not accurately reflect the overall

transcriptional behavior of the tumor, or the complexity of the

dynamic immune tumor microenvironment (TME). Biopsy-driven

approaches to tumor IO response characterization rely on single-

site analyses or employ cell-line derived organoids (Scognamiglio

et al., 2019). Both methods are fundamentally limited by the

inherently heterogeneous nature of tumors, which feature regions

bearing multiple genetic lineages. Additionally, such methods fail

to accurately account for the influence of tumor spatial positioning,

morphology, and blood supply.

Given these limitations, innovative approaches to biomarker

development, which allow for spatial profiling of the entire

tumor, are warranted. Ideally, such methods would be non-

invasive, prognostic before IO therapy implementation, accurate in

pathologic complete response (pCR) prediction, and rival current

time-intensive and costly approaches. The pronounced lag in

integrating both genomic and transcriptomic testing into the

cancer treatment pipeline (Schilsky and Longo, 2022) argues for

mathematical approaches that seamlessly combine SOC patient

data and therapy response analysis.

We address these conventional biomarker pitfalls by employing

and integrating validated biophysics-based computational biology

methods (Howard et al., 2022) in order to predict IO therapy

response. We have previously demonstrated that our technology’s

data predictions match with radiologist-verified assessment. The

Simul-omics 4D Engine links dynamic contrast enhanced magnetic

resonance imaging (DCE-MRI) to in vivo tumor behavior, thus

alleviating the burden of information derived from a tissue-

based biopsy. Simulations performed through the platform take

<2 h to run, bypassing lengthy turnaround times inherent

to other tissue-based methods. We describe an IO response

biomarker termed TumorIO that is derived from an in silico

training methodology, taking advantage of mathematical modeling

strategies to characterize in vivo tumor activity (Figure 1).

We assembled two companion gene lists corresponding

to essential tumorigenic features, reflecting angiogenesis and

metabolic activity. Both of these processes are critical aspects of

the “hallmarks of cancer” (Hanahan and Weinberg, 2000, 2011;

Hanahan, 2022) and thus impact key tumorigenic pathways.

Using transcriptomic profiles derived from IO-naïve ESBC

patients, we constructed biophysical signatures reflecting the

underlying biological processes of these pathways. Virtual tumors

recapitulating spatial biophysical features of angiogenesis and

metabolic activity across time were then used to correlate PD-L1

transcriptional levels to spatial biophysical features derived from

patient DCE-MRIs. Together, these features of the virtual tumors

were used to generate the biophysics and imaging-dynamics-based

TumorIO biomarker. We subsequently identify tumor-specific

features that correlate with ICI response by training against
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FIGURE 1

Development of the TumorIO biomarker, as well as the design and implementation of the TumorIO Score predicting response to IO therapy. (A) The

TumorIO biomarker was developed using non-IO-treated (and pre-IO-treated) patients from the I-SPY1 and I-SPY2 clinical trials, as well as single cell

RNA-sequencing data. Transcriptomic gene expression signatures of cancer hallmarks were used to quantify metabolic activity and angiogenesis

within single cells. These signatures were then correlated with PD-L1 expression to quantify the relationship between PD-L1 expression and tumor

metabolic activity and angiogenesis. Subsequently, metabolic activity and angiogenesis were quantified within patient tumors based on biophysical

modeling of DCE-MRI image series to generate spatially resolved probability maps of PD-L1 expression within individual patient tumors. (B) The

TumorIO biomarker was implemented using IO-treated patients from the I-SPY2 clinical trial to develop the TumorIO Score associated with likelihood

of pCR in response to IO therapy. The TumorIO Score was then validated in an independent set of patients and through a virtual clinical trial.

publicly-available datasets containing paired transcriptomics and

DCE-MRIs. We additionally computed a TumorIO Score to

indicate the relative likelihood of pCR in response to ICI therapy.

Together, the TumorIO biomarker and its corresponding Score

reflect a next generation biophysical approach to accurately predict

pCR to IO therapy.

Methods

Overview of study design

This analysis proceeded in two stages: (1). TumorIO biomarker

design, and (2). TumorIO Score implementation.

In the design stage of the study, we analyzed publicly-

available single-cell RNA sequencing (scRNA-seq) data from ER+
and triple negative breast cancer (TNBC) tumors to identify

transcriptomics-based biological features associated with PD-L1

expression (Figure 1A). We used scRNA-seq data to quantify

PD-L1 expression heterogeneity across individual tumors. We

then correlated single cell PD-L1 expression with transcriptional

biomarkers related to metabolic activity (Supplementary Figures 1,

2) and angiogenesis (Supplementary Figure 3). PD-L1 expression

throughout the tumor cannot be visualized using SOC imaging;

therefore, as a surrogate for spatially-resolved PD-L1 expression, we

simulated and quantified the spatial distribution of both metabolic

activity and angiogenesis within individual patient tumors and the

TME using the Simul-omics 4D Engine (Howard et al., 2022). This

analysis resulted in a spatial map of biological features correlated

with PD-L1 expression probability, which together underly the

TumorIO spatial biomarker.

In the implementation stage of the study, we initially

assessed processes enabling cancer cells to direct blood vessel

generation and funnel local metabolic pathways to feeding

tumor growth, both of which are core metabolic features

of cancer establishment and progression. These “hallmarks of

cancer” (Hanahan and Weinberg, 2000, 2011; Hanahan, 2022)

impact essential tumorigenic pathways. We assembled two
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companion gene lists corresponding to these features, reflecting

angiogenesis and metabolic activity. We initially quantified the

spatial distributions of these two gene expression signatures within

each tumor prior to IO therapy. We then computed summary

features associated with these spatial maps and implemented a

linear model on these summary features along with a threshold

using a training data set to generate a TumorIO Score associated

with pCR in response to IO therapy. We validated the TumorIO

Score in an independent cohort of patients treated with IO and via

a virtual clinical trial simulating IO administration (Figure 1B).

Gene expression data retrieval and data
normalization

Gene expression microarray data from breast cancer patients

participating in the I-SPY1 (n= 221) and I-SPY2 (n= 972) clinical

trials were downloaded from the gene expression omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo; accession codes: GSE25055,

GSE22226, GSE181574, GSE149322, GSE173839, GSE180962,

and GSE194040).

For comparison with single cell data, microarray data were

quantile-normalized to pseudo-TPM by scaling expression values

for each gene to quantile-match RNA-seq data from the Cancer

Genome Atlas Breast Cancer dataset (TCGA BRCA, https://

www.cancer.gov/tcga; Koboldt et al., 2012). Pseudo-TPM was

utilized solely for discovery to identify biologic features to be

employed. Pseudo-TPM did not govern any of the results and was

not incorporated into other aspects of the methodology. Linear

regression was employed to avoid overfitting that may have resulted

from alternative methods. Briefly, for each gene, log-transformed

expression values were scaled such that the upper 90% quantile and

the 0% quantile-matched the corresponding gene expression data

from TCGA BRCA.

Datasets corresponding to scRNA-seq of ER+ and

TNBC tumors were downloaded from the GEO (accession

code: GSE161529). The data were analyzed without

further normalization.

Defining and calculating gene expression
signatures with RNA-seq data

Metabolic activity and angiogenesis gene expression scores

were calculated from curated gene expression signatures

(Supplementary Figures 1–3). For each signature, the expression

score was calculated as the weighted sum of the log-transformed

expression levels of genes with positive weights minus the weighted

sum of the log-transformed expression levels of genes with negative

weights, as follows:

Expression score =

∑

wi>0 (wiEi)
∑

wi>0 (wi)
−

∑

wi<0 (wiEi)
∑

wi<0 (wi)

where wi is the weight of each gene in the expression signature

and Ei is the expression level of the associated gene, in units of

log10(TPM + 1). TPM is the transcripts per million reads derived

from next generation sequencing (Zhao et al., 2020).

For the metabolic activity score, two individual scores were

summed: the primary metabolic activity score and the secondary

metabolic activity score. Supplementary Figures 1–3 present the

signature genes and expression levels corresponding to primary

metabolism, secondary metabolism, and angiogenesis, respectively.

Pairwise correlations between PD-L1 expression levels and (a)

the metabolic activity signature or (b) the angiogenesis signatures

across single cells were calculated using Pearson correlation.

DCE-MRI imaging retrieval

Baseline DCE-MRIs for breast cancer patients participating in

the I-SPY1 (n = 221) and I-SPY2 (n = 972) clinical trials were

additionally downloaded from TCIA.

Biophysical simulation of virtual tumors
from DCE-MRI imaging series

Virtual tumors were created from DCE-MRIs using the Simul-

omics 4D Engine biophysical modeling platform (Howard et al.,

2022). This platform uses artificial intelligence in the form of a

convolutional neural network (CNN) to segment patient DCE-

MRIs into regions corresponding to tumor, vasculature, and

surrounding tissue automatically (followed by manual review;

Figure 2). Following segmentation, the biophysical modeling

platform uses these patient-specific virtual tumors coupled with

biophysical analysis to calculate spatial maps of blood flow within

and around a tumor, spatially-resolved delivery of nutrients to

the tumor and surrounding tissue, and spatially-resolved atlases

of tumor biology in 3D across the tumor volume. These atlases

are then simulated forward in time to create spatially- and

temporally-resolved predictions of tumor growth, tumor death in

response to neoadjuvant chemotherapy, and subsequent likelihood

of clinical pCR (Howard et al., 2022). The Simul-omics 4D

Engine is ideal for designing spatial biomarkers because it allows

for an individual’s unique tumor biology to be simulated and

interrogated in both space and time—an approach we have

previously described and validated (predicting tumor response to

neoadjuvant chemotherapy) with high rates of predictive accuracy

(Howard et al., 2022).

Developing a linear model to predict
pathologic complete response in patients
treated with chemotherapy plus
immunotherapy

Biophysical simulations were performed on DCE-MRIs

from I-SPY2 patients (n = 63) treated with pembrolizumab

immunotherapy plus paclitaxel chemotherapy (see Table 1). The

results of these simulations were used to compute metabolic

activity and angiogenesis maps of each tumor and its TME.

Summary features were then calculated from these maps.

For each cancer subtype (ER+ and TNBC), the summary

features were then used to train a subtype-specific linear regression
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FIGURE 2

Automatic image segmentation of breast DCE-MRIs performed by artificial intelligence. The segmentation model uses a convolutional neural

network (CNN) to identify and segment tissues based on multiple DCE-MRI slices (left). The tissue categories of the segmentation are: air (black),

chest (yellow), skin (blue), fat (brown), gland (purple), vasculature (red), and tumor (green), shown at center. The median intensity projection across all

segmented layers is shown at right.

TABLE 1 Patient characteristics for data used in this work.

Training Validation Virtual trial

Age∗ 50 (27–71) 44 (32–69) 49 (23–85)

Race

Caucasian 79.4% 23.5% 61.3%

African Am. 9.5% 11.8% 28.8%

Other 11.1% 64.7% 9.9%

Subtype

HR+/HER2- 57.1% 29.4% 45.9%

TNBC 42.9% 70.6% 54.1%

T-stage

T1 3.2% 0% 7.5%

T2 39.7% 52.9% 54.5%

T3 39.7% 35.3% 29.1%

T4 17.4% 0% 2.8%

Unknown 0% 35.3% 6.1%

Total no. of tumors 63 17 292

∗Age is given as median (range).

model that outputs a TumorIO Score associated with likelihood of

pCR, according to the following equation:

TumorIO Score = a1×
(

metabolic activity
)

+ a2×(angiogenesis)+ b

where a1, a2, and b are trained parameters.

Orthogonal validation in independent
cohort

We validated the prognostic capability of the biophysical

TumorIO Score in an independent cohort of patients (n = 17 of

141, University of Chicago Hospitals) who received an ICI-based

immunotherapy regimen (pembrolizumab) in addition to SOC

chemotherapy (paclitaxel) (see Table 1).

Virtual clinical trial

A large cohort of patients (n = 292) were selected from the

SimBioSys Virtual TumorBank (Howard et al., 2022), a databank

of virtualized tumors (digital twins) generated using de-identified

data from publicly-available datasets or private institution datasets

under shared-use agreements (see Table 1). These data were used to

perform a virtual clinical trial to assess the frequency with which

TumorIO predicts immunotherapy response. The treatment arm

of the trial was generated by calculating an TumorIO Score for

each patient. The rates of pCR under IO treatment were then

estimated by comparing the TumorIO Score for each patient to a

threshold value calculated from the training dataset (I-SPY2 IO-

treated patients). We used published trial data as the “control arm”

for comparison.

Statistical analyses

Computational model development, subsequent biomarker

generation, and statistical analyses were performed in Python

(Michel et al., 2011), Spyder (Raybaut, 2009), and R and R Studio

(RStudio Team, 2020). Linear regression models were computed

using the scikit learn package in Python (Michel et al., 2011).

Odds ratios of predicted response to IO plus chemotherapy

were calculated as follows, with 95% confidence intervals calculated

using the following formulas:

Clinical

pCR

Clinical residual

disease

Predicted pCR TP FP

Predicted residual

disease

FN TN

where TP is true positive, FP is false positive, FN is false negative,

and TN is true negative. The odds ratio is therefore defined as:

Odds ratio =
TP × TN

FP × FN
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The following formulas were used to calculate a confidence

interval (CI) for the odds ratio:

Lower 95% CI = eln(OR) − 1.96
√

(TP−1 + FP−1 + FN−1 + TN−1)

Upper 95% CI = eln(OR) + 1.96
√

(TP−1 + FP−1 + FN−1 + TN−1)

In the virtual clinical trial, response rates in

the general population were calculated according to

the equation below, with 95% confidence intervals

calculated using the Clopper-Pearson exact method

from the scikit-learn package in Python (Michel et al.,

2011).

Observed response rate =
# observed pCR

total sample size

Predicted response rate =
# predicted pCR

total sample size

Results

Using gene expression analysis to identify
biological features associated with PD-L1
expression

We quantified PD-L1 transcript level in bulk RNA-seq data

across a total of 972 patients from the I-SPY2 trial, and we observed

a wide range of PD-L1 expression both within and across cancer

subtypes (Figures 3A, B). We additionally used transcriptomic data

from single breast cancer cells (scRNA-seq) to quantify PDL1

expression across single cells within individual tumors (Figure 3A).

We found that the fraction of cells within tumors expressing PD-L1

(Figures 3C, E) and the expression level of PD-L1 in the individual

cells expressing PD-L1 (Figures 3D, F) are both highly variable. For

instance, within a single patient, 40% of cells express PD-L1 with

detectable levels (TPM > 1), and were therefore considered to be

positive for PD-L1. Of those cells, the expression level of PD-L1

varied by >2 orders of magnitude. This degree of wide variability

was apparent in both HR+ and TNBC tumors.

We hypothesized that the state of the TME was associated with

PD-L1 expression. We therefore correlated PD-L1 transcript levels

across single cells with gene expression signatures of metabolic

activity and angiogenesis (Figure 4). Within both TNBC tumors

(Figures 4A, B—reflecting 1,886 TNBC cells derived from eight

patients) and ER+ tumors (Figures 4C, D—reflecting 1,492 cells

derived from nine patients), we found that PD-L1 expression

was negatively correlated with metabolic activity and positively

correlated with angiogenesis. We assessed the correlation between

PD-L1 expression and the presence of these features using single

cell RNA-seq. The following correlations with PD-L1 in TNBC cells

were determined: angiogenesis (r = 0.24, p = 0.08) and metabolic

activity (r = −0.29, p = 0.035). The following correlations with

PD-L1 in HR+ cells were determined: angiogenesis (r = 0.17, p =
0.32) and metabolic activity (r = −0.32, p = 0.06). Although these

correlations were modest, they were deemed of sufficient utility to

warrant further investigation.

Designing a biophysical signature
associated with PD-L1 expression
probability

The correlation of the metabolic activity and angiogenesis

gene expression signatures with PD-L1 expression provide insight

into localized tumor biology, but these data do not address

the challenge of quantifying intra-tumor PD-L1 heterogeneity

resulting from distinct TMEs. We therefore designed biophysical

signatures of PD-L1 expression in TNBC and HR+/HER2-

tumors that can be used to create a probability map of PD-

L1 expression from DCE-MRI imaging data within and across

individual patient tumors.

We performed in silico simulations of 63 patients tumors

treated with ICI plus chemotherapy using the Simul-omics 4D

Engine (for details, see Methods). These simulations allow for in

silico characterization of each patients’ tumor in 3D, including

characterization of metabolism, blood flow, nutrient delivery,

physical forces in and around the tumor, and tumor cell growth

rate. We took advantage of the finding that PD-L1 correlates

with signatures of metabolic activity and angiogenesis at a single-

cell scale (Figure 4) when designing our biophysics-based PD-L1

expression probability maps, as follows: Within our biophysical

simulations, we identified a signature of metabolic activity related

to in vivo glucose use by the tumor that directly influences

tumor growth behavior. The Simul-omics 4D Engine can assess

this glucose use by the virtual tumor at MRI resolution using

a combination of reaction-diffusion kinetics and systems biology

models. Areas of the tumor with low glucose use (below a

specific threshold) lead to a predominantly slow-growing or non-

growing phenotype, while areas of the tumor with high glucose use

(above a threshold) lead to a predominantly rapidly proliferating

phenotype. We therefore designed a spatially-resolved, biophysics-

based tumor metabolic activity signature in HR+ and TNBC

tumors that is zero for all cells with glucose use below threshold,

allowing for significant growth that can be modulated by changes

in nutrient availability.

We next developed a biophysics-based spatial signature

of angiogenesis within patient tumors. As opposed to the

metabolic activity signature that interrogated the tumor directly,

we investigated angiogenesis in the TME by examining the

vasculature in the localized area surrounding the tumor. Some

of the first steps in angiogenesis involve weakening of the blood

vessel walls, migration of endothelial cells, and a corresponding

increase in vascular leakiness (Eelen et al., 2020). Vascular

leakiness is simulated directly by the Simul-omics 4D Engine,

and we therefore used the Simul-omics platform to generate

maps of vascular leakiness within blood vessels surrounding

the tumor.

Taken together, this spatial probability mapping can be thought

of as taking the prognostic potential of a PD-L1 biomarker

from a single biopsy site and expanding it to cover the entire

tumor volume (a probability-based spatial map of biophysical

features associated with PD-L1 biology; Figure 5, middle-right).

We designed summary features based on the spatial variability

of these maps for use in prognostic modeling. We used the

spatially-resolved metabolic activity map to calculate tumor-wide
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FIGURE 3

PD-L1 heterogeneity across and within ESBC tumors. (A) Schematic of experimental approach depicting use of both scRNA-seq and whole-tumor

bulk RNA-seq. (B) PD-L1 expression levels in bulk RNA-seq from 972 ESBC patients from the I-SPY2 trial. (C) Fraction of cells expressing PD-L1 in

TNBC tumor cells, as judged by scRNA-seq from eight patients. (D) PD-L1 expression levels within single cells across TNBC tumors. (E) Fraction of

cells expressing PD-L1 in HR+/HER2- tumors, as judged by scRNA-seq from nine patients. (F) PD-L1 expression levels across HR+/HER2- tumors. In

(C–F), individual patients with no representative data indicate that no PD-L1+ cells were detected in these samples (i.e., HR+/HER2- patient 2, TNBC

patient 2, and TNBC patient 6).
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FIGURE 4

Gene expression signatures associated with PD-L1 expression in single breast cancer cells. (A) Levels of the angiogenesis signature across 1,886 cells

derived from eight TNBC patients vs. PD-L1 expression, showing an association between angiogenesis and PD-L1 levels. (B) Levels of the metabolic

activity signature across these TNBC cells vs. PD-L1 expression, showing an association between metabolic activity and PD-L1 levels. (C) Levels of

the angiogenesis signature across 1,492 cells derived from 9 HR+/HER2- patients vs. PD-L1 expression. (D) Levels of the metabolic activity signature

across these HR+/HER2- cells vs. PD-L1 expression.

biophysical metabolic activity by calculating the fraction of the

tumor with spatial metabolic activity >0 (i.e., the fraction of

the tumor with enough nutrients to support cell growth). In

practice, this metabolic activity signature is directly related to

the Metabolic Tumor Volume (MTV) commonly measured in

PET scans, which reflects the metabolically active volume of

the tumor.

For angiogenesis, 3D vascular leakiness maps were used

to determine the fraction of vasculature in the TME actively

involved in angiogenesis. We calculated the fraction of vasculature

within the TME with leakiness greater 90% of the maximal

possible leakiness (estimated across a sampling of patients from

the I-SPY2 dataset). This fraction gives the relative amount of

vasculature directly involved in angiogenesis surrounding each

patient’s tumor.

Developing a TumorIO Score based on
biophysics to predict pathologic complete
response following immunotherapy

We used publicly-available DCE-MRIs of patients treated with

immunotherapy (pembrolizumab) and chemotherapy (paclitaxel)

from the I-SPY2 trial (n = 63) and the biophysical summary

features described above (metabolic activity and angiogenesis)

to train a linear regression model predicting an TumorIO Score

associated with a patient’s likelihood of pCR in response to IO

therapy. We selected a threshold based on these 63 patients to

predict pCR as a binary readout (either pCR or residual disease)

to better compare with clinical practice (for example, with an odds

ratio, see Figure 6).
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FIGURE 5

TNBC patient tumors from the validation cohort demonstrate the distribution of the TumorIO biomarker and utility of the TumorIO Score in

predicting pCR in response to ICI therapy. The general workflow entails analysis of patient DCE-MRIs in order to generate virtual tumors. Spatial maps

of TumorIO (reflecting metabolic activity and angiogenesis) show areas of the tumor and TME contributing to the TumorIO Score. The DCE-MRI

dataset and resulting virtualized tumor are shown (left and middle-left). The heatmap (middle-right) ranges from red to blue, representing a high to

low gradient of the TumorIO biomarker within each tumor. These features are inversely correlated to the IO sensitivity of a tumor. In patient 6, low

metabolic activity and areas of high angiogenesis contribute to a high TumorIO Score (right) and a correct prediction of pCR. In contrast, in patient 9,

high metabolic activity and relatively few areas of angiogenesis contribute to a low TumorIO Score and a correct prediction of residual disease (right).

FIGURE 6

TumorIO analysis shows comparable e�cacy to PD-L1

transcriptomics. Odds ratios of PD-L1 transcriptional levels, in

comparison to the TumorIO Score, when predicting pCR in

response to ICI therapy.

Comparing the prognostic power the
TumorIO Score to transcriptomic-based
PD-L1 expression

Using the 63 patients treated with IO in the I-SPY2 clinical

trial, we found that for both TNBC tumors and HR+/HER2-

tumors, the TumorIO Score was able to predict pCR with

the same level of prognostic value as PD-L1 expression,

as determined from transcriptomic analysis (overlapping 95%

confidence intervals; Figure 6). Although these data hint at a

TABLE 2 Prediction of pCR in HR+/HER2- tumors (5/5 correct).

TumorIO

Score

pCR
prediction

True pCR
call

Patient 1 0.401 pCR pCR

Patient 2 −1.060 Residual Residual

Patient 3 0.713 pCR pCR

Patient 4 0.255 Residual Residual

Patient 5 −0.139 Residual Residual

potentially stronger prognostic power of the TumorIO Score

over PD-L1, the small number of patients in this cohort make

potential differences statistically indiscernible. Further analysis

with larger patient cohorts will therefore be needed to refine

this analysis.

Validating the biophysical immune score in
an independent patient population

We further validated the prognostic capability of the

biophysical TumorIO Score in an independent population

of patients (n = 141 total patients in cohort) from the

University of Chicago Hospitals. Of these 141, 17 patients

received an immunotherapy regimen (pembrolizumab) in

addition to SOC chemotherapy (paclitaxel). The biophysical

TumorIO Score correctly predicted pCR in 88.2% of the

validation set (10/12 in TNBC and 5/5 in HR+/HER2-

tumors; see Table 2 for HR+/HER2- and Table 3 for

TNBC patients).
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TABLE 3 Prediction of pCR in TNBC tumors (10/12 correct).

TumorIO

Score

pCR
prediction

True pCR
call

Patient 1 0.625 pCR pCR

Patient 2 0.621 pCR pCR

Patient 3 1.001 pCR pCR

Patient 4 0.681 pCR Residual

Patient 5 0.996 pCR pCR

Patient 6 0.809 pCR pCR

Patient 7 0.727 pCR pCR

Patient 8 1.085 pCR pCR

Patient 9 0.495 Residual Residual

Patient 10 0.496 Residual Residual

Patient 11 0.491 Residual pCR

Patient 12 0.661 pCR pCR

TABLE 4 Virtual clinical trial results using the Virtual TumorBank. Known

pCR rates from chemotherapy alone vs. predicted pCR rates from

chemotherapy plus pembrolizumab therapy, demonstrating an increase

in response produced by immunotherapy.

Number of
tumors

Chemo pCR
rate

Chemo +
IO pCR rate

HR+/HER2- 134 9.0% (4.7–15.1) 17.9% (11.8–25.5)

TNBC 158 38.6% (31.0–46.7) 67.1% (59.2–74.3)

Performing secondary validation in a virtual
clinical trial

Given IO’s recent presence in clinical trials, limited long-

term data for IO-treated ESBC patients is available, and trial

sponsors have been reluctant to share data on patient responses

to ICI. Therefore, we performed a novel method of secondary

validation by executing a virtual clinical trial using a large cohort

of immunotherapy-naïve HR+/HER2- and TNBC patients (n =
292 virtualized tumors originating frommultiple institutions) using

the SimBioSys Virtual TumorBank (Howard et al., 2022). After

simulating IO administration and determining IO response using

the TumorIO Score, we predicted pCR rates of 67.1% for TNBC and

17.9% for HR+/HER2- tumors with the addition of IO therapy to a

standard chemotherapy background (Table 4).

Discussion

We demonstrate a novel method for biomarker development

which integrates validated computational biology mathematical

modeling strategies to design a biophysics-based signature of

immunotherapy (ICI) responsiveness, specifically to blockade

of the PD-1/PD-L1 axis. Predicated on dynamic imaging and

perfusion kinetic-based features, this biophysics-based approach

offers a powerful new strategy for non-invasively predicting tumor

IO responsiveness and selecting patients for ICI therapy, conveying

actionable guidance around predicted treatment response.

Utilizing the TumorIO Score, we correctly predicted pCR

in 15 of 17 individuals in the independent validation cohort

(88.2% accuracy, comprising 10/12 in TNBC and 5/5 in

HR+/HER2-). Although promising, given the small sample size

of our independent cohort, we developed an additional method

to orthogonally validate the TumorIO biomarker utilizing a virtual

clinical trial. Here, IO administration was simulated in an IO-naïve

cohort, and pCR rates from the virtual trial were compared with

published trials. Our virtual clinical trial approach predicted pCR

rates of 67.1% for TNBC and 17.9% for HR+/HER2- tumors for IO

therapy in the presence of a standard chemotherapy background.

These predicted virtual trial pCR rates compare favorably to

published rates from clinical trials utilizing IO in both cancer

subtypes. The pCR rate in the I-SPY2 trial with pembrolizumab and

SOC chemotherapy was 60% in TNBC and 30% in HR+/HER2-

cancers (Nanda et al., 2020), while the GIADA trial demonstrated

a pCR rate of 16.3% in IO-treated HR+/HER2- patients (Franzoi

et al., 2021; Dieci et al., 2022). The success of this validation strategy

supports the potential for expansion of virtual clinical trials in

both research and drug development applications (Howard et al.,

2022). Additionally, this result signals the potential of the TumorIO

Score to accurately predict ICI responsiveness and provide a strong

correlation to randomized control trials.

The TumorIO biomarker’s composition of biophysical traits

associated with angiogenesis and metabolic activity highlights that

the nutrient microenvironment of a tumor is closely related to

its response to ICI therapy. There is precedence for our findings

that a tumor’s ability to access and utilize nutrients is correlated

(inversely) with IO response. For instance, 18F-fluorodeoxyglucose

positron emission tomography/computed tomography (F-FDG

PET/CT) data provide direct insight in metabolic activity of

tumors. The FDG glucose-based tracer non-invasively measures

glycolytic metabolism that presents a “metabolic signature”

reflecting a tumor’s overall energy consumption, in a conceptually

similar manner to TumorIO. Recent F-FDG PET/CT studies

suggest a negative correlation between baseline metabolic activity

and ICI monotherapy response (Hindié, 2020; Lang et al., 2020),

although the underlying etiology for this finding has been elusive

in the radiology literature. Importantly, these data closely parallel

our finding of low nutrient availability in tumors with strong

ICI response. This correspondence suggests that the biology

underlying the association between low metabolic activity and ICI

responsiveness is fundamentally linked: nutrient deficits lead to

high tumor PD-L1 spatial coverage across the tumor volume and,

therefore, a priming of the TME for ICI responsiveness.

Our spatial simulations assess glucose delivery and uptake

indirectly, using a combination of reaction/diffusion equations,

pharmacokinetic/pharmacodynamic (PK/PD) modeling, and

tumor morphology modeling, to characterize glucose delivery

within the tumor and the tumor’s resulting biological responses.

This approach is analogous to the ability of F-FDG PET/CT to

quantify glucose delivery to and uptake by the tumor, indicating

the metabolically active regions of the tumor. Lowmetabolic tumor

volume (MTV) values are associated with better response to ICI

in lung cancer (Liao et al., 2022), bladder cancer (Girard et al.,

2020), and metastatic melanoma (Flaus et al., 2021). Our data
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FIGURE 7

Schematic of factors contributing to tumor IO-sensitivity (left) and IO-insensitivity (right) both within tumors and within the local tumor

microenvironment. These factors include degrees of nutrient delivery, T cell dormancy, T cell proliferation, and levels of exhaustion in local T cell

populations.

demonstrate a similar association in breast cancer, whereby low

MTV, and therefore high TumorIO Score, is associated with strong

response to immune checkpoint blockade.

These findings suggest a biological mechanism for response

to ICI therapies that fits well within the larger body of T

cell immuno-biology (Figure 7). In response to low nutrient

availability (i.e., glucose), tumors up-regulate immune evasion

genes (including PD-L1; Cha et al., 2019). Tumor infiltrating

lymphocytes (TILs) and resident memory T cells (TRMs) in these

regions are thereby inhibited (and remain non-exhausted) by the

local microenvironment of the tumor. The presence of TRMs,

particularly, is a strong predictor of IO response (Loi et al., 2014,

2019, 2022), and under low nutrient availability, these immune cells

remain primed for potential activation via a co-stimulatory signal.

When inhibitory interactions (e.g., PD-1/PD-L1) are removed

through use of ICI therapies, these non-exhausted, activated T

cells rapidly expand, producing an immune response facilitating

elimination of the tumor.

Visualization of the TumorIO biomarker in 3D allowed

us to identify local “hot spots” in IO-responsive tumors that

corresponded with strong IO response (Figure 4, middle-right).

Our biophysical maps of PD-L1 probability across the tumor

volume indicate that the entirety of a tumor does not need to be

PD-L1-high (or otherwise immune-responsive) to produce pCR.

Instead, if a threshold mass of tumor is sensitive to IO, the whole

tumor can be killed effectively. We hypothesize that the “hot spots”

on these spatial maps of IO responsiveness may correspond to

biological features intimately connected to the immune response to

ICI. Previous research has implicated tertiary lymphoid structures

(TLS) as critical organizing sites for immunotherapy response

(Cabrita et al., 2020; Helmink et al., 2020; Vanhersecke et al., 2021;

Italiano et al., 2022), featuring high immune cell density and a

particular abundance of B cells in addition to cytotoxic T cells

(Goc et al., 2014; Petitprez et al., 2020). The relative number of

TLS within a tumor and/or its local microenvironment correlates

with enhanced tumor death and improved patient survival (Sautès-

Fridman et al., 2019). These computational biophysical maps may

reflect these or related structural linkages between critical sites of

immune cell density and functional immune response that lead to

improved patient outcomes.

We present an overarching flow diagram connecting the

observed features of IO-responsive tumors, as well as tumors

that are resistant to IO therapy (Figure 7). This IO response

model unifies many observed features of IO-responding and non-

responding tumors. The model argues that tumors with slower

overall growth rates and with an abundance of non-exhausted,

PD-1-expressing T cells are most likely to respond to IO therapy

(Baldominos et al., 2022). In fast growing tumors or those with

limited T-cell infiltration, we speculate that treatment with anti-

angiogenesis (anti-VEGF) agents may serve to prime these tumors

to IO therapy and enhance IO responsiveness (Zalcman et al., 2016;

Boucher et al., 2021; Fennell et al., 2022).

Next generation biomarkers derived from computational

modeling offer a sophisticated, technology-based method to select

patients best suited to IO therapy and afford insights into the

underlying biologic drivers of tumor resistance and sensitivity to

therapy. In the absence of discerning biomarkers, the healthcare

cost burden due to unmitigated ICI usage is considerable.

Targeting the PD-1/PD-L1 axis carries numerous secondary effects,

particularly the potential for immune-related adverse events

including sepsis, pneumonitis, and need for hospitalization. As

a large subset of patients are unlikely to benefit from ICI, the

morbidity-related costs to the healthcare system compound the

already costly nature of IO.
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The prognostic power of the biophysical simulation approach

presented in this study highlights the capabilities of patient-

specific biophysics-based signatures in predicting pCR and defining

optimal therapy courses. The utility of these signatures, however,

extends far beyond immunotherapies. Because these simulations

are predicated onmathematical descriptions of tumor biology, they

can be used to interrogate fundamental biological relationships

within tumors and to predict individual patient responses to both

SOC and novel regimens.

Limitations

The primary limitation in this study is the small number of

patients available for orthogonal validation in an independent

cohort; thus, an additional validation strategy encompassing

a virtual clinical trial was included. Despite immunotherapy

becoming SOC in ESBC, alongside an ever-expanding cohort of

IO therapies, there is a dearth of publicly-available empirical

data. It is possible that with incorporation of additional patient

datasets, accuracy may vary, and we are actively seeking additional

independent datasets incorporating IO therapy to further validate

the biomarker. In future, we anticipate further efforts will be

needed on the part of our group and others for protocol

standardization and validation efforts for expansion of next

generation immuno-oncology tumor profiling into the clinical

setting. Additionally, we have begun preliminary studies to

explore how more comprehensive profiling of tumor behavior

could lead to enhanced prognostic power. Data from more

IO trials, however, will be necessary to fully validate these IO

response signatures.

Conclusions

We present a novel method of biomarker development

predicated on biophysics-based modeling and validate its use,

advancing personalized medicine initiatives. This strategy offers

compelling advantages to traditional IHC assays as a non-

invasive method of assessing IO-sensitivity. The TumorIO Score

overcomes many of the limitations caused by the invasive,

costly, and time-consuming nature of transcriptomic data

acquisition and inability of single-site biopsies to account

for tumor heterogeneity or the complexity of the immune

response to ICI. Although further validation would be needed

prior to implementation of this biomarker in clinical practice.

Extensions of this underlying technology include future biomarker

development in emerging oncology research areas, development

of novel pharmaceuticals, as well as further investigations of

underlying biological interactions responsible for tumor growth

and destruction.

Data availability statement

The original datasets presented in this study are available

through a shared-use agreement with the partnering institution

and have not yet been made available for public distribution.

Requests to access the datasets should be directed to DC,

daniel@simbiosys.com. The existing datasets analyzed as part of

the study can be found in online repositories. The names of the

repository/repositories and accession number(s) can be found in

the article/Supplementary material.

Ethics statement

Ethical approval was not required for the study involving

human data in accordance with the local legislation and

institutional requirements.Written informed consent to participate

in this study was not required in accordance with the national

legislation and the institutional requirements.

Author contributions

DC, NL, YZ, SP, JPe, JPf, JC, and AA: conceptualization.

DC, YZ, SP, JPe, JPf, JC, and AA: methodology. DC: validation,

formal analysis, and investigation. NL, YZ, SP, JPe, JPf, JC,

and AA: resources. DC, MB, and AA: writing—original draft

preparation. DC, MB, DL, SP, and AA: writing—review and

editing. DC, MB, and DL: visualization. SP, JPe, JPf, JC, and

AA: supervision. AA: acts as the guarantor of the study.

All authors have read and agreed to the published version

of the manuscript, confirm that they had full access to all

the data in the study, and accept responsibility to submit

for publication.

Acknowledgments

The authors acknowledge Greg Norris for his assistance with

the manuscript during research and development.

Conflict of interest

All authors are employed by SimBioSys, Inc. and are involved

in the commercial development of the Simul-omics 4D Engine, the

TumorIO biomarker, and the TumorIO Score.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frai.2023.

1153083/full#supplementary-material

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2023.1153083
mailto:daniel@simbiosys.com
https://www.frontiersin.org/articles/10.3389/frai.2023.1153083/full#supplementary-material
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Cook et al. 10.3389/frai.2023.1153083

References

Baldominos, P., Barbera-Mourelle, A., Barreiro, O., Huang, Y., Wight, A., Cho,
J. W., et al. (2022). Quiescent cancer cells resist T cell attack by forming an
immunosuppressive niche. Cell 185, 1694–1708.e19. doi: 10.1016/j.cell.2022.03.033

Bonsang-Kitzis, H., Sadacca, B., Hamy-Petit, A. S., Moarii, M., Pinheiro, A.,
Laurent, C., et al. (2016). Biological network-driven gene selection identifies a stromal
immune module as a key determinant of triple-negative breast carcinoma prognosis.
Oncoimmunology 5, 1061176. doi: 10.1080/2162402X.2015.1061176

Boucher, Y., Kumar, A. S., Posada, J. M., Gjini, E., Pfaff, K., Lipschitz, M.,
et al. (2021). Bevacizumab improves tumor infiltration of mature dendritic cells and
effector T-cells in triple-negative breast cancer patients. NPJ Precis. Oncol. 5, 197.
doi: 10.1038/s41698-021-00197-w

Caballo, M., Sanderink, W. B. G., Han, L., Gao, Y., Athanasiou, A., Mann,
R. M., et al. (2022). Four-dimensional machine learning radiomics for the
pretreatment assessment of breast cancer pathologic complete response to neoadjuvant
chemotherapy in dynamic contrast-enhanced MRI. J. Magnet. Reson. Imag. 2022,
28273. doi: 10.1002/jmri.28273

Cabrita, R., Lauss, M., Sanna, A., Donia, M., Skaarup Larsen, M., Mitra, S.,
et al. (2020). Tertiary lymphoid structures improve immunotherapy and survival in
melanoma. Nature 577, 561–565. doi: 10.1038/s41586-019-1914-8

Cha, J. H., Chan, L. C., Li, C. W., Hsu, J. L., and Hung, M. C. (2019).
Mechanisms controlling PD-L1 expression in cancer. Mol. Cell 76, 359–370.
doi: 10.1016/j.molcel.2019.09.030

Dieci, M. V., Guarneri, V., Tosi, A., Bisagni, G., Musolino, A., Spazzapan, S.,
et al. (2022). Neoadjuvant chemotherapy and immunotherapy in luminal B-like
breast cancer: Results of the phase II GIADA trial. Clin. Cancer Res. 28, 308–317.
doi: 10.1158/1078-0432.CCR-21-2260

Eelen, G., Treps, L., Li, X., and Carmeliet, P. (2020). Basic and therapeutic aspects of
angiogenesis updated. Circ. Res. 127, 310–329. doi: 10.1161/CIRCRESAHA.120.316851

Fennell, D. A., Dulloo, S., and Harber, J. (2022). Immunotherapy approaches
for malignant pleural mesothelioma. Nat. Rev. Clin. Oncol. 19, 573–584.
doi: 10.1038/s41571-022-00649-7

Flaus, A., Habouzit, V., de Leiris, N., Vuillez, J. P., Leccia, M. T., Perrot, J. L.,
et al. (2021). bBiomarkers for prediction of survival in metastatic melanoma prior to
anti-PD1 immunotherapy. Sci. Rep. 11, 3. doi: 10.1038/s41598-021-98310-3

Franzoi, M. A., Romano, E., and Piccart, M. (2021). Immunotherapy for early
breast cancer: Too soon, too superficial, or just right? Ann. Oncol. 32, 323–336.
doi: 10.1016/j.annonc.2020.11.022

Gennari, A., André, F., Barrios, C. H., Cortés, J., de Azambuja, E., DeMichele,
A., et al. (2021). ESMO Clinical Practice Guideline for the diagnosis, staging and
treatment of patients with metastatic breast cancer. Ann. Oncol. 32, 1475–1495.
doi: 10.1016/j.annonc.2021.09.019

Girard, A., Vila Reyes, H., Shaish, H., Grellier, J. F., Dercle, L., Salaün, P. Y., et al.
(2020). The role of 18F-FDG PET/CT in guiding precision medicine for invasive
bladder carcinoma. Front. Oncol. 10, 565086. doi: 10.3389/fonc.2020.565086

Goc, J., Germain, C., Vo-Bourgais, T. K. D., Lupo, A., Klein, C., Knockaert,
S., et al. (2014). L, et al. Dendritic cells in tumor-associated tertiary lymphoid
structures signal a th1 cytotoxic immune contexture and license the positive
prognostic value of infiltrating CD8+ t cells. Cancer Res. 74, 705–715.
doi: 10.1158/0008-5472.CAN-13-1342

Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discov. 12,
31–46. doi: 10.1158/2159-8290.CD-21-1059

Hanahan, D., andWeinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57–70.
doi: 10.1016/S0092-8674(00)81683-9

Hanahan, D., andWeinberg, R. A. (2011). Hallmarks of cancer: The next generation.
Cell 144, 646–674. doi: 10.1016/j.cell.2011.02.013

Haslam, A., Gill, J., and Prasad, V. (2020). Estimation of the percentage of US
patients with cancer who are eligible for immune checkpoint inhibitor drugs. J. Am.
Med. Assoc. Netw. Open 3, e200423. doi: 10.1001/jamanetworkopen.2020.0423

Haslam, A., and Prasad, V. (2019). Estimation of the percentage of us patients with
cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs.
J. Am. Med. Assoc. Netw. Open 2, 2535. doi: 10.1001/jamanetworkopen.2019.2535

Helmink, B. A., Reddy, S. M., Gao, J., Zhang, S., Basar, R., Thakur, R., et al. (2020). B
cells and tertiary lymphoid structures promote immunotherapy response. Nature 577,
549–555. doi: 10.1038/s41586-019-1922-8

Hindié, E. (2020). Metastatic melanoma: Can FDG-PET predict success of anti-PD-
1 therapy and help determine when it can be discontinued? Eur. J. Nucl. Med. Mol.
Imaging 47, 2227–2232. doi: 10.1007/s00259-020-04826-7

Howard, F. M., He, G., Peterson, J. R., Pfeiffer, J. R., Earnest, T., Pearson, A. T.,
et al. (2022). Highly accurate response prediction in high-risk early breast cancer
patients using a biophysical simulation platform. Breast Cancer Res. Treat. 2022, 22.
doi: 10.1007/s10549-022-06722-0

Italiano, A., Bessede, A., Pulido, M., Bompas, E., Piperno-Neumann, S., Chevreau,
C., et al. (2022). Pembrolizumab in soft-tissue sarcomas with tertiary lymphoid
structures: A phase 2 PEMBROSARC trial cohort. Nat. Med. 28, 1199–1206.
doi: 10.1038/s41591-022-01821-3

Iwase, T., Blenman, K. R.M., Li, X., Reisenbichler, E., Seitz, R., Hout, D., et al. (2021).
A novel immunomodulatory 27-gene signature to predict response to neoadjuvant
immunochemotherapy for primary triple-negative breast cancer. Cancers 13, 194839.
doi: 10.3390/cancers13194839

Koboldt, D. C., Fulton, R. S., McLellan, M. D., Schmidt, H., Kalicki-Veizer, J.,
McMichael, J. F., et al. (2012). Comprehensive molecular portraits of human breast
tumours. Nature 490, 61–70. doi: 10.1038/nature11412

Lang, D., Wahl, G., Poier, N., Graf, S., Kiesl, D., Lamprecht, B., et al. (2020). Impact
of PET/CT for assessing response to immunotherapy—A clinical perspective. J. Clin.
Med. 9, 1–22. doi: 10.3390/jcm9113483

Liao, X., Liu, M., Wang, R., and Zhang, J. (2022). Potentials of non-invasive 18F-
FDG PET/CT in immunotherapy prediction for non–small cell lung cancer. Front.
Genet. 12, 810011. doi: 10.3389/fgene.2021.810011

Loi, S., Drubay, D., Adams, S., Pruneri, G., Francis, P. A., Lacroix-Triki, M., et al.
(2019). Tumor-infiltrating lymphocytes and prognosis: A pooled individual patient
analysis of early-stage triple-negative breast cancers. J. Clin. Oncol. 37, 559–569.
doi: 10.1200/JCO.18.01010

Loi, S., Michiels, S., Salgado, R., Sirtaine, N., Jose, V., Fumagalli, D., et al. (2014).
Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and
predictive for trastuzumab benefit in early breast cancer: Results from the FinHER trial.
Ann. Oncol. 25, 1544–1550. doi: 10.1093/annonc/mdu112

Loi, S., Salgado, R., Adams, S., Pruneri, G., Francis, P. A., Lacroix-Triki, M., et al.
(2022). Tumor infiltrating lymphocyte stratification of prognostic staging of early-stage
triple negative breast cancer. NPJ Breast Cancer 8. 1. doi: 10.1038/s41523-021-00362-1

Magbanua, M. J. M., Gumusay, O., Kurzrock, R., van ‘t Veer, L. J., and Rugo, H. S.
(2022). Immunotherapy in breast cancer and the potential role of liquid biopsy. Front.
Oncol. 12, 802579. doi: 10.3389/fonc.2022.802579

Michel, V., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Vanderplas, J., et al.
(2011). Scikit-learn:Machine Learning in Python, 2825–2830. Available online at: http://
scikit-learn.sourceforge.net (accessed October 17, 2022).

Nanda, R., Liu, M. C., Yau, C., Shatsky, R., Pusztai, L., Wallace, A., et al. (2020).
Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete
response in women with early-stage breast cancer: An analysis of the ongoing
phase 2 adaptively randomized I-SPY2 trial. J. Am. Med. Assoc. Oncol. 6, 676–684.
doi: 10.1001/jamaoncol.2019.6650

Patel, S. P., and Kurzrock, R. (2015). PD-L1 expression as a predictive
biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847–856.
doi: 10.1158/1535-7163.MCT-14-0983

Petitprez, F., de Reyniès, A., Keung, E. Z., Chen, T. W. W., Sun, C.
M., Calderaro, J., et al. (2020). B cells are associated with survival and
immunotherapy response in sarcoma. Nature 577, 556–560. doi: 10.1038/s41586-019-
1906-8

Raybaut, P. (2009). Spyder-Documentation. Available online at: http://www.
pythonhosted.org (accessed October 17, 2022).

Rizzo, A., Cusmai, A., Gadaleta-Caldarola, G., and Palmiotti, G. (2022). Current
and future role of neoadjuvant chemoimmunotherapy for early triple-negative breast
cancer: Which way to go forward.Medicina 58, 50600. doi: 10.3390/medicina58050600

RStudio Team (2020). RStudio: Integrated Development Environment for R.
Available online at: http://www.rstudio.com/ (accessed October 18, 2022).

Saltman, D. L., Varga, M. G., Nielsen, T. J., Croteau, N. S., Lockyer, H. M., Jain,
A. L., et al. (2022). 27-gene Immuno-Oncology (IO) score is associated with efficacy
of checkpoint Immunotherapy in advanced NSCLC: A retrospective BC Cancer study.
Clin. Lung Cancer 11, 9. doi: 10.1016/j.cllc.2022.11.009

Sautès-Fridman, C., Petitprez, F., Calderaro, J., and Fridman,W. H. (2019). Tertiary
lymphoid structures in the era of cancer immunotherapy.Nat. Rev. Cancer 19, 307–325.
doi: 10.1038/s41568-019-0144-6

Savas, P., and Loi, S. (2020). Expanding the role for immunotherapy in triple-
negative breast cancer. Cancer Cell 37, 623–624. doi: 10.1016/j.ccell.2020.04.007

Schilsky, R. L., and Longo, D. L. (2022). Closing the gap in cancer genomic testing.
N. Engl. J. Med. 2022, 2107–2110. doi: 10.1056/NEJMp2210638

Schmid, P., Cortes, J., Pusztai, L., McArthur, H., Kümmel, S., Bergh, J., et al. (2020).
Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382, 810–821.
doi: 10.1056/NEJMoa1910549

Scognamiglio, G., de Chiara, A., Parafioriti, A., Armiraglio, E., Fazioli, F.,
Gallo, M., et al. (2019). Patient-derived organoids as a potential model to
predict response to PD-1/PD-L1 checkpoint inhibitors. Br. J. Cancer 121, 979–982.
doi: 10.1038/s41416-019-0616-1

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2023.1153083
https://doi.org/10.1016/j.cell.2022.03.033
https://doi.org/10.1080/2162402X.2015.1061176
https://doi.org/10.1038/s41698-021-00197-w
https://doi.org/10.1002/jmri.28273
https://doi.org/10.1038/s41586-019-1914-8
https://doi.org/10.1016/j.molcel.2019.09.030
https://doi.org/10.1158/1078-0432.CCR-21-2260
https://doi.org/10.1161/CIRCRESAHA.120.316851
https://doi.org/10.1038/s41571-022-00649-7
https://doi.org/10.1038/s41598-021-98310-3
https://doi.org/10.1016/j.annonc.2020.11.022
https://doi.org/10.1016/j.annonc.2021.09.019
https://doi.org/10.3389/fonc.2020.565086
https://doi.org/10.1158/0008-5472.CAN-13-1342
https://doi.org/10.1158/2159-8290.CD-21-1059
https://doi.org/10.1016/S0092-8674(00)81683-9
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1001/jamanetworkopen.2020.0423
https://doi.org/10.1001/jamanetworkopen.2019.2535
https://doi.org/10.1038/s41586-019-1922-8
https://doi.org/10.1007/s00259-020-04826-7
https://doi.org/10.1007/s10549-022-06722-0
https://doi.org/10.1038/s41591-022-01821-3
https://doi.org/10.3390/cancers13194839
https://doi.org/10.1038/nature11412
https://doi.org/10.3390/jcm9113483
https://doi.org/10.3389/fgene.2021.810011
https://doi.org/10.1200/JCO.18.01010
https://doi.org/10.1093/annonc/mdu112
https://doi.org/10.1038/s41523-021-00362-1
https://doi.org/10.3389/fonc.2022.802579
http://scikit-learn.sourceforge.net
http://scikit-learn.sourceforge.net
https://doi.org/10.1001/jamaoncol.2019.6650
https://doi.org/10.1158/1535-7163.MCT-14-0983
https://doi.org/10.1038/s41586-019-1906-8
http://www.pythonhosted.org
http://www.pythonhosted.org
https://doi.org/10.3390/medicina58050600
http://www.rstudio.com/
https://doi.org/10.1016/j.cllc.2022.11.009
https://doi.org/10.1038/s41568-019-0144-6
https://doi.org/10.1016/j.ccell.2020.04.007
https://doi.org/10.1056/NEJMp2210638
https://doi.org/10.1056/NEJMoa1910549
https://doi.org/10.1038/s41416-019-0616-1
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Cook et al. 10.3389/frai.2023.1153083

Seitz, R. S., Hurwitz, M. E., Nielsen, T. J., Bailey, D. B., Varga, M.
G., Ring, B. Z., et al. (2022). Translation of the 27-gene immuno-oncology
test (IO score) to predict outcomes in immune checkpoint inhibitor treated
metastatic urothelial cancer patients. J. Transl. Med. 20, 9. doi: 10.1186/s12967-022-
03563-9

Tarantino, P., Corti, C., Schmid, P., Cortes, J., Mittendorf, E. A., Rugo, H.,
et al. (2022). Immunotherapy for early triple negative breast cancer: Research
agenda for the next decade. NPJ Breast Cancer 8, 1. doi: 10.1038/s41523-022-
00386-1

Vanhersecke, L., Brunet, M., Guégan, J. P., Rey, C., Bougouin, A.,
Cousin, S., et al. (2021). Mature tertiary lymphoid structures predict
immune checkpoint inhibitor efficacy in solid tumors independently of
PD-L1 expression. Nat. Cancer 2, 794–802. doi: 10.1038/s43018-021-
00232-6

Vranic, S., Cyprian, F. S., Gatalica, Z., and Palazzo, J. (2021). PD-L1 status
in breast cancer: Current view and perspectives. Semin. Cancer Biol. 72, 146–154.
doi: 10.1016/j.semcancer.2019.12.003

Zalcman, G., Mazieres, J., Margery, J., Greillier, L., Audigier-Valette, C., Moro-
Sibilot, D., et al. (2016). Bevacizumab for newly diagnosed pleural mesothelioma in the
Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): A randomised, controlled,
open-label, phase 3 trial. Lancet 387, 1405–1414. doi: 10.1016/S0140-6736(15)01238-6

Zhao, X., Bao, Y., Meng, B., Xu, Z., Li, S., Wang, X., et al. (2022). From rough to
precise: PD-L1 evaluation for predicting the efficacy of PD-1/PD-L1 blockades. Front.
Immunol. 13, 920021. doi: 10.3389/fimmu.2022.920021

Zhao, Y., Wong, L., and Goh, W. W. (2020). How to do quantile
normalization correctly for gene expression data analyses. Sci. Rep. 10, 6.
doi: 10.1038/s41598-020-72664-6

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2023.1153083
https://doi.org/10.1186/s12967-022-03563-9
https://doi.org/10.1038/s41523-022-00386-1
https://doi.org/10.1038/s43018-021-00232-6
https://doi.org/10.1016/j.semcancer.2019.12.003
https://doi.org/10.1016/S0140-6736(15)01238-6
https://doi.org/10.3389/fimmu.2022.920021
https://doi.org/10.1038/s41598-020-72664-6
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Next generation immuno-oncology tumor profiling using a rapid, non-invasive, computational biophysics biomarker in early-stage breast cancer
	Introduction
	Methods
	Overview of study design
	Gene expression data retrieval and data normalization
	Defining and calculating gene expression signatures with RNA-seq data
	DCE-MRI imaging retrieval
	Biophysical simulation of virtual tumors from DCE-MRI imaging series
	Developing a linear model to predict pathologic complete response in patients treated with chemotherapy plus immunotherapy
	Orthogonal validation in independent cohort
	Virtual clinical trial
	Statistical analyses

	Results
	Using gene expression analysis to identify biological features associated with PD-L1 expression
	Designing a biophysical signature associated with PD-L1 expression probability
	Developing a TumorIO Score based on biophysics to predict pathologic complete response following immunotherapy
	Comparing the prognostic power the TumorIO Score to transcriptomic-based PD-L1 expression
	Validating the biophysical immune score in an independent patient population
	Performing secondary validation in a virtual clinical trial

	Discussion
	Limitations
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


