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Performance comparison of
bio-inspired and learning-based
clustering analysis with machine
learning techniques for
classification of EEG signals

Sunil Kumar Prabhakar* and Dong-Ok Won*

Department of Artificial Intelligence Convergence, Hallym University, Chuncheon, Republic of Korea

A comprehensive analysis of an automated system for epileptic seizure detection

is explained in this work. When a seizure occurs, it is quite di�cult to di�erentiate

the non-stationary patterns from the discharges occurring in a rhythmic manner.

The proposed approach deals with it e�ciently by clustering it initially for the

sake of feature extraction by using six di�erent techniques categorized under

two di�erent methods, e.g., bio-inspired clustering and learning-based clustering.

Learning-based clustering includes K-means clusters and Fuzzy C-means (FCM)

clusters, while bio-inspired clusters include Cuckoo search clusters, Dragonfly

clusters, Firefly clusters, and Modified Firefly clusters. Clustered values were then

classified with 10 suitable classifiers, and after the performance comparison

analysis of the EEG time series, the results proved that this methodology

flow achieved a good performance index and a high classification accuracy.

A comparatively higher classification accuracy of 99.48% was achieved when

Cuckoo search clusters were utilized with linear support vector machines (SVM)

for epilepsy detection. A high classification accuracy of 98.96%was obtainedwhen

K-means clusters were classified with a naive Bayesian classifier (NBC) and Linear

SVM, and similar results were obtained when FCM clusters were classified with

Decision Trees yielding the same values. The comparatively lowest classification

accuracy, at 75.5%, was obtained when Dragonfly clusters were classified with the

K-nearest neighbor (KNN) classifier, and the second lowest classification accuracy

of 75.75% was obtained when Firefly clusters were classified with NBC.

KEYWORDS

epilepsy, EEG, K-means clusters, fuzzy C-means clusters, Cuckoo search clusters, Firefly

clusters, Dragonfly clusters

1. Introduction

Due to the excessive and abnormal electrical discharges in the brain cells, seizures

are produced, which occur suddenly and are quite uncontrollable, making epilepsy a

chronic neurological disorder (Gotman, 1982). To monitor the activities of the brain,

electroencephalography (EEG) is widely used as it provides a huge amount of both

physiological and pathological information, thereby proving its validity for an effective

diagnosis (Kim et al., 2014; Jukic et al., 2020). The application of EEG plays a vital role in

almost all areas of biomedical engineering, ranging from seizure classification (Rajaguru

and Prabhakar, 2016), Alzheimer’s disease diagnosis (Zhu et al., 2016), subject-dependent

classification in Brain-Computer Interface (BCI) (Lee et al., 2015), classification of steady-

state visual evoked potentials (Won et al., 2015), efficient analysis of Event-Related Potentials
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(ERP)-based BCI (Yeom et al., 2014), analysis of deep neural

network modeling under an ambulatory environment (Kwak et al.,

2017), dementia classification (Jeong, 2004), and iris recognition

(Adamovic et al., 2020). Visual analysis of EEG recordings, even

by expert neurologists, is very difficult and time-consuming. The

over-reliance and subjective judgments of visual encephalographs

may result in different diagnoses of the EEG segment (Kumar et al.,

2014). As the EEG recordings have a very high margin of noise,

separating seizures from artifacts is difficult as they have a similar

time-frequency pattern. A plethora of machine-learning algorithms

have been proposed for seizure detection and classification

(Magosso et al., 2009). Generally, in the initial stages, preprocessing

and feature extraction are performed and then classified with

supervised or unsupervised classification models. To remove the

major artifacts caused by eye blinking, slight body movement, and

random muscle activity, preprocessing is performed, which helps

in the extraction of the most discriminative features in the time

domain (Bulthoff et al., 2003). Thus, studies on seizure detection

using epileptic EEG databases are of great significance.

With the help of Artificial Neural Networks (ANN), a

classification accuracy of 100% between normal and epileptic EEG

signals has been achieved using Approximate Entropy (ApEn) by

Srinivasan et al. (2007). For the automated detection of epileptic

seizures from EEG signals, many researchers have proposed

different feature extraction methodologies, as explained in (Tawfik

et al., 2016). With the help of both Bayesian Linear Discriminant

Analysis (BLDA) and lacunarity analysis, an algorithm for

intracranial EEG seizure detection was proposed by Zhou et al.

with a sensitivity of about 96.25% (Zhou et al., 2013). A good

review of different entropy methods to differentiate normal, ictal,

and interictal EEG signals with seven different classifiers was done

by Acharya et al. (2012) where a high classification accuracy of

98.1% was reported. Compressive sensing techniques using Sample

entropy, permutation entropy, and Hurst index for differentiating

and detecting inter-ictal, pre-ictal, and ictal-based epileptic seizures

with four different classifiers were done by Zeng et al. (2016), and a

high classification accuracy of 76.7% was obtained. A 13-layer deep

Convolutional Neural Network (CNN) was employed to detect

normal, pre-ictal, and seizure classes in (Acharya et al., 2018) and

reported accuracy, specificity, and sensitivity of 88.67, 90, and 95%,

respectively. Automated seizure detection from EEG signals using

a deep Convolutional Neural Networks (CNN)-based technique

yielding a high classification accuracy of 97.5% was performed in

(Zhou et al., 2018). SVM classifiers are one of the most versatile

pattern recognition techniques used in epileptic seizure detection

due to their most promising ability for generalization (Moghim

and Corne, 2014). Constructive Genetic Programming (CGP) was

used for classification after feature extraction by decomposing EEG

signals using Empirical Mode Decomposition (EMD) by Bhardwaj

et al. (2016), and for different validation schemes, the classification

accuracy results were reported as ranging from 97 to 100%. ANNs

were incorporated with multivariate EMD to classify ictal vs. non-

ictal signals with the help of a standard SVM classifier (Riaz

et al., 2016). Frequency domain features were reduced using non-

linear dimension techniques, and the seizures were then classified

using a K-nearest neighbor (KNN) classifier, which reported a

classification accuracy of 98.40% (Rivero et al., 2011). Smoothed

pseudo-Wigner-Ville distribution was incorporated with ANNs for

seizure classification, as proved in (Tzallas and Tsipouras, 2007),

reporting an overall accuracy of 97.72 to 100%. Wavelet transforms

also gave good results in the analysis of epilepsy detection studies,

as shown in (Chen et al., 2017), where a perfect classification

rate of 100% was obtained with all kinds of wavelet filters.

Usage of techniques like tunable Q-factor wavelet transform with

bootstrapping methodology gave a 100% classification accuracy,

especially for A-E seizure classification problems (Haasan and

Siuly, 2016), multi-wavelet-based approximate entropy (ApEn),

with ANN again reporting a 100% classification accuracy (Kumar

et al., 2014), and complex-valued neural network transform with

K-fold cross-validation methodology also reporting results from 99

to 100% classification accuracy (Peker and Sen, 2016) are some of

the predominantly used methodologies for epilepsy classification.

A sparse autoencoder with a swarm-based deep learning technique

(Prabhakar and Lee, 2022a), sparse representation-based robust

hybrid feature extraction models with transfer and deep learning

(Prabhakar and Lee, 2022b), sparse modeling with an ensemble

and nature-inclined classification (Prabhakar and Lee, 2022c), and

end-to-end deep neural network models (Zhao et al., 2020) were

also done for epilepsy classification from EEG signals. Other

important studies deal with the application of matrix determinants

with machine learning classifiers (Raghu et al., 2019), local mean

decomposition (LMD) with genetic algorithm-supported SVM

(GA-SVM) (Zhang and Chen, 2017), discrete wavelet transform

(DWT) with SVM (Chen et al., 2017), and linear least squares

preprocessing with SVM (Zamir, 2016) for the classification of

epilepsy from EEG signals. Other prominent studies include the

usage of orthogonal wavelet analysis with linear SVM (Sharma

et al., 2018), weighted complex networks with SVM (Diykh et al.,

2017), Fourier transformwith neural networks (Samiee et al., 2015),

and binary pattern generation with Bayesian networks (Kaya et al.,

2014) for the classification of epilepsy from EEG signals. In this

study, the A-E classification problem of the Bonn data set was

thoroughly studied through feature extraction, initially through

clustering techniques, followed by categorization using appropriate

classifiers for epilepsy from EEG signals. The organization of the

work is as follows: Section 2 presents the materials and methods,

followed by feature extraction through the clustering method in

Section 3. The classification process is discussed in Section 4. It is

followed by results and discussion in Section 5 and concludes in

Section 6. The block diagram of the work is shown in Figure 1. The

EEG signals taken from the Bonn data set were first preprocessed

using the Independent Component Analysis (ICA) method and

then clustered using two methodologies. Learning-based clustering

includes k-means clustering and FCM clustering, while bio-

inspired clustering involves cuckoo search clustering, dragonfly

clustering, firefly clustering, and modified firefly clustering. The

most important works in this field with interesting results in the

last 6 years are shown in Table 1.

2. Materials and methods

The data used in this study is a publicly available data from

the Epilepsy Research Center at Bonn University in Germany

(Andrzejak et al., 2001). It consists of five subsets indicated as

A-E. Each subset has 100 single-channel segments, and each
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FIGURE 1

Simplified process flow of the methodology.

segment comprises an EEG signal of 23.6 s duration with a

sampling frequency of∼173.61Hz. The EEG signals present in this

public data set were obtained from a 128-channel amplification

system with an average reference electrode. In this study, the A-E

classification type was studied in detail using clustering techniques

and machine learning procedures. Further details about the EEG

data set are given in Table 2. As the presence of abnormalities

in the EEG signals is quite high due to its non-stationary and

non-linearity properties, clustering is an effective methodology to

extract useful features.

3. Clustering techniques

Clustering is basically the primary task of grouping or

assimilating a set of specific objects in such a manner that the

objects in the same group are very similar to each other. It is

a vital task in exploratory data mining and is commonly used

for all kinds of statistical data analysis in the fields of machine

learning, pattern recognition, data analysis, and more (Zhao et al.,

2020). Cluster analysis cannot be limited to one specific algorithm.

Different algorithms can be used for cluster analyses, which differ

significantly in their basic understanding of the constitution of the

cluster. The formulation of a clustering problem is generally done

as a multi-objective optimization problem, as most popular clusters

include groups with dense areas of data space and small distances

between the cluster members.

When working with large amounts of data, classification is

generally difficult. Therefore, data reduction or data partitioning

methods are quite useful for this purpose. After the basic pre-

processing of EEG signals using Independent Component Analysis

(ICA), data reduction is achieved by various methods like feature

extraction, feature selection, and clustering techniques. Clustering

is an unsupervised method used for data reduction. Selecting the

number of clusters that represent the original data is important

for the classification process. This will reduce the burden on the

classifier and thereby increase classification accuracy. Clustering

(unsupervised methods) can be defined as the process of organizing

data into groups whose members are similar in some way. Without

using training data, they normally work as an optimizer. To

compensate for the lack of training data, this alternative method

efficiently analyzes the partitioned data, thereby characterizing

the properties of each class in a very distinctive way. The EEG

signals are clustered as K-means clusters, FCM clusters, Cuckoo

search clusters, Dragonfly clusters, Firefly clusters, and modified

Firefly clusters.

3.1. K-means clustering

The problem of clustering a set of m objects J = {1, ...,m}
objects into K clusters is initially considered in K-means clustering

(Kanungo et al., 2004). For every subject j ∈ J, we have a set of
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TABLE 1 A few famous and important epilepsy classification studies that have used the Bonn data set in the past.

Year References Classification type Technique adopted

2022 Prabhakar and Lee (2022a) A-E, B-E, C-E, D-E, AB-E, CD-E, AC-E, ACD-E,

ABCD-E, BCD-E

Sparse autoencoder with swarm-based deep

learning and reinforcement-based Q-learning

2022 Prabhakar and Lee (2022b) B-E, AB-E, D-E, CD-E, A-C-E, AB-CD-E Sparse representation-based robust hybrid feature

extraction models with transfer and deep learning

2022 Prabhakar and Lee (2022c) A-E, B-E, C-E, D-E, AB-E Sparse modeling with ensemble- and

nature-inclined classification

2020 Zhao et al. (2020) A-E, B-E, C-E, D-E, AB-E, CD-E, ABCD-E End-to-end deep neural network model

2019 Raghu et al. (2019) A-E, B-E, C-E, D-E, AB-E, AC-E, CD-E, ACD-E,

ABCD-E, A-C-E, AB-CD-E

SVM, KNN, Multi-layer perceptron (MLP), CNN

2018 Zhou et al. (2018) A-E, A-C CNN

2017 Zhang and Chen (2017) A-E, D-E, ABCD-E, A-D-E, A-B-C-D-E Local mean decomposition (LMD)-based hybrid

features and GA-SVM

2017 Chen et al. (2017) A-E, AB-E, CD-E, A-CDE, ACD-E, AB-CDE,

ABCD-E

Discrete wavelet transform (DWT) and SVM

2016 Bhardwaj et al. (2016) A-E, ACD-E, ABCD-E, AB-CD-E, A-B-C-D-E EMD and CGP

2016 Zamir (2016) A-E, B-E, ABCD-E, ACD-E Linear least squares pre-processing and library

SVM

TABLE 2 Bonn data set description details.

Subset A B C D E

Subjects Five healthy volunteers Five epileptic patients

Subject state Eyes open Eyes closed Inter-ictal Ictal

Recorded period Normal Seizure-free intervals Seizure activity

Electrode types Non-invasive surfaces Intracranial

Placement of electrodes International 10–20 standard system From hippocampal formation Epileptogenic zone All epileptic seizure areas

nfeatures
[

zji : i ∈ I
]

, where zji explains the i
th features of the object j

in a quantitative manner. Assuming zj =
(

zj1, ..., zjn
)T
is the feature

vector of the object j and Z = (z1, ..., zm)is the data set or the feature

matrix, this clustering task is nothing but a reformulation as an

optimization problem, thereby minimizing the clustering objective

function as follows:

min J(A,B) =
K

∑

k=1

∑

j=J

ajk
∥

∥zj − bk
∥

∥

q

q
(1)

Under the following condition
K
∑

k=1

ajk = 1, ajk ∈ {0, 1} , ∀j ∈

J, k = 1, ...,K, where q = 1, 2. For k = 1, ...,K, bk ∈ ℜm is the

kth cluster prototype, and for any j ∈ J, ajk denotes whether the

object j belongs to the kth cluster.

To solve the clustering problems for q = 1 and q = 2, K-

median and K-means are quite effective algorithms. The cluster

prototype matrix B =
[

b1, ..., bK
]

∈ ℜn×K and the membership

matrix A = [a1, ..., am] ∈ ℜK×m, where bj =
(

bj1, ..., bjm
)T

and

aj =
(

aj1, ..., ajK
)T
. In an iterative manner, the clustering problem

is solved by the Algorithm 1 as follows:

3.1.1. Algorithm 1: K-means clustering
Step 1: The iteration index t = 0 is set first, and then a

random selection of Kdifferent objects is depicted as the initial

cluster prototype and is represented as:

{

btk : k = 1, ...,K
}

(2)

Step 2: Assuming that t = t+1, then the membership matrixAt

is updated by fixing the cluster prototypematrix Bt−1. For any j ∈ J,

the random selection of k∗ ∈ argmin
{

∥

∥zj − bt−1
k

∥

∥

q
: k = 1, ...,K

}

and set at
jk∗ = 1and for any k 6= K∗, set at

jk
= 0

Step 3: The cluster prototype matrix Bt is updated by means

of fixing the membership matrix At . When q = 1, for any k =
1, ...,Kand i ∈ I, set bt

ki
as the median of the ithfeature values of

these objects in the cluster k, when q = 2, for any k = 1, ...,K, set

bt
k
as the centroid of these objects in the cluster k, (i.e.,):

btk =
(

1/6j∈Jajk
)

6j∈Ja jk zj (3)

Step 4: For any j ∈ Jand k = 1, ...,K, we have at
jk
= at−1

jk
, then

the process is stopped and returned toA and B; otherwise we return

to step 2 of Algorithm 1.
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3.2. Fuzzy C-means clustering

While dealing with fuzzy C-means clustering, Y =
{

y1, y2, ..., yn
}

is a finite data set considered for our analysis

where yi =
(

yi1, yi2,...,yig
)

is a g-dimensional object and yig is the g
th

property of the ith object. K = {K1,K2, ...,Kk} denotes ′k′ clusters.

W = {w1,w2, ...,wk} represents k1-dimensional cluster centroids,

where wi =
(

wi1,wi2, ...,wig

)

. Z =
(

ziq
)

(n×k)
is a fuzzy partition

matrix and ziq denotes the degree of membership of the ith object

in the qth cluster where
∑k

q=1 ziq = 1, ∀i = 1, ..., n. The quadratic

sum of weighted clusters to the cluster centroid from the samples

in each cluster is the objective function and is denoted as:

Hm(Z,W) =
k

∑

q=1

n
∑

i=1

z
p
iqd

2
iq (4)

where diq =
∥

∥yi − wq

∥

∥ depicts the Euclidean distance between

the ith object and the qthcluster point.
(

p ∈ [1,∞]
)

denotes a

fuzziness index that helps in fuzzy membership control (Zhang

et al., 2016). The resulting membership will be fuzzier if the

value of p is higher. Based on the clustering idea, the appropriate

fuzzy partition matrix Z and cluster centroid W are obtained (to

minimize the objective function Hm). Depending on the Lagrange

multiplier technique Z andW it is calculated as:

ziq = 1
∑k

h=1

(

diq/dhq
)2�(p−1)

wq =
∑n

i=1 z
p
iqyi

∑n
i=1 z

p
iq

(5)

The FCM algorithm is implemented by means of minimizing

the objective function Hp with the updates of Z and W. The steps

are as follows as mentioned in Algorithm 2.

3.2.1. Algorithm 2: fuzzy C-means clustering
1) The initial value of the total number of clusters ′k′, fuzziness

index p, threshold ξ , andmaximum iterations Imax is assigned.

2) The fuzzy partition Z(0) is randomly initialized based on the

degree of membership.

3) The k cluster centroidW(t) is calculated at the t-step.

4) The objective function H
(t)
p is calculated. If

∣

∣

∣
H

(t)
p −H

(t−1)
p

∣

∣

∣
<

ξ or t > Imax, we stop or continue to the next step.

5) Z(t+1) is computed according to step 2 of this algorithm and

then we proceed to step 3 of Algorithm 2.

Thus, it is quite a simple algorithm and its simplicity can be

extended because of its quick convergence. Then, the conventional

method to assess the optimal number of FCM clusters consists of

the following steps.

Step 1: The search range [kmin, kmax] must be fed or input;

generally, kmin = 2and kmax =
[√

n
]

Step 2: For every integer qn ∈
[

kmin, kmax

]

Step 3: FCM is executed

Step 4: The clustering validity index is calculated

Step 5: The value of the clustering validity index is compared

Step 6: koptis obtained, which gives the clustering result.

3.3. Cuckoo clustering

Cuckoo search is a bio-inspired algorithm in which some

species of cuckoo birds with obligate brood parasitism lay their

eggs in the nests of some other bird species (Abd Elazim and Ali,

2016). Using the general rules, the Cuckoo search algorithm can be

described as follows.

1) Each cuckoo lays one egg at a time and then it deposits it in a

randomly selected nest.

2) The best nests with very good quality eggs will be passed on

to the next generation.

3) The total number of available host nests is fixed. The host

bird discovers the egg laid by a cuckoo with a probability of

Pa ∈ [0, 1]. In such a case, the host bird can abandon the nest

and build a new one, or easily get rid of the egg. The method

is explained as follows in Algorithm 3.

Objective function: f (y) = y = (y1, y2, ..., ym)

Generate: an initial population of

qhost nests

While (t<Maximum Generation) or (Criteria

to Stop)

Select a random cuckoo (say, j) and solution

replacement by performing Levy flights

Fitness Fi evaluation

Randomly choose a nest among m(say, i)

if Fj < Fi then

Replace i by the new solution

End if

A fraction pa of worse nests are abandoned

and new ones are built

The best ones are retained and kept

Ranking of nests is done to find the

current best

The current best solution is passed to the

next generation

End while

Algorithm 3. Cuckoo clustering.

3.4. Dragonfly clustering

Dragonflies are assumed to be little predators that naturally

hunt other little bugs (Sree Ranjini and Murugan, 2017). Even

before the marine bugs and little fishes originated, fairy dragonflies

came into existence. The unusual swarming behavior is the

most fascinating certainty about dragonflies. The two basic

swarming methods are the same techniques of streamlining using

metaheuristics, namely investigation and misuse. Some default

steps like separation/split, alignment/join, cohesion, and attraction

to a food source are common in this algorithm and are explained in

Algorithm 4.
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TABLE 3 Average entropy values.

Clusters Approximate
entropy

Shannon
entropy

Sample
entropy

EEG sets A E A E A E

K-means 1.37 1.19 1.46 1.24 5.429 6.15

FCM 1.42 1.15 1.58 1.27 5.23 6.34

Cuckoo 1.86 1.07 1.92 0.864 4.1774 6.82

Dragonfly 1.79 1.246 1.83 1.12 4.637 5.96

Firefly 1.65 1.058 1.75 1.034 5.407 6.12

Modified Firefly 1.39 1.217 1.86 1.17 4.8019 6.45

Average 1.58 1.155 1.733 1.16 4.95 6.32

FIGURE 2

Dragonfly clusters for EEG sets A vs. E.

3.4.1. Algorithm 4: dragonfly clustering
Step 1: Dragonfly initialization:

The population of dragonflies is initialized first and expressed

as Qj and its representation is done as:

He1 =
[

He1 ,He2 ,He3 , ...,Hen

]

(6)

The four important phases in Dragonfly initialization are

as follows.

i) Separation phase: To neglect the static collision of the people

from various people in the neighborhood, the separation

process is utilized and expressed as:

Sepje =
M

∑

l=1

Hej −Hel (7)

where Sepej denotes the separation of the jth individual,

He denotes the present position of the individual, and Hel

FIGURE 3

Firefly clusters for EEG sets A vs. E.

FIGURE 4

FCM clusters for EEG sets A vs. E.

is the position of the lth individual, and M denotes the total

number of individuals in an adjacent nearer area present in

the search space.

ii) Alignment phase: This happens depending on the velocity

matching of each individual to other respective individuals in

the neighborhood. It is calculated as:

Alij =
∑M

l=1 El

M
(8)

where Alij denotes the alignment of the jth neighboring

individual, is the velocity of the lth individual, and M denotes

the total number of neighboring individuals in the entire

search space.
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FIGURE 5

K-means clusters for EEG sets A vs. E.

FIGURE 6

Histogram of Firefly clusters in EEG set “A”.

iii) Cohesion phase: The dependency of the individuals to

move toward the center of the mass in the neighborhood

is called cohesion. The cohesion Coj for the jth individual

is calculated as:

Coj =
∑M

l=1 Hel

M
−He (9)

iv) Progressing toward a food source phase: Among the

dragonflies, this is the attractive phase toward a particular

food source, and the outward distance of each dragonfly

is expressed as:

Foodj = H+
e −H−

e (10)

Enej = Q− + D (11)

FIGURE 7

Histogram of Firefly clusters in EEG set “E”.

where H−
e represents the position of the enemy and H+

e

denotes the position of the food source.

Step 2: Update process

1Feature_set =
(

vsSepj + vaAlij + vcCoj + vhFoodj + veEnej
)

+ v1Featuret (12)

Two vectors, (1Feature) and position (Feature) vector are

considered to update the position of artificial dragonflies in the

search space, vs, va, where it represents the weights of the technique,

such as detachment, arrangement, and union. From the result of

the calculation, the advanced positions are obtained, and thus,

after checking the score estimates, additional information can

be extracted.

3.5. Firefly clustering

It is a bio-inspiredmetaheuristic algorithm predominantly used

for solving optimization problems. It is based on and observed in

the flashing behavior of fireflies at night (Yang, 2010). The three

main rules used in the construction of this algorithm are that, first,

fireflies are unisexual in nature. Second, the brightness of the firefly

is understood from the objective function. Third, there is a direct

proportional relationship between attractiveness and brightness. A

firefly generally moves toward the brighter one, and if there is no

brighter one, then there is random movement. It is a well-known

fact that there is an inversely proportional relationship between

the intensity of light and the square of the distance, for instance, q

from the source. Moreover, when light passes through a particular

medium with a light absorption coefficient of λ, the intensity of

light J varies with distance as follows:

J(q) = J0e
−λq (13)
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where J0 denotes the intensity at the starting point. It can be

combined as:

J(q) = J0e
−λq2 (14)

Computing e−λq2 is slightly difficult, but computing 1
1+λq2

is

comparatively easier. Therefore, the calculation of the intensity is

done as follows:

J(q) =
J0

1+ λq2
(15)

The definition of firefly attractiveness is expressed as follows:

B(q) =
B0

1+ λq2
(16)

where B0 denotes the attractiveness of q = 0. If a firefly situated

at y′ =
(

y′1, y
′
2, ..., yn

)

is brighter than another firefly situated at

y =
(

y1, y2, ..., yn
)

, then the firefly located at y moves toward y′.

The update of the firefly located at y is expressed as:

y : = y+ A0e
−λq2 (y′ − y)+ αε (17)

αε denotes the randomization term with α represented as the

randomization parameter denoted within the range of 0 to 1, i.e.,

0 ≤ α ≤ 1, and ε denotes the random vector numbers. The second

term is because of the attractiveness of y toward y′. For the sake of

practicality, A0 can be assumed to be 1; A0 = 1.

The summary of the algorithm is given in Algorithm 5

as follows.

3.5.1. Algorithm 5: firefly clustering
1) A random solution set

{

y1, y2, ..., yk
}

is generated.

2) The intensity for each solution member is computed as

{J1, J2, ..., Jk }.
3) Each firefly ′j′ moves toward other bright fireflies. If

there are no bright fireflies, then each firefly moves in a

random manner.

4) The solution set is updated.

5) If the termination criteria are fulfilled, then we terminate,

otherwise, we go to step 2 of this algorithm.

3.6. Modified firefly clustering

The firefly with the current best global solution is the brightest.

The random movement of this brightest firefly may decrease

its brightness depending on the direction. Therefore, in that

particular direction, it leads to the performance degradation

of this algorithm. If the brightest firefly only moves in a

direction that increases its brightness, then the algorithm can

perform better. The modification made here is implemented in

(Tilahun and Ong, 2012), and the idea is incorporated into

our work as follows. To assess the direction of the brightest

TABLE 4 Performance of MSE with di�erent numbers of iterations for

KNN classifiers at di�erent K values.

Number of iterations MSE at di�erent K values

K = 2 K = 4

50 0.000475 0.000001

100 0.0004 4.00E-03

150 0.000204 7.84E-04

200 4.49E-05 0.002025

225 3.48E-05 3.60E-04

250 0.000025 0.000122

300 2.3E-05 0.0001

350 2.12E-05 0.00059

375 1.68E-05 0.000128

400 1.09E-05 0.000292

500 4.41E-06 6.25E-04

600 4E-06 0.00049

800 2.25E-06 1.00E-04

1000 1.96E-06 0.000202

1200 0.000001 5.76E-04

1400 3.6E-07 0.000302

firefly, ′s′ unit vectors are randomly generated, e.g., v1, v2, ..., vs.

Among the randomly generated ′s′ directions, a direction V

is chosen in such a way that the brightness of the brightest

firefly always increases when the firefly is in that particular

direction. Therefore, the movement of the brightest firefly can

be expressed as; y : = y + αV , where α denotes the random

step length.

The brightest firefly will stay in its current position if such a

direction does not exist in any of the randomly generated solutions.

Moreover, rather than assuming B
j
0 = 1 for each firefly j, it is a

good idea to assign some attractiveness that is dependent on the

firefly intensity, which is in turn highly dependent on the objective

function. One way to do this is to assign the ratio of the intensities

of the fireflies. If a firefly j situated at y′ is brighter than a firefly i

located at y, then the firefly located at y moves toward the firefly j,

and B0 is expressed as:

B0 =
J′0
J0

(18)

where J′0 is the intensity at q = 0 for firefly j, J0 is the intensity

at q = 0 for firefly i and J0 6= 0. For convenience, we reject

the singularity case when J0 = 0, B0 is expressed as eJ
′
0−J0 . If

we consider B0 = J′0 and when the intensity is large, then the

movement of the firefly i toward j is very long. However, B0 can

be adjusted depending on the solution space. Thus, the solution

space here should be directly proportional to the intensity at the

source J′0.

The main reason for the clustering in this work is the data

reduction through the process of optimization, as stated in the
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FIGURE 8

Performance of the MSE in the number of iterations for the KNN classifier at di�erent K values.

TABLE 5 Performance of the MSE in the number of iterations for SVM-RBF at di�erent gamma values.

Number of
iterations

MSE at di�erent gamma values

G = 0.2 G = 0.4 G = 0.6 G = 0.8 G = 1.0 G = 1.2 G = 1.5 G = 2.0 G = 2.2

50 0.00012321 0.00014884 0.00020164 7.744E-05 5.184E-05 0.000001 0.000328 1.37E-05 0.000511

100 5.476E-05 3.6E-05 9.025E-05 0.00017689 1.44E-06 0.000094249 0.000161 2.3E-05 2.81E-05

150 0.00012996 0.00011236 1.1664E-05 0.00018496 0.000051529 2.401E-05 1.96E-06 5.18E-05 8.10E-05

200 1.849E-05 7.921E-05 7.921E-05 1.849E-05 0.00002304 1.68921E-05 0.000801 2.92E-05 9.00E-05

225 7.569E-05 6.4E-05 0.000169 5.184E-05 0.00023409 0.00097969 0.002275 1.40E-07 6.40E-05

250 6.084E-05 0.000144 0.00019044 4.489E-05 0.00206116 0.000225 1.02E-05 4.00E-08 6.40E-06

300 5.929E-05 6.4E-05 0.00031684 0.000012996 0.00178929 6.724E-05 7.57E-05 3.51E-08 6.40E-06

350 0.0001 8.649E-05 0.000196 0.00011881 0.00147456 8.1E-05 0.000174 1.00E-08 7.92E-05

375 2.916E-05 0.00016129 4.096E-05 4.9E-05 1.024E-05 0.00042025 1.94E-05 5.00E-09 3.03E-05

400 4.9E-05 0.00022201 3.721E-05 0.0000169 1.66E-05 2.916E-05 0.000154 4.10E-09 8.10E-05

500 6.4E-05 0.00011025 0.000018496 0.00010609 0.000063504 2.304E-05 5.93E-05 4.00E-09 3.60E-05

600 0.00020736 6.889E-05 8.464E-05 2.704E-05 2.52004E-06 0.00018769 5.78E-05 2.70E-09 4.90E-05

800 0.00014161 1.0609E-05 6.724E-05 2.209E-05 0.00002025 0.00040401 0.000243 1.90E-09 8.41E-05

1000 6.561E-05 2.6569E-05 0.0000121 0.00022801 0.00000121 0.00037636 6.24E-05 1.60E-09 1.96E-05

1200 5.776E-05 0.000053361 2.304E-05 1.764E-05 1.7956E-06 3.31776E-05 0.000973 1.40E-09 6.40E-05

1400 7.14025E-05 2.43049E-05 4.489E-05 2.07E-05 5.9049E-06 1.47456E-05 5.76E-06 1.03E-09 6.64E-05

above algorithms. The clusters are validated by two parameters,

compactness and separability. In this study, the compactness of

the clusters is analyzed by the scatter plots among the classes

of EEG data. When it comes to separability, these particular

types of indices are used to differentiate between two clusters.

The distance between the two cluster centroids is a commonly

used measure of separability. This measure is easy to compute

and can detect even hyperspherical clusters. Three types of

entropy, e.g., Approximate Entropy, Shannon Entropy, and Sample

Entropy were used to identify the separability of the clusters

among the classes of the EEG data set (A-E), which is shown

in Table 3.

In this work, a total of (4,097× 100) A-E EEG data are clustered

based on the cluster center features as (4,097 × 10) A-E EEG data.

Therefore, an effective data reduction of ten times is achieved.

The reduced features must be analyzed for the presence of non-

linearity and dynamic states of the EEG signal. It is a two-step

process consisting of scattering with histogram plots and entropy

extraction. Scatter plots and histograms can easily help identify the

presence of non-linearity in the features. Figures 2, 3 depict the

scatter plot of Dragonfly clusters and Firefly clusters for EEG set

A vs. E. The shape of the cluster in the figures obtained shows

the presence of non-linearity in the features. Figures 4, 5 depict

the scatter plot of FCM clusters and K-means clusters for EEG
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FIGURE 9

Performance of the MSE in the number of iterations for SVM-RBF at di�erent gamma values.

TABLE 6 Performance of the MSE in terms of the number of iterations for the Polynomial SVM classifier at di�erent polynomial orders.

Number of iterations MSE at di�erent polynomial orders

P = 2 P = 3 P = 4 P = 5 P = 6 P = 8

50 4.90E-06 0.000001 0.000053824 8.649E-05 0.00073984 0.00016129

100 1.44E-06 4.225E-05 0.000048841 9.409E-05 0.00061009 0.000144

150 4.9E-07 5.184E-05 0.00073984 1.00E-05 0.0007569 0.000018769

200 6.4E-07 5.184E-05 0.00003984 1.1664E-05 0.000784 8.70489E-05

225 3.6E-07 5.184E-05 4.225E-05 0.000073984 0.00047089 1.369E-05

250 2.20E-07 1.089E-05 3.96E-05 7.056E-05 0.00055696 1.024E-05

300 1.10E-07 0.000073984 6.40E-06 1.96E-05 0.00022201 2.6244E-06

350 1.51E-07 1.77E-05 7.744E-06 5.184E-05 0.00036481 0.001681

375 1.40E-07 5.776E-05 7.84E-06 2.704E-05 0.00010201 5.76E-06

400 1.90E-07 0.000026244 5.184E-06 4.90E-06 2.03E-04 2.63169E-05

500 1.18E-07 0.000073984 1.1236E-06 1.69E-06 6.5536E-05 7.29E-05

600 1.40E-07 5.184E-05 0.00000196 5.1984E-06 0.00018225 6.67489E-05

800 9E-08 1.444E-05 4.9729E-06 5.184E-05 0.00013456 1.12225E-05

1000 6.40E-08 8.836E-05 7.3984E-06 2.809E-05 0.00058564 2.304E-05

1200 3.60E-08 4.00E-06 2.401E-05 0.00000025 8.10E-05 0.000022801

1400 1.60E-08 2.61E-06 5.184E-05 4.00E-06 2.2801E-06 2.01601E-05

A vs. E. Figure 6 shows the histogram of Firefly clusters in EEG

set A. This histogram plot is a right-skewed one, which again

establishes the presence of non-linearity in the feature. Figure 7

illustrates the histogram of Firefly clusters in EEG set E. Figure 7

exhibits the flatness in the histogram, which is different from

the histogram of set A. The profound technique of extracting

three types of entropy, e.g., Approximate Entropy (Pincus, 1991),

Shannon Entropy (Shannon, 1948), and Sample Entropy (Richman

and Moorman, 2000) for the clustered features of EEG data shows

the intactness of residuals and variation as in the original EEG data.

Shannon Entropy extracts the uncertainty associated with a

more specific event and its outlier characteristics. Approximate

Entropy shows the presence of non-linear and complicated features

in irregular data. Sample Entropy is obtained by the removal

of self-matches in the Approximate Entropy. Sample Entropy is

independent of data length and depicts consistency. The average

entropies, which in turn represent the lower and upper bounds of

the clusters, are presented in Table 3. The average value of entropy

among the clusters in Table 3 indicates the availability of a distinct

classification in the A-E EEG data set.
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FIGURE 10

Performance of MSE in the number of iterations for the Polynomial SVM classifier at di�erent orders.

TABLE 7 Performance of the MSE in the number of iterations for the

Linear SVM classifier for the SGD algorithm.

Number of iterations MSE

50 2.30E-05

100 0.00061504

150 1.024E-05

200 0.000225

225 7.84E-05

250 3.31E-05

300 3.24E-05

350 6.40E-05

375 1.69E-06

400 4.97E-05

500 1.51E-04

600 2.34E-04

800 0.00021025

1,000 1.23E-06

1,200 1.32E-06

1,400 1.24E-06

1,600 2.3104E-07

2,000 1.69E-08

4. Classification of the clustered values

The clustered values are then classified with the help

of 10 different classifiers such as ANN, KNN, Incremental

LDA (I-LDA), NBC, Quadratic Discriminant Analysis (QDA),

Decision Trees, and Random Forest (RF), as explained in the

following subsections.

4.1. ANN classifier

Motivated and inspired by the basic functional ideas of

biological neural networks, ANN is a simple learning-based

classifier (Sezer et al., 2012). The posterior probabilities can

be easily estimated by ANN, which in turn helps to establish

classification rules and then perform the statistical analysis. There

are various ANN parameters here, the ANN configuration uses

training cycles = 800, momentum decay = 0.5, and learning rate

= 0.3. The ANN architecture used in this work is (128-32-2). The

learning algorithm used here is the Levenberg-Marquardt (LM)

algorithm with a sigmoidal function.

4.2. KNN classifier

A given test sample is compared with the training samples

that are similar, where the k parameter is a small positive and odd

integer value. There are two important steps in this algorithm (Song

et al., 2007). First, the k training samples that are closest to the

invisible sample are found. Second, the common classification for

the k samples is taken, and then the average of the values of its

KNN is found out in the regression stage. Using a distance metric

called normalized Euclidean distance, it can be defined. Between

the two points Z1 = (z11, z12, ..., z1m) and Z2 = (z21, z22, ..., z2m),

the distance is analyzed as:

dist (Z1,Z2) =

√

√

√

√

m
∑

i=1

(z1i − z2i)
2 (19)

In this work, the KNN uses a value of k = 2, and the measure

types have been selected as mixed measures, thus allowing the

mixed Euclidean distance as the best option.
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FIGURE 11

Performance of the MSE in the number of iterations for the Linear SVM classifier for the SGD algorithm.

4.3. I-LDA classifier

It is a kind of LDA classification technique that can easily

update and classify the cluster features through the simple

observation of new samples (Chu et al., 2015). The I-LDA classifier

was trained with pre-ictal and ictal feature vectors. In the training

set, the sampling strategy was used to randomly balance the number

of pre-ictal and ictal segments. During the testing phase, the trained

classifier was tasked with categorizing the incoming epoch as a pre-

ictal or an ictal state. For the pre-ictal state, the binary result of the

classifier was zero, and for the ictal state, it was one. To smooth the

results, a median filter was used. The prediction alarm would be

raised if 6Tj = αj, where Tj is consecutive “1 s”, with a progressive

window of 1 s and αj is a patient dependent threshold,. The value of

αj is obtained from the training data set. If the range falls within

the prediction zone, then the alarm is positive; otherwise, it is

considered as a false alarm.

4.4. NB classifier

This simple statistical probabilistic classifier was developed

based on the application of Bayes’ theorem (Islam et al., 2007).

The naive Bayesian technique assumes that the calculation of

the NBC is easier than the exponential complexity. Here, it

proves its efficacy by analyzing the fact that certain features of a

class are irrelevant to other features. Each feature is considered

independently to calculate its respective probability, which helps

to calculate the probability of a certain class, which will be the

classification outcome.

4.5. SVM classifiers

Based on the principles of structural risk minimization and

statistical learning theory, SVM classification was developed

(Swami et al., 2014). The main idea of the SVM is to map

the input data into a higher-dimensional space. Once mapped,

an optimal separating hyperplane between the two data classes

of the transformed space is determined. SVMs can easily map

the inseparable data into a high-dimensional space by means of

constructing a linear kernel function. When the data are not

linearly separable, which is the case with nonlinear classifier

models, SVMs can clearly provide a better fit of the hyperplane

to the input data set. Originally designed as a two-class classifier,

its application was later extended to multiclass classification. A

set of pairwise classifiers is employed based on one-against-one

decomposition. For the binary SVM classifier, the decision function

is expressed as:

f (y) = sgn





s
∑

j=1

zjαjk
(

yj, y
)

+ w



 ; 0 < αj < Q (20)

where sgn denotes a sigma function; k
(

yj, y
)

denotes a kernel

function; and w denotes the bias of the training samples. Several

kernel functions, such as the Linear kernel, Polynomial kernel, and

Radial Basis Function (RBF) kernel, are used in this work. Between

the model complexity and the training error, to control the trade-

off, the regularization parameter Q is utilized and is calculated

as follows:

Q =
N

N
∑

j=1
K

(

yj, y
)

(21)

where N denotes the size of the training set.

By utilizing a set of decision functions fkh, a binary or multiclass

classification problem arises. With the help of the following

formula, the class decision is obtained as follows:

fk(y) =
n

∑

j=1

sgn
(

fkh(y)
)

(22)

where kh denotes each pair of classes extracted from separate

target classes, n denotes the number of separate target classes.

Initially, a label is assigned to the class as follows:

argmax fk(y),
(

k = 1, 2, ..., n
)

(23)
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TABLE 8 Consolidated result analysis of K-means clusters with the

di�erent classifiers.

Classifiers Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

ANN 56.57656 100 78.28828

KNN 71.875 100 85.9375

I-LDA 61.46 100 80.73

NBC 100 97.92 98.96

Linear SVM 97.92 100 98.96

Polynomial SVM 94.79 100 97.395

SVM–RBF 92.71 100 96.355

QDA 91.41 100 95.705

Decision Trees 69.795 100 84.8975

RF 100 80.225 90.1125

TABLE 9 Consolidated result analysis of FCM clusters with the di�erent

classifiers.

Classifiers Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

ANN 64.19 100 82.095

KNN 100 89.59 94.795

I-LDA 100 85.42 92.71

NBC 100 89.0675 94.53375

Linear SVM 90.11 100 95.055

Polynomial SVM 95.31 100 97.655

SVM–RBF 100 77.625 88.8125

QDA 100 96.875 98.4375

Decision Trees 97.92 100 98.96

RF 73.4375 100 86.71875

The conversion from the n-class classification problem to

the (n (n1)/2 ) two-class problem is generally done by pairwise

classification, which helps to cover all the pairs of classes.

4.6. QDA classifier

Among statistics, signal processing, and pattern recognition, it

is widely used to seek a quadratic combination of features that are

responsible for analyzing an example into two or more types of

categorizations (Heijden et al., 2005). The process of discriminating

quadratic multiplication factors is used for both classification and

dimensionality reduction, but in our work it has been used only

for classification.

4.7. Decision tree classifier

Decision Trees utilize the top-down construction method to

recursively split the data set into smaller subsets (Wang et al.,

TABLE 10 Consolidated result analysis of Cuckoo search clusters with the

di�erent classifiers.

Classifiers Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

ANN 87.5 100 93.75

K-NN 82.94813 100 91.47406

I-LDA 75 100 87.5

NBC 100 96.3525 98.17625

Linear SVM 98.96 100 99.48

Polynomial SVM 91.67 100 95.835

SVM–RBF 67.969 100 83.9845

QDA 70.05625 100 85.02813

Decision Trees 65.232 100 82.616

RF 100 90.11 95.055

TABLE 11 Consolidated result analysis of Dragonfly clusters with the

di�erent classifiers.

Classifiers Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

ANN 80.7375 100 90.36875

KNN 51 100 75.5

I-LDA 65.884 100 82.942

NBC 62.5 100 81.25

Linear SVM 80.225 100 90.1125

Polynomial SVM 100 81.25 90.625

SVM–RBF 94.79 100 97.395

QDA 93.75 100 96.875

Decision Trees 91.15 100 95.575

RF 77.625 100 88.8125

2012). Utilizing the concept of information entropy, a decision

tree is built by the classifier for the data set. By splitting the

data into a smaller number of subsets, a decision can be made

for each attribute in a decision tree. The attribute that gives the

highest information gain is easily evaluated by this algorithm.

Once an attribute is selected, the data set is divided into further

subsets. As a result of the tree structure, each inner node

corresponds to input attributes, each branch indicates a range

of values within that attribute, and each leaf accounts for a

good classification.

4.8. RF classifier

To solve the classification problem, one of the successful

ensemble techniques used in the machine-learning approach is

RF (Mursalin et al., 2017). A collection of Decision Trees is

presented here that could act as a single classifier, also enabling

multi-classification models and tasks. To achieve the most stable
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TABLE 12 Consolidated result analysis of Firefly clusters with the

di�erent classifiers.

Classifiers Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

ANN 100 68.75 84.375

KNN 59.38 100 79.69

I-LDA 100 83.86 91.93

NBC 51.5 100 75.75

Linear SVM 100 84.38 92.19

Polynomial SVM 66.699 100 83.3495

SVM–RBF 79.7125 100 89.85625

QDA 71.09875 100 85.54938

Decision Trees 89.59 100 94.795

RF 100 78.4125 89.20625

TABLE 13 Consolidated result analysis of modified Firefly clusters with

the di�erent classifiers.

Classifiers Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

ANN 57.42563 100 78.71281

KNN 100 89.59 94.795

I-LDA 100 96.3525 98.17625

NBC 100 91.41 95.705

Linear SVM 95.31 100 97.655

Polynomial SVM 95.83 100 97.915

SVM–RBF 100 65.884 82.942

QDA 100 80.225 90.1125

Decision Trees 56.7725 100 78.38625

RF 71.68094 100 85.84047

tree classification, various subsets of the training data are fed to

each tree, thereby resulting in a generalized experience for the

classifier. The data set is divided into two parts. First, each tree

is trained using the bootstrapping method, and the second part

is utilized to assess the classification accuracy. To obtain a high-

variance classifier, each tree is allowed to reach its maximum depth.

The splitting process continues until the pre-defined termination

condition is achieved. Once the forest is established, the total

number of subsets remains a constant value. From the root node

to the leaf node, the journey is made for the unlabeled instances

in the classification. The determination of each class that has

the maximum votes from all the decision trees is analyzed for a

final decision.

5. Results and discussion

The effectiveness of a classifier can be evaluated

with many performance evaluation formulas, such as

Sensitivity, Specificity, and Accuracy, and is represented

as follows:

Sensitivity =
TP

TP + FN
(24)

Specificity =
TN

TN + FP
(25)

Accuracy =
TP + TN

TP + TN + FP + FN
(26)

True Positive (TP) and True Negative (TN) indicate the correct

classification of the number of epileptic seizures and seizure-free

signals. False Positive (FP) and False Negative (FN) denote the

incorrect classification of the number of epileptic seizures and

seizure-free signals.

The representation of the Mean Square Error (MSE) is

expressed as follows:

MSE =
1

Z

Z
∑

i=1

(Vi −Wj)
2 (27)

where the observed value at a given instant of time is expressed

as Vi,Wj represents the target value at the model j; j=1 to 10, and Z

represents the total number of significant observations per patient

- in our case, 4097. The training was carried out in a regressive

manner, and theMSE value of the classifiers was drastically reduced

to the maximum possible extent. The training of all the classifiers

was done to achieve a zero-training MSE. The selection of the

hyper parameters in the classifiers is of two types; they are attaining

the minimum MSE and the number of iterations with reasonable

accuracy. As in the case of the classifier (SVM), the maximum

number of iterations is fixed at 450 for a minimumMSE of (10−05),

and apart from this, another constraint of obtaining continuous

achievement of the minimum MSE for at least three consecutive

iterations is done. In order to avoid the local minima problem,

multiple runs of the algorithm are performed. Under this condition,

the classifiers are trained to obtain valuable parametric values with

reasonable accuracy.

To ensure the effectiveness and reliability of the classifiers,

cross-validation is used. For both training and testing, the available

data is split up into subsets of equal size. The first subset is chosen

as the test set, and the other K-1 subsets are combined to form the

training and validation sets. After training the classifier using these

subsets, the classification performance of the test set is recorded.

The process is then repeated so that each of the K-1 subsets acts as

a test set in turn. The final classification performance is the average

of the K test set results. In this paper, a value of 10 was used for K,

and the experiment was repeated ten-fold.

5.1. Selection of KNN hyper parameters

Since the problem is of two classes in nature, that is, normal

and epileptic sets of EEG signals, the K value for the KNN classifier

has to be chosen as two or more than that. In order to select the

hyper parameters for the KNN classifier, we identified the penalty

function as Euclidean distance, the similarity index error as MSE,

and the number of iterations as the cost function. As in the case
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of KNN classifiers, the same procedure is repeated for different

values of K = 2, 4 to identify the optimal number of iterations in

terms of a low MSE value. Table 4 shows the performance of MSE

with a different number of iterations for KNN classifiers at different

K values.

As shown in Table 4, when the value of K is 2, the KNN classifier

converges at a low number of iterations (300) at an MSE value

of 2.3E-05, and any further increases in the number of iterations

further decrease the MSE value. For K = 4, the KNN classifier

is either impacted by local minima or has a flattened MSE effect.

Therefore, for the KNN classifier, the K value is selected as 2. The

same performance of the MSE is also depicted in Figure 8.

5.2. Selection of SVM hyper parameters

The selection of hyperparameters in an SVM classifier is done

by two functions, i.e., penalty and cost functions. In this paper,

we are discussing three types of SVM classifiers, namely SVM-

RBF, Polynomial SVM, and Linear SVM. In the case of SVM-

RBF and Polynomial SVM classifiers, the hyper parameters are

selected by the grid-based search method. For the SVM-RBF

classifier, the gamma value of the RBF kernel must be chosen.

For this, MSE will be the penalty function, and the number of

iterations will be the cost function as it attains a good gamma

value for low MSE at a lower number of iterations. By varying

the gamma value of the RBF kernel as (0.2, 0.4, 0.6, 0.8, 1.0,

1.2, 1.5, 2.0, and 2.2) and increasing the number of iterations

in suitable steps, we calculated the MSE of the above mentioned

SVM-RBF classifier. Table 5 shows the performance of the MSE

in terms of the number of iterations for SVM-RBF at different

gamma values.

From Table 5, it can be seen that for a gamma value of 2.0, a

lower MSE of 4.00E-08 is obtained at a number of iterations of 250.

Furthermore, in this case, an increase in the number of iterations

is shown as a decrease in the MSE value. For all other gamma

values, the SVM-RBF classifier is either impacted by local minima

or has a flattenedMSE effect. Therefore, in the case of the SVM-RBF

classifier, the gamma value is selected as 2.0. The same performance

of the MSE is also depicted in Figure 9.

As shown in Figure 9, for a gamma value of 2.0, a lower MSE

value of 4.00E-08 is attained for a number of iterations of 250.

5.3. Selection of hyper parameters for the
polynomial SVM classifier

The selection of hyper parameters for the Polynomial SVM

classifier is performed by the grid search method, just as for the

SVM-RBF classifier. The MSE is considered the penalty function,

and the number of iterations is the cost function, which controls

the order of the polynomial (P). Table 6 shows the performance of

the MSE in terms of the number of iterations for the Polynomial

SVM classifier at different polynomial orders.

As shown in Table 6, the polynomial of order 2 converges at a

lower number of iterations (300) at an MSE value of 1.10E-07, and

any further increases in the number of iterations further decrease

the MSE value. For all other polynomial orders, the Polynomial

SVM classifier is either impacted by local minima or has a flattened

MSE effect. Therefore, for the Polynomial SVM classifier, the order

is selected as 2.0. The same performance of MSE is also depicted in

Figure 10.

As shown in Figure 10, for a polynomial order of 2.0, a lower

MSE value of 1.10E-07 is attained for a number of iterations of 300.

TheMSE value increases as we increase the order of the polynomial

beyond 4 and the number of iterations beyond 400.

5.4. Selection of hyper parameters for the
SVM linear classifier

The selection of hyper parameters for the Linear SVM

classifier incorporates a random search procedure. The Stochastic

Gradient Decedent (SGD) algorithm was used to identify the better

regression function with a lowMSE along with the optimal number

of iterations. The operation of the SGD algorithm is controlled by

the MSE as the penalty function and the number of iterations as the

cost function. Table 7 shows the performance of the MSE in terms

of the number of iterations for the Linear SVM classifier for the

SGD algorithm.

As shown in Table 7, in the case of the SGD algorithm, the

lowest MSE value is attained only after 1,000 (one thousand)

iterations. Further, if we increase the number of iterations

beyond 1,000, the MSE becomes a constant. Figure 11 shows the

performance of the MSE in terms of the number of iterations for

the Linear SVM classifier for the SGD algorithm. It is observed from

Figure 11 that the number of iterations from 50 to 800 shows that

the MSE value of the Linear SVM classifier follows many ups and

downs and is also trapped in the local minima case.

Table 8 shows the consolidated result analysis of K-means

clusters with the different classifiers. Table 9 shows the consolidated

result analysis of FCM clusters with the different classifiers. Table 10

shows the consolidated result analysis of Cuckoo search clusters

with the different classifiers. Table 11 shows the consolidated result

analysis of Dragonfly clusters with the different classifiers. Table 12

shows the consolidated result analysis of Firefly clusters with the

different classifiers. Table 13 shows the consolidated result analysis

of Modified Firefly clusters with the different classifiers. Table 14

shows the consolidated MSE analysis with K-means, FCM, Cuckoo

search, Dragonfly, Firefly, and Modified Firefly clusters. In this

study, we used a 10-fold training and testing strategy.

The result of the analysis of K-means clusters when treated with

the different classification techniques shows a high classification

accuracy of 98.96% when NBC and Linear SVM are utilized. A low

classification accuracy of 78.28% is obtained when ANN is used

because of the high false alarm rate. When the K-means clusters are

analyzed with the classification techniques, then the performance of

the NBC and RF classifiers is impacted by the missed classification.

The result of the analysis of FCM clusters when treated with

the different classification schemes shows a high classification

accuracy of 98.96% when classified with Decision Trees and a high

classification accuracy of 98.43% when classified with QDA. A low

classification accuracy of 82.095% is obtained with a high false

alarm rate of 35.8% when implemented with ANN.
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TABLE 14 Consolidated MSE result analysis with K-means, FCM, Cuckoo search, Dragonfly, Firefly, and Modified Firefly clusters, with classifiers.

Consolidated analysis K-means
clustering

FCM
clustering

Cuckoo
search

clustering

Dragonfly
clustering

Firefly
clustering

Modified
firefly

clustering

Classifiers MSE MSE MSE MSE MSE MSE

ANN 9.41E-05 5.04E-05 4E-06 1.37E-05 3.6E-05 7.92E-05

KNN 2.5E-05 2.25E-06 9.61E-06 0.000529 6.89E-05 2.25E-06

I-LDA 6.08E-05 6.25E-06 2.02E-05 4.62E-05 8.41E-06 1.6E-07

NBC 4E-08 2.89E-06 1.6E-07 5.62E-05 0.0004 1.21E-06

Linear SVM 4E-08 1.96E-06 1E-08 1.44E-05 7.84E-06 3.6E-07

Polynomial SVM 4.9E-07 3.6E-07 0.000001 1.23E-05 4.36E-05 2.5E-07

SVM–RBF 8.1E-07 1.76E-05 3.97E-05 4.9E-07 1.52E-05 4.62E-05

QDA 1.21E-06 9E-08 3.25E-05 6.4E-07 2.92E-05 1.44E-05

Decision Trees 3.36E-05 4E-08 4.76E-05 1.44E-06 2.25E-06 9.02E-05

RF 1.44E-05 2.21E-05 1.96E-06 1.76E-05 1.68E-05 2.6E-05

TABLE 15 Performance comparison with other prominent works for the A vs. E classification problem.

Year References Technique Classification
accuracy

2022 Prabhakar and Lee (2022a) Sparse autoencoder with Swarm-based deep

learning and reinforcement-based Q-learning

98.55%

2022 Prabhakar and Lee (2022c) Sparse modeling with an ensemble and

nature-inclined classification

98.15%

2020 Zhao et al. (2020) End-to-end deep learning model 99.52%

2019 Raghu et al. (2019) Matrix determinant analysis with MLP 99.45%

2018 Sharma et al. (2018) Orthogonal wavelet analysis with Linear SVM 100%

2017 Diykh et al. (2017) Weighted complex networks with SVM 100%

2016 Bhardwaj et al. (2016) Empirical decomposition analysis with soft

computing

98.64%

2015 Samiee et al. (2015) Fourier transform analysis with neural networks 99.80%

2014 Kaya et al. (2014) Binary patterns generation with Bayesian

networks

99%

Proposed performance comparison analysis of

clustering with machine learning (2023)

Prabhakar and Won Clustering through Cuckoo search with Linear

SVM

99.48%

Proposed performance comparison analysis of

clustering with machine learning (2023)

Prabhakar and Won a) Clustering through K-means and classifying

with NBC and Linear SVM

b) FCM clustering and classifying with

Decision Trees

98.96%

Proposed performance comparison analysis of

clustering with machine learning (2023)

Prabhakar and Won FCM clustering and classifying with QDA 98.43%

The result of the analysis of Cuckoo search clusters when

treated with the different classification techniques shows a high

classification accuracy of 99.48% when classified with Linear SVM,

while 98.17% is obtained when NBC is utilized as a classification

technique. A low classification accuracy of 82.61% is obtained when

Decision Trees are implemented with Cuckoo clusters.

The result of the analysis of Dragonfly clusters when treated

with the different classification techniques reports a classification

accuracy of 97.39% when utilized with the SVM-RBF kernel. A low

classification accuracy of 75.5% is obtained when the KNN classifier

is implemented.

The result of the analysis of Firefly clusters when treated

with the different classification techniques reports a classification

accuracy of 94.79% when classified with Decision Trees. A low

classification accuracy of 75.75% is obtained when it is classified

with NBC.

The result of the analysis of Modified Firefly clusters when

treated with the different classification techniques reports a high

classification accuracy of 98.17% when classified with I-LDA, and

a classification accuracy of 97.91% is obtained when classified

with Polynomial SVM. A low classification accuracy of 78.38% is

obtained when classified with Decision Trees.

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2023.1156269
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Prabhakar and Won 10.3389/frai.2023.1156269

5.5. Comparison with other works

For the classification problem A vs. E, the most important

works are compared with our study and tabulated in Table 15.

Even though the proposed work produces slightly lower

classification accuracy than the previous study, the main intention

of the present study is to show that the combination of clustering

with machine learning can prove to be well-suited for the

classification of EEG signals for analyzing neurological disorders.

6. Conclusions and future work

Utilizing an EEG to detect epileptic seizures is quite a

challenging task that demands a very high level of skill from

doctors. The advent of computer-aided detection is a great asset

to physicians for the interpretation of EEGs. This study used

the concept of feature extraction through various clustering

methodologies and then categorized them with the help of suitable

post-classifiers. The process is simple and easy to implement.

Comparatively higher classification accuracy of 99.48% was

achieved when Cuckoo search clusters were utilized with Linear

SVM for epilepsy detection. The second highest classification

accuracy of 98.96% was obtained when K-Means clusters were

utilized with NBC and Linear SVM classifiers. FCM clusters, used

with a Decision Trees classifier, also gave the same classification

accuracy of 98.96%. The third-best classification accuracy of 98.43%

was obtained when FCM clusters were classified with QDA.

The lowest classification accuracy, at 75.5%, was obtained when

Dragonfly clusters were used with the KNN classifier, and the

second lowest classification accuracy, at 75.75%, was obtained

when Firefly clusters were classified with NBC. Future works

intend to work with various other clustering techniques, such as

the Whale optimization algorithm, the Moth Flame optimization

algorithm, the Artificial Algae optimization algorithm, the Genetic

Bee optimization algorithm, the GrayWolf optimization algorithm,

and the Fish Swarm optimization algorithm, along with different

pattern recognition techniques and advanced machine learning

methodologies, for effective classification of epileptic seizures in

other combinations of the Bonn data set. Future works also aim

to incorporate the concept of clustering and machine learning for

the efficient classification of other neurological disorders. Future

works, finally, aim to include a variety of transfer and deep

learning techniques for the efficient classification of epilepsy from

EEG signals.
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