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Modeling metal additive manufacturing processes is of great importance because

it allows for the production of objects that are closer to the desired geometry

and mechanical properties. Over-deposition often takes place during laser metal

deposition, especially when the deposition head changes its direction and results

in more material being melted onto the substrate. Modeling over-deposition is

one of the necessary steps toward online process control, as a good model

can be used in a closed-loop system to adjust the deposition parameters in

real-time to reduce this phenomenon. In this study, we present a long-short

memory neural network to model over-deposition. The model has been trained

on simple geometries such as straight tracks, spiral and V-tracks made of Inconel

718. The model shows good generalization capabilities and can predict the height

of more complex and previously unseen random tracks with limited performance

loss. After the addition to the training dataset of a small amount of data coming

from the random tracks, the performance of the model for such additional shapes

improves significantly, making this approach feasible formore general applications

as well.

KEYWORDS

laser metal deposition, artificial intelligence, long-short-term-memory network,

track height prediction, over-deposition, generalizable model, Inconel 718, process

optimization

1. Introduction

Additive manufacturing has gained traction in the last years thanks to its capability of

manufacturing objects rapidly without the need of molds and with reduced material waste.

Moreover, complex objects can be produced in one piece, often improving both mechanical

properties and weight of the final parts (Godec et al., 2022). Laser Metal Deposition (LMD)

is an additive manufacturing technique which uses a laser to melt metal powder onto a

substrate. As the deposition head containing the laser moves, it leaves a solid metal track

behind. As the deposition proceeds, an object will be created layer by layer (Schmidt et al.,

2017).

The deposition process through LMD is very complex and the optimal deposition

parameters when depositing new shapes or using new materials are unknown. In addition,

the deposited parts often deviate from the planned geometry, which results in the need for

intensive post-processing of the produced pieces in the best cases, and in total failure in

the worst. One source of such deviations is the so-called over-deposition. This phenomenon
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FIGURE 1

(A) Schematic view of the laser spot moving along a line (left) and

changing direction at a corner (right). When making a corner, the

laser spot covers the pink area in the right image more than once,

resulting in more material deposited. (B) Over-deposition in a 3D

object. The over-deposition in the corners of a single-layer adds up

when manufacturing multi-layer parts, resulting in a significant

deviation from the planned geometry.

occurs when the deposition head changes its direction. When the

deposition head follows a straight line, themelt pool covers different

points on the substrate with uniform duration within a layer

(Figure 1A, left). When it changes direction, however, some parts of

the substrate are covered for a longer time, due to the overlapping

of track segments (Figure 1A, right), resulting in more material

being deposited and therefore a larger height of the track at corners.

Moreover, the deposition head decelerates before reaching a corner

and then accelerates again after having changed its direction. This

also contributes to an increase in the deposited material at corners.

When a 3D object is printed, these effects sum up in subsequent

layers, leading to significant deviations from the planned geometry

(Figure 1B).

One way to address over-deposition is to modify the deposition

parameters (such as laser power) when the deposition head

changes its direction. During the deposition, the process is

monitored, the layer height is predicted, and the parameters

can be changed through a closed-loop feedback system (Johnson

et al., 2020). A good model of the deposition process is therefore

needed. Numerical models have been employed in the literature

to predict the deposition outcomes, such as the geometrical

properties of the produced parts. The drawback of this approach

is the high computational load required to simulate the process.

Even simplified models (i.e. models that do not consider fluid

flow) provide a good prediction of the layer height, but require

approximately 45 minutes for simulating one 60 mm long layer

(Peyre et al., 2017), which makes this approach not feasible

for dynamically adapting the deposition parameters during the

deposition of real 3D parts. Artificial intelligence can provide a

solution to this problem, as the computational load is shifted

to the training of the model. The time needed to predict the

process outcomes during deployment depends on the features

used and the complexity of the models, but it is in the range of

milliseconds, several orders of magnitudes smaller compared to

numerical models (Dai et al., 2020).

Artificial intelligence has been employed in literature for

predicting the height, porosity, and defects of cuboids of a Fe-Ni

alloy deposited through LMD (Lee et al., 2023). In this work, the

Shapley additive explanation approach has been applied to estimate

the effect of different deposition parameters such as power, speed,

and powder flux on the process outcomes. Understanding the

relationships between these quantities is important to determine an

optimal range of process parameters. However, LMD intrinsically

produces sequential data, a feature which has not been considered

in this study, as the model predicts the average height of the

cuboid. Recurrent neural networks with gated recurrent units have

been employed in Mozaffar et al. (2018) to predict the thermal

history of the LMD process based on synthetic data generated

by finite element simulations with added noise. This approach

demonstrates that recurrent neural networks are a good choice to

analyze sequential data in additive manufacturing. In our previous

work (Perani et al., 2023) we predicted the height, width and

cross-section of Inconel 718 single tracks (i.e. a single layer of

material deposited along a straight line) using a deep-learning

system based on convolutional neural networks. The advantage of

this approach relies on the capability of the system of analyzing

images of the melt pool acquired during the deposition. On the

other side, even if the deposition process was followed in its

temporal evolution (i.e. a height prediction for each acquired image

frame have been produced), the time dependencies of the data

could not bemodeled with such a system. As only single tracks were

employed, the generalization capabilities of the model had not been

investigated. Height prediction of single- and multi-layer tracks

based on features available offline has been performed in Knüttel

et al. (2022a,b). Fully connected networks and XG Boost have been

employed to make a prediction based on the process parameters

and the geometrical properties of the laser trajectory. This work

demonstrates that machine learning models are suitable to predict

the geometrical features of more complex shapes, however, real-

timemonitored features likemelt-pool images were not considered,

making this model suitable for off-line process optimization but not

for real-time process control.

In the present study, we propose a novel pipeline comprising

data acquisition, feature engineering and a model architecture

based on a Long-Short-Term-Memory (LSTM) network to predict

the height of single-layer tracks deposited through LMD. A model

suitable for industrial use should be able to generalize, i.e. to make

predictions on objects and structures not seen during training.

To address the generalization capability of the model, simpler

structures like straight lines and V-shaped objects are used during

the training, while more complex tracks presenting random corners

have been used for testing the performance of the model. This

paper is organized as follows: Section 2 describes the data and

the pre-processing used for developing the model, as well as the

additional features added to the acquired experimental data. The

used network architecture is described as well. Section 3 focuses on
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FIGURE 2

Di�erent shapes used for training and testing the machine learning model: single tracks, spiral, V-tracks and random tracks.

TABLE 1 Process parameters used for the di�erent shapes.

Track type Deposition speed (mm/s) Power (W) Powder flux (g/s) Angles Specific energy (J/mm2)

Single tracks 5–17.5, step 2.5 200-700, step 100 0.032 - 40–140

V-tracks 5.8, 10, 15 300 0.099 20◦ , 45◦ , 90◦ 20–52

Spiral 10 300 0.0825 90◦ 30

Random tracks 10 300 0.0825 random 30

the results obtained for predicting track height, and in Section 4 the

main results are discussed in detail. Section 5 summarizes the most

important results.

2. Materials and methods

For the present study, different shapes deposited through LMD

with the nickel alloy Inconel 718 are considered. The diameter

of the Inconel 718 powder is 77 ± 30 µm and the deposition

takes place on a substrate of the same material at ambient initial

temperature. Themachine used for the deposition is a Lasedyne 430

with four deposition nozzles and Argon as carrier gas (4 l/min). An

IDS UI-3070CP-C-HQ2 camera mounted on the deposition head

has been used to record a top view of the melt pool area. During

the deposition, different data are recorded with a frequency of 200

Hz:

• X, Y, and Z position of the deposition head;

• laser activation signal;

• images of the melt pool (400 x 400 pixels).

After the deposition, the height, width, and cross-section of the

deposited shapes have been measured using a GOM ATOS Core

200 fringe projection scanner. Different deposited shapes are

considered in the present study: single tracks, V-shapes, spiral

and single-layer random tracks. Figure 2 shows pictures of the

deposited geometries. All deposited tracks are single-layer, and

these shapes have been chosen as they are suitable to model over-

deposition. The different tracks within the same shape type have

been deposited using different parameters.

Table 1 summarizes the values used for the deposition speed,

power, powder flux, and the resulting specific energies. All

tracks have been deposited with a laser spot diameter of 1 mm.

Single tracks are 20 mm long straight segments, and have been

deposited at different nominal powers and speeds. Every possible

combination of speed and power is present in the dataset, for a

total of 36 tracks. V-shaped tracks have also been deposited for all

the different combinations of power, speed, and angle, and each

combination has been repeated three times, resulting in 27 different

tracks. The side of the spiral track is 60 mm long with a step of

3 mm and the experiment has been repeated twice. The random

tracks are about 90 mm long in x direction and span a maximum

of 10 mm in y direction, and they are composed of randomly

generated straight segments separated by random, sharp angles;

they have been deposited with 300 W power and a cruise speed of

600 mm/min.

During a first preprocessing, the so-called data fusion, the data

acquired during the deposition and the spatial measurements of

the objects acquired thereafter (i.e. track height, width and cross-

section) are synchronized and merged into one dataset suitable for

machine learning purposes, as described in detail in (Perani et al.,

2023). The resulting dataset for the single tracks (Baraldo, 2020),

the spiral (Baraldo and Vandone, 2020a), the V-tracks (Baraldo and

Vandone, 2020b) and random tracks (Baraldo and Giusti, 2021)

are available under CC-BY 4.0 license. In order to model over-

deposition, several new features have been added to the dataset. In

addition to the deposition speed, its component Vx and Vy over

the X and Y axes have also been considered. Two new features

W-neighbors and W/2-neighbors have been created to account for

the geometry of the tracks. Figure 3 describes the feature W/2-

neighbors. For each data point at a specific time t (black dot in the

figure), the deposition points within a radius of 〈W〉/2 are counted.

〈W〉 represents the average track width estimated from the single

tracks. All deposition points in the past and in the future with

respect to the time t that fall within this neighborhood are counted.

Figure 3 shows an example: the deposition head is approaching

a corner. All blue dots in the figure are within the set radius of
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FIGURE 3

For each deposition point, a W/2-neighbors feature is created,

which counts how many other deposition points (normalized to the

data acquisition frequency) fall within the average track radius W/2.

In the figure, the dotted line represents points falling within this

neighborhood, and thus contributing to the W/2-neighbors feature

(notice that also pink points from a nearby segment, although

deposited at a distant time window, are included).

FIGURE 4

Average height of the deposited single tracks as a function of the

nominal deposition speed for di�erent deposition powers.

〈W〉/2 and are therefore counted. Sometime along the deposition,

the head comes again close to this part of the track (pink solid

line). Some points are again within the radius and are counted as

well (pink dots). TheW/2-neighbors feature is normalized with the

acquisition frequency of the track, i.e.:

W/2-neighbors =
sum of the deposition points within r = 〈W〉/2

〈1t〉
.

(1)

This feature can be evaluated before the deposition starts, as the

trajectory of the deposition is determined beforehand. For this

reason, this feature could also be used for more complicated

geometries in a real-time setting. The feature W-neighbors is

evaluated similarly, but considers points of the trajectory that fall

within a 〈W〉 radius.

The dataset used for the training and testing of the machine

learning model comprises:

• the deposition speed V computed from the X, Y, and Z

position of the deposition head;

• the components of the speed vector Vx and Vy over the X and

Y axis respectively;

• the deposition power P;

• the average intensity of the acquired image Imean;

• the powder flux coming out from the deposition nozzles;

• theW-neighbors andW/2-neighbors features.

These features are used to build a model for predicting the height

of the deposited track H. As part of the pre-processing, all features

have been rescaled to be in the range [0,1] using the min-max

normalization:

Xscaled =
X −min (X)

max (X)−min (X)
. (2)

The simplest shapes, i.e., single tracks, V-tracks and spiral, are used

for training and optimizing the model. 75% of the tracks for each

geometry type are used for training, whereas 25% of them are in

the validation set. One spiral track is used for training, one in the

validation set. In order to prove the generalization capabilities of

the model to more complex shapes, only these simpler geometries

are used for building the predictive model. The random tracks are

not seen by the model during the training and are used as a test

set. A second experiment was performed, with just one random

track (i.e. 25% of the available tracks) added to the train dataset,

to investigate how much the model performance improves when a

small amount of data coming from more complex shapes is added

to the training.

The data has the form of a time series, and therefore Recurrent

Neural Networks (RNN) are a suitable choice to predict the height

of the track and to model over-deposition. RNNs are typically

used to model time series (the track sequences in the present

study), and LSTM networks have been the best-known variant

for many years. They have been chosen in the present study as

they provide a solution to the vanishing gradient problem of

traditional recurrent neural networks and as they can handle long-

term dependencies (Hochreiter and Schmidhuber, 1997). Gated

Recurrent Units (GRU) often achieve better results than LSTMs

with small amounts of data due to their lower complexity, as

they only have two gates instead of three (Chung et al., 2014).

However, some preliminary tests showed no improvement in the

model performance using GRUs, therefore a LSTM architecture has

been used in the present study. The architecture was implemented

using Keras (Chollet, 2015). A grid search was implemented to

determine the best hyperparameters of the model. The following

parameters have been tested: batch size (32, 64, 96), LSTM nodes

(96, 128, 160), LSTM layers (1, 2), learning rate (0.0005, 0.001,

0.0015) and experiment (1 without random tracks, 2 with random

tracks). All 108 combinations of hyperparameters have been tested,

and the best 20 combinations have been analyzed. The best model

performance has been reached with a batch size of 64. The number

of LSTM nodes, LSTM layers and learning rate have a small effect

on the model performance. The model used in the present paper

comprises one LSTM layer of 128 nodes, which are trained for 30
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FIGURE 5

Height of the deposited random tracks.

epochs with a learning rate of 0.001, with a learning rate decay of

0.8. The values of the features for 20 deposition steps (t, t − 1,

. . . t − 19) are given as input to the LSTM to predict the height

at the time t. The Mean Squared Error (MSE) is used as a loss

function during training and subsequently as a metric to estimate

the performance of the model. The relative error (RE) on the

prediction has also been used to compare the results on different

geometries. This metric is defined as:

RE% =
mean absolute error

〈H〉
· 100 (3)

The code developed for the present study is available at this link.

Permutation feature importance has been used to evaluate the

effect of each feature on the results. This approach was firstly

introduced with random forest (Breiman, 2001) and consists in

the evaluation of the performance loss of the model when a single

feature is shuffled randomly. A bigger performance loss indicates a

bigger importance of the specific feature.

3. Results

The deposition of single tracks has been done on a wide

range of values for the deposition power and speed. Figure 4

shows the average height of each track as a function of the

deposition speed. Different data series account for the different

deposition power used. The average height has been evaluated

only on the stable portions of the tracks, i.e. the beginning and

the end of the tracks, where the deposition head accelerates

and decelerates, have been excluded. The height decreases with

the deposition speed and increases with the deposition power

used. A lower deposition speed leads to a longer time spent on

a specific portion of the substrate, resulting in more deposited

material. A higher power leads to a higher energy density

of the melt pool, which also leads to a higher track being

deposited.

The height along the trajectory of the random tracks is depicted

in Figure 5. A darker color indicates higher values of the height.

Over-deposition occurs when the deposition head changes its

direction, and it is clearly visible from the higher values of H

measured at the corners of the trajectory.

Figures 6, 7 depict the distribution of the features used for

training and testing the model for experiment 1, i.e., with the

FIGURE 6

Distribution of the features used by the model for training and

testing. (A) Deposition power. (B) Deposition speed. (C) Component

of the speed vector along the x-axis. (D) Component of the speed

vector along the y-axis.

random tracks used solely for testing purposes. The violin plots

show that the distribution of the features between the two datasets

is similar, although some differences can be observed in Vx and

Vy (Figures 6C, D), in the average intensity Imean (Figure 7A)

and in the features W-neighbors and W/2-neighbors (Figures 7B,

C). The distribution of the height of the tracks, the target of

the LSTM model, also shows that higher values of H are more

represented in the test dataset. The differences in the feature and

target distributions arise from the properties of the trajectory of the

random tracks compared to the simpler geometries. The angles at
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FIGURE 7

Distribution of the features used by the model for training and

testing and distribution of the target. (A) Average intensity of the

melt pool images. (B) W-neighbors. (C) W/2-neighbors. (D) Height

of the tracks.

the corners in the train dataset can only take on certain specific

values (20◦, 45◦, 90◦), while many more values are present in

the test dataset. As the random tracks contain more corners, the

amount of data points showing higher values of Imean as well as

higher over-deposition (i.e., higher values of H) is also higher

in the test dataset. Moreover, the randomness of the trajectory

also accounts for differences in W-neighbors and W/2-neighbors,

where a higher frequency of higher values is present in the test

dataset.

FIGURE 8

Error on the predicted height values on one example of validation

track for each simple geometry. (A) Single track. (B) Spiral. (C)

V-track.

Figure 8 shows the MSE for each predicted point of one

validation track for each simple geometry. The LSTMmodel is able

to predict the stable part of the tracks with a low error. An increase

in the error appears at the corners, where over-deposition occurs,

as well as at the beginning (Figure 8C) or at the end (Figure 9A)

of a track, where the deposition speed is not stable, but in general

the model can generalize well to test data, despite the different

distributions of features and target.

Figure 9 analyzes the observed differences between ground

truth and predicted height values for the selected validation tracks.

The predicted values rise where over-deposition occurs, but a delay

in the increase can be seen both for the spiral (Figure 9B) and the

V-track (Figure 9C).

The effect of each feature on the prediction has been

estimated with permutation feature importance on the validation

tracks, and the results are shown in Figure 10. Vx shows the

higher importance, followed by both the neighbors features.

It is important to note that correlated features can result in

a reduced importance in the analysis (Kaneko, 2022). This
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FIGURE 9

Ground truth and height prediction for one example of validation

track for each simple geometry. (A) Single track. (B) Spiral (excerpt).

(C) V-track.

FIGURE 10

Feature importance for the tracks in the validation set (simple

geometries).

means that the importance of some of the most important

features, namely Vx, Vy, W-neighbors and W/2-neighbors is

probably underestimated.

The performance of the model has been evaluated on the

test random tracks. Figure 11A shows the MSE along the random

tracks. Also in this case, the stationary parts of the tracks show

lower errors with respect to the corners, where over-deposition

occurs. The predicted height of the tracks increases at corners,

but also in this case some delay can be observed (Figure 11B).

FIGURE 11

(A) Error on the height prediction for the test random tracks. (B, C)

Ground truth and height prediction for one example of test random

track (excerpt). (D) Ground truth and height prediction for both

experiments for one example of test random track (excerpt).

Moreover, the LSTM seems to overestimate the over-deposition.

Where the deposition head passes multiple times in a small region,

the LSTM fails to follow the height evolution of the track and

underestimates H (Figure 11C).

The feature importance analysis has been repeated on the test

tracks, where the W-neighbors and W/2-neighbors features show

the biggest importance (Figure 12). It is important to note that

all random tracks have been deposited with the same powder

flux and nominal power. The random shuffling of those features

Frontiers in Artificial Intelligence 07 frontiersin.org
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FIGURE 12

Feature importance for the test tracks (random tracks).

has therefore no effect, and they have been included only for

completeness.

Table 2 reports the RE for the different geometries for the two

experiments performed, i.e. without and with one random track in

the training test, respectively. The relative error on the predicted

height for the validation tracks is 7.06% for experiment 1. This

value rises to 11.13% for the random tracks. When one random

track is included in the training dataset, the error on the validation

tracks rises to 7.83%, while the error on the random tracks decreases

to 9.37%. Moreover, the overestimation of the over-deposition for

the test tracks is reduced in experiment 2, as it can be seen in

Figure 11D.

4. Discussion

The LSTM model is able to model over-deposition, as shown

by the increase in the predicted height at the corner of the

trajectories. There are some delays, which can be explained by

the fact that the model only receives information about the last

twenty deposition steps. The only two features that can account

for the future development of the trajectory to some degree are

W-neighbors and W/2-neighbors, which are designed to consider

trajectory points not deposited yet. Therefore, the model only has

limited information about the upcoming corner in the trajectory

and the prediction suffers from a time lag. One way to overcome

this issue is to give themodel the values of certain features for future

time steps (i.e. t + 1, t + 2 and so on). This would be possible

for features such as the speed and the neighbors features, as the

trajectory of the deposition head is known before the deposition

starts.

The deposition speed and power determine the average height

of the straight sections of the tracks, as shown in Figure 4. However,

the speed and neighbors features show a bigger relevance to the

model to predict over-deposition. This is consistent with the fact

that the lower speed of the deposition head at the corners of

the trajectory contributes significantly to the deposition of more

material. Moreover, Vx, Vy and the neighbors features consider to

some extent the geometric properties of the trajectory around the

section being analyzed.

The relative error of the LSTM rises from an average of 7.06%

for the simple geometries to 11.13% when predicting the random

tracks, which are never seen during the training (experiment

1). A rise in the error is to be expected, as the distribution of

TABLE 2 Error on the validation and test tracks for experiments 1 and 2

(without and with one random track in the training data, respectively).

Track type Experiment 1 Experiment 2

RE % RE %

Validation set 7.06% 7.83%

Single tracks 7.24% 7.82%

V-tracks 6.68% 6.82%

Spiral 7.12% 8.04%

Random tracks 11.13% 9.37%

The bold values indicate errors on the test datasets.

the features in the random tracks shows some differences with

respect to the simple geometries. This phenomenon is known as

covariate shift (Quinonero-Candela et al., 2008) and it is quite

common in machine learning applications. The increase in the

error when predicting the random tracks is small, and it shows

that the model is robust and can generalize well to more complex

geometries never seen during training. This is very promising for

the application of the method to multi-layer objects, where a good

generalization is critical, since additive manufacturing is often used

for rapid prototyping and repair, meaning that the geometries of

the manufactured objects are constantly changing.

The decrease of the RE from 11.13% to 9.37% for experiment

2, i.e. when one random track is added to the training set,

shows that the addition of a small amount of data coming from

more complicated geometries is sufficient to successfully limit the

performance degradation of the model. In this case, the difference

in the prediction capability of the model on the single geometries

and the random tracks is reduced to less than 2%. This is also

an encouraging result for extending the method to more complex

geometries and multi-layer objects.

Similarly to the case of the single geometries, the prediction of

the LSTMmodel suffers from a time-lag when predicting the height

at the corners of the random tracks, which can also be traced back

to the features given to the model as an input. Moreover, the model

overestimates the over-deposition, which can be caused by the

differences between the training and test set, such as the presence

of many more values for the angles at the corners of the tracks.

The reduction of this overestimation for experiment 2, where

one random track is added to the training dataset, supports this

hypothesis. In some cases, the model fails to follow the evolution

of the height of the tracks in regions where the track sections come

very close to one another, a situation which is not present in the

training dataset.

The results suggest that the choice of the simple geometries

used for building the training dataset is crucial for modeling the

LMD deposition process. This will be even more important when

more complex objects and multi-layer structures are considered. In

this study, we focused on random tracks designed to investigate

over-deposition, but further work is needed to generalize the

approach.

The system presented in this study and the hardware used have

not been optimized for making predictions in real-time during the

deposition. Nonetheless, the model can make a prediction in ca.

50 ms on the CPU of an Apple M1 Max with 64 GB of RAM,

which means that one prediction every 10 data acquisition steps
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is possible. Moreover, the system predicts only the height at one

specific time t, but an extension of the approach for prediction of

the height of multiple time steps in the future (i.e. t, t + 1, and so

on) is possible and could be beneficial in real-time settings.

5. Conclusions

In this study we investigated the generalization capabilities

of LSTM networks for the task of predicting the geometry of

a deposited piece in laser metal deposition. In fact, one of the

strengths of LMD lies in its rapid prototyping capabilities, which

means that the object to be deposited has a new geometry, which

realistically will not be present in the dataset used for training a

machine learningmodel. The proposed pipeline of data acquisition,

feature engineering and model architecture can effectively model

over-deposition for simple geometries like single tracks, V-tracks

and spirals, but also generalizes well to more complex shapes such

as random tracks never seen during the training, with only a small

reduction in the performance. Moreover, adding a small amount

of data from the random tracks further reduces the performance

loss to less than 2% with respect to the simple geometries.

The possibility to train the model on a set of basic geometries

and then to generalize to different shapes could be incredibly

useful for LMD practitioners. The results are very promising

for the extension of the approach to multi-layer objects and for

being used in a closed-loop control with command parameters

and process feedbacks, to optimize the deposition geometry

on-line.
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