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Introduction:Machine learning tasks often require a significant amount of training

data for the resultant network to perform suitably for a given problem in any

domain. In agriculture, dataset sizes are further limited by phenotypical di�erences

between two plants of the same genotype, often as a result of di�erent growing

conditions. Synthetically-augmented datasets have shown promise in improving

existing models when real data is not available.

Methods: In this paper, we employ a contrastive unpaired translation (CUT)

generative adversarial network (GAN) and simple image processing techniques to

translate indoor plant images to appear as field images. While we train our network

to translate an image containing only a single plant, we show that our method is

easily extendable to produce multiple-plant field images.

Results: Furthermore, we use our synthetic multi-plant images to train several

YoloV5 nano object detection models to perform the task of plant detection and

measure the accuracy of the model on real field data images.

Discussion: The inclusion of training data generated by the CUT-GAN leads to

better plant detection performance compared to a network trained solely on

real data.

KEYWORDS

digital agriculture, agriculture 4.0, deep learning, convolutional neural networks,

generative adversarial networks, data augmentation, image augmentation

1. Introduction

Machine learning (ML) tasks are often limited by the availability and quality of training

data for a given model (LeCun et al., 2015; Goodfellow et al., 2016). To enable ML-based

applications in agriculture—such as the automatic detection and classification of plants or

crop health monitoring, say—ultimately requires large quantities of labeled image data with

which to train deep neural networks (DNNs) (Lobet, 2017; Liakos et al., 2018; Wäldchen

et al., 2018; Lu et al., 2022). It is the present lack of such data, and the challenge of generating

it, that may ultimately limit the broad application of such techniques across the immense

variety of crop plants. Lobet (2017), for example, emphasize that this process “is hampered by

the difficulty of finding good-quality ground-truth datasets.” Similar sentiments are echoed

in general reviews (Liakos et al., 2018; Wäldchen et al., 2018; Lu et al., 2022), as well as

in publications on specific applications such as weed detection (Binch and Fox, 2017; Bah

et al., 2018; Bosilj et al., 2018) and high-throughput phenotyping (Fahlgren et al., 2015;

Singh et al., 2016; Gehan and Kellogg, 2017; Shakoor et al., 2017; Tardieu et al., 2017;

Giuffrida et al., 2018). The difficulty of generating or collecting plant-based image data

for agricultural applications is further exacerbated by the many differences in growing
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conditions and physical dissimilarities between any two plants,

even for those belonging to the same genotype. Covering a wide

variety of phenotypes with a sufficient volume of labeled training

data is a task of massive scope. This challenge is further impeded

by the requirement of expert knowledge that is often necessary

to accurately label plant data (for example, when it comes to the

distinction between oats and wild oats) (Beck et al., 2021).

Image transformation and synthesis through the use of

generative adversarial networks (GANs) is gaining interest in

agriculture as a means to expedite the development of large-scale,

balanced and ground-truthed datasets (Lu et al., 2022). GANs

were originally used for creating synthetic MNIST digits, human

faces, and other image types (Goodfellow et al., 2014) and have

proven successful for a wide variety of quite remarkable image

translation problems, including transforming a horse to/from a

zebra, a dog to/from a cat, and a summer scene to/from a winter

scene (Isola et al., 2016; Zhu et al., 2017; Park et al., 2020). In

the agricultural domain, GANs have been applied to areas such

as plant localization, health, weed control, and phenotyping (Lu

et al., 2022). Some specific examples that demonstrate the promise

of GANs in agriculture include the improvement of plant image

segmentation masks (Barth et al., 2018), disease detection in

leaves (Zeng et al., 2020; Cap et al., 2022), leaf counting (Giuffrida

et al., 2017; Zhu et al., 2018; Kuznichov et al., 2019), modeling of

seedlings (Madsen et al., 2019), and rating plant vigor (Zhu et al.,

2020).

The contribution of this work is not an automated task or

application to solve a particular agricultural problem, but rather

the development of a method to translate real indoor images of

plants to appear in field settings. As such, this work serves as an

important precursor to the development of such applications. This

approach can in principle be used to create bespoke, labeled data

sets to support the training needs of a wide variety of ML tasks in

agriculture. For example, appropriately constructed collages of two

or more species on a soil background could ultimately be used to

synthesize very large numbers of images of crop plants interspersed

with weeds, resulting in labeled, ground-truthed datasets suitable

for developing ML models for automated weed detection. For this

initial study, however, testing is limited to simpler demonstrations

of object detection.

The impetus for this work comes from our previous

development of an embedded system for the automated generation

of labeled plant images taken indoors (Beck et al., 2020). Here, a

camera mounted a computer controlled gantry system is used to

take photographs of plants against blue keying fabric frommultiple

positions and angles. Because the camera and plant positions are

always known, single-plant images can be automatically cropped

and labeled. In addition to this, we have collected outdoor images

of plants and soil (Beck et al., 2021), which at present must be

cropped and annotated by hand. Belonging to both datasets are

four crop species: canola, oat, soybean, and wheat. The presence

of these plants in both datasets provides the opportunity for

outdoor image synthesis through image-to-image translation via

GANs (Isola et al., 2016). Our goal, then, is to create fully labeled

training datasets that are visually consistent with real field data.

This procedure eliminates the need for manual labeling of outdoor

grown plants (which is time-consuming and prone to error) while

being scalable and adaptable to new environments (e.g., different

soil backgrounds, plant varieties, or weather conditions). The

creation of one’s own datasets could improve the accuracy of plant

detection and other models in a real field setting.

This paper is structured as follows. Section 2 provides an

overview of the GAN architecture used in our image translation

experiments and describes the construction process for the GAN

training datasets. Section 3 presents visual results for several

single-plant translation experiments and discusses the benefits

and limitations of each training dataset. Section 4 describes our

method for producing augmented outdoor multi-plant images

with automated labeling. Section 5 presents plant detection results

achieved using a YoloV5 nano model trained on our augmented

datasets. Section 6 concludes the paper and discusses potential

extensions to the image synthesis methods.

2. Materials and methods

Many GAN architectures require the availability of paired data

for training. In our case, an image pair would consist of a plant

placed in front of a blue screen and an identical plant, in the same

location of the image, placed in soil. Such image pairs are difficult to

obtain in large volumes and instead we focus on GAN architectures

that can train on unpaired data (Zhu et al., 2017), such as the

examples shown in Figure 1, which are taken from our indoor and

outdoor plant datasets.1

Some GANs, such as CycleGAN, consist of two-sided networks

that not only translate an image from one domain to another but

perform the reverse translation as well (Zhu et al., 2017). For our

specific problem, we are interested in single-directional translation

and only consider one-sided networks to reduce training duration

and model sizes.

As a result, the approach taken here follows that of contrastive

unpaired translation (CUT) as presented in Park et al. (2020). For

this, one considers two image domains X and Y (with samples

{xi}
Nx
i=1 ⊆ X and {yj}

Ny

j=1 ⊆ Y) and seeks to find a function that

takes a sample from the domain X and outputs an image that can

plausibly come from the distribution Y .

Generative adversarial networks typically consist of two

separate networks that are trained simultaneously. The generator

G learns the mappingG :X → Y and the discriminatorD is trained

to differentiate between the real images y of domain Y and the fake

images G(x) = ŷ produced by the generator. Note that we refer to

the real and fake images of domain Y as y and ŷ, respectively. The

discriminator returns a probability in [0.0, 1.0] that the input image

came from the distribution Y . Effectively, the generator is trained

to produce images that fool the discriminator by minimizing the

adversarial loss (Goodfellow et al., 2014; Isola et al., 2016; Giuffrida

et al., 2017; Zhu et al., 2017, 2018; Park et al., 2020)

LGAN(G,D,X,Y) : = Ey∼Y logD(y)+ Ex∼X log (1− D(G(x))).

(1)

1 At the time of writing, the indoor dataset contains over 1.2 million labeled

images of 14 di�erent crops and weeds commonly found in Manitoba,

Canada, while the outdoor dataset contains 540,000 still images extracted

from video footage of five di�erent common crops of this region. The

datasets can be made available upon request.
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A visual overview of a GAN structure is given in Figure 2.

The generator is composed of two networks that are applied

sequentially to an image. The first half, the encoder Genc, receives

the input and constructs a feature stack, primarily through down-

sampling operations. The second half, the decoder Gdec, takes a

feature stack and constructs a new image, through up-sampling

operations. Here, we have that G(x) = Gdec(Genc(x)) = ŷ (Park

et al., 2020).

Contrastive unpaired translation is a GAN architecture that

enables one-sided image-to-image translation (Park et al., 2020). In

addition to the adversarial loss, which is dependent on the networks

G and D, CUT provides the PatchNCE loss and feature network

H. The PatchNCE loss is used both to retain mutual information

between the input image x and output ŷ as well as to enforce

the identity translation G(y) = y (Park et al., 2020). The feature

FIGURE 1

Image of soybean plants in indoor (A) and outdoor (B) settings.

Indoor plants are photographed against blue keying fabric to enable

background removal. Outdoor plants are more susceptible to leaf

damage. Di�erences in lighting lead to a darker appearing leaf color

in the indoor images.

network is defined as the first half of the generator, the encoder, plus

a multi-layer patchwise (MLP) network with two layers and is used

to encode the input and output images into feature tensors. Patches

from the output image ŷ are sampled, passed to the feature network,

and compared to the corresponding (positive) patch from the input

as well as N other (negative) patches from the input image. The

process is shown in Figure 3 (Park et al., 2020).

Since Genc is used to translate a given image, its feature stack is

readily available, with each layer and spatial position corresponding

to a patch in the input image. We select L layers from the feature

map and pass each layer through the patchwise network to produce

features {zl} = {Hl(G
l
enc(x))}L where Gl

enc is the output of the l-th

layer. The feature zs
l
then represents the s-th spatial location of the

l-th layer and z
S\s
l

represents all other locations. The PatchNCE loss

is given by Park et al. (2020) as

LPatchNCE(G,H,X) : = Ex∼X

L
∑

l=1

Sl
∑

s=1

ℓ(ẑsl , z
s
l , z

S\s
l

), (2)

where the sums are taken over all desired layers l and spatial

locations s within each layer,

ℓ(z, z+, z−) : = − log











exp (z · z+/τ )

exp (z · z+/τ )+
N
∑

n=1
exp (z · z−

n /τ )











,

(3)

where N is the number of negative samples and the temperature

τ = 0.07 scales the magnitude of penalties on the negative

samples (Park et al., 2020). The overall loss used for network

training is

L(G,D,H,X,Y) = LGAN(G,D,X,Y)+ λXLPatchNCE(G,H,X)

+ λYLPatchNCE(G,H,Y), (4)

FIGURE 2

Visual representation of an image translating GAN. The discriminator learns to di�erentiate between the real images from domain Y and the

translated images from the generator output. The discriminator and generator weights are updated through backpropagation of the gradients from

the discriminator output according to the first and second terms in the adversarial loss, respectively. The image is adapted from the Google

Developers Website (2022) (https://developers.google.com/machine-learning/gan/gan_structure).
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FIGURE 3

A visual demonstration of the features extracted from an input image x and output image ŷ (Park et al., 2020). Corresponding patches are sampled

from both images as well as N other patches from the input image. These patches are used to calculate the PatchNCE loss in Equation (2) (Park et al.,

2020). In the example presented here, high similarity between positive patches is desired to retain the shape of the animal head, while allowing

re-coloring of the fur. Conversely, one should not expect to retain similarities between the head and other parts of the body. The image is taken from

Park et al. (2020).

where the weighing factors λX = λY = 1 when using the default

CUT options (Park et al., 2020). The first PatchNCE loss term

is used to retain mutual information between the input image x

and output ŷ. The second is used as an identity loss term, where

translating the input image y should produce y as the output.

The CUT training scripts provide several network definitions

for the generator, discriminator, and feature network. For the work

in this paper, we use the default options where the generator is a

ResNet-based architecture that consists of 9 ResNet blocks between

up and down-sampling layers and the discriminator is a 70 × 70

PatchGan network that originates from the work of Isola et al.

(2016).

The remainder of this section provides an overview of the

datasets used to train several CUT generators.

2.1. Target domain—Outdoor image dataset

Generator training requires a dataset of outdoor images to

represent the target domain Y for image translation. Our outdoor

dataset was constructed by sampling from the 540,000 available

images in the outdoor image database (Beck et al., 2021). The

images are individual frames from videos taken with a camera

mounted to a tractor while traveling through a field. The full-

resolution images (2208x1242 px) often contain several plants with

unknown locations and must be cropped by hand to obtain single-

plant photos suitable for image translation. Manual cropping is a

time-consuming process and, in general, limits our overall training

dataset size. For initial experiments, 64 hand-cropped single-plant

field images were used to construct the target dataset. Larger-

scale experiments that include image translation of several species

were also performed with 512 single-plant field images. Table 1

summarizes the relevant parameters for all training datasets.

Example multi- and cropped single-plant outdoor images are

shown in Figure 4.

The outdoor plant datasets used for model training contain

several single-plant images of canola, oat, soybean, and wheat. The

cropping bounds are varied to provide data with plants of several

sizes relative to the image, this helps to prevent the generator from

increasing or decreasing the size of the plant in the image during

translation. Similarly, plant locations (e.g., center, top-left, bottom-

right, etc.) are varied across the single-plant images to minimize

positional drift. Additional images sampled from this dataset can

be seen in Figures 8A–10A.

2.2. Input domain—Cropped lab image
dataset

The first dataset to be used as the input domain X to the

generator consists of several indoor single-plant images with a

blue screen background. These images are provided by the EAGL-

I system, as described in Beck et al. (2020). EAGL-I employs a

GoPro Hero 7 camera mounted on a movable gantry capable

of image capture from positions that vary in all three spatial

dimensions. Additionally, the gantry includes a pan-tilt system to

provide different imaging angles. For the purpose of this work,

we attempt only to translate top-down images, thus we include

images only where the camera is perpendicular to the floor, within

a range of±10◦.

Similar to the previous section, the full-resolution images (4000

× 3000 px) contain several plants and must be cropped to obtain

single-plant photos for training. However, in this case, both the
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TABLE 1 Construction parameters for each training dataset.

Dataset name Nx Ny Species Age (days) Nbackgrounds Smin Smax Figure

Cropped lab 64 64 Soybean 10-40 N/A 1.00 1.00 Figure 8

Composites 64 64 Soybean 10-40 32 0.50 0.85 Figure 9

Color-corrected

composites 1

64 64 Soybean 10-40 32 0.50 0.85 Figure 10

Color-corrected

composites 2

512 512 All Varies 128 0.50 0.85 Figure 11

For the Cropped Lab dataset, background replacement is not applicable since composite images are not created. Furthermore, the plant always makes up the entire image, so the scale is always

1.00. The Color-Corrected Composites 2 dataset contains each of the four available species; canola, oat, soybean, and wheat. These plants have minimum-maximum age ranges of 10–40, 0–365,

10–40, and 0–365 days, respectively.

FIGURE 4

Outdoor multi-plant image of soybean (A) and cropped single-plant

image (B). The cropping bounds, shown by the green bounding box,

are determined by hand. The single-plant images constitute the

target domain Y for generator training.

plant and camera positions within the setting are known, and

loose bounding boxes are found through geometric calculation.

Tighter bounding boxes are obtained through an algorithm given

in Appendix 1 (Supplementary material), avoiding the need for

hand-cropping. Figure 5 shows an example of both a multi- and

single-plant lab image.

To construct our dataset for generator input, we use 64 single-

plant lab images as shown in Figure 5B. It is expected that a

translated image would not only contain a plant with characteristics

that reflect the outdoor plant domain, but also contain soil that has

been generated in place of the blue screen background.

2.3. Input domain—Composite image
dataset

As an alternative to the single-plant indoor photos of

Section 2.2, image processing techniques can be used to remove the

blue screen in a single-plant image and replace it with a real image

of soil. These images, henceforth known as composite images,

ideally require minimal translation to the image background

and instead allow the generator to primarily translate plant

characteristics. Such a network would be beneficial as it provides

the user with the ability to influence the appearance of the

background, even after passing through the generator.

Soil backgrounds are randomly sampled from a set of images to

provide sufficient variation in the training data. These backgrounds

are hand-cropped from real outdoor data, so the soil is visually

consistent with our target domain. Typically, 32 soil backgrounds

FIGURE 5

Indoor multi- (A) and single-plant (B) images of soybean. The

cropping bounds (shown by the green bounding box) are found

automatically and do not require user input. The single-plant images

form the input domain X for generator training.

were used for datasets composed of 64 composites. See Table 1 for

the exact number of backgrounds used to construct each dataset.

Given an indoor multi-plant image and soil background, the

steps for composite formation are listed below. This process is

fully-automated through scripts written in Python that utilize the

OpenCV and NumPy libraries for image processing. Example

images that depict each step are shown in Figure 6.

1. Mask and create bounding boxes using a multi-plant image

from the indoor plant database. Blue screen usage makes

background removal a trivial problem that can be solved by

image thresholding (Beck et al., 2020).

2. Crop the multi-plant image and masked multi-plant image to

create single-plant images.

3. Remove the blue screen in the single-plant image with the

single-plant mask.

4. Randomly re-scale the single-plant image size relative to the final

output size.We choose theminimum andmaximum scale values

to be Smin = 0.50 and Smax = 0.85, respectively. The image size

required for the CUT generator is 256 × 256 px, so the plant is

scaled relative to this size. Plant scale is calculated by dividing

the longest side of the single-plant image by the output image

size. For example, if the single-plant image has dimensions 150

× 200 px and the output image has dimensions 256 × 256 px,

then the scale is 200/256 = 0.78. Finally, the resized image is

padded with black pixels so the final image has size 256 × 256
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FIGURE 6

Intermediate images created during composite image formation (A) and their associated binary masks (B). The multi-plant image (A1, B1) is cropped

to obtain a single-plant image (A2, B2). The single-plant binary mask is used to remove the blue screen in the single-plant image (A3, B3). The

single-plant image is then resized and padded to give the e�ect of random placement within the final image (A4, B4). A soil background is joined to

the resized image to create the final composite (A5, B5). Images such as (A5) are used to form the input domain X for generator training.

px. Random padding gives the effect of random placement of

the plant within the composite.

5. Combine the resized plant image with a randomly selected

soil background.

In many cases, differences in lighting between indoor and

outdoor images leave little contrast between the plant and soil

background in a composite image. In preliminary generator

training experiments, insufficient contrast could lead to the

generator translating plant leaves to appear as soil and constructing

a fully-synthetic plant in a different region of the image. Such an

occurrence is detrimental for creating synthetic object detection

data as one loses the ability to accurately provide a bounding box

for the plant. In the datasets described below, color-correction is

used during composite formation to match the plant color with

real field plants and increase the contrast between the plant and

soil to allow the generator to maintain semantic information after

domain translation. Color-correction techniques such as histogram

matching were explored but were not used in favor of simple mean

matching since one would still expect the generator to adjust plant

color. The chosen color-correction process is described as follows.

Given an (M × N × 3) CIELAB single-plant image x and the

associated (M × N) binary mask m, we want to correct the pixels

belonging to the plant to have color that is consistent with the

real outdoor plants in the domain Y and leave all other pixels

unchanged. To do this, we first determine the average value for the

k-th channel of x, only where the mask is true, given by

x̄k =

M
∑

i=1

N
∑

j=1
xijkmij

M
∑

i=1

N
∑

j=1
mij

. (5)

Note that Equation (5) is simply the weighted average for all pixels

of a given channel. The weight of each pixel is given by the value

of the corresponding pixel in the binary mask, which have values

0 and 1 for false and true, respectively. We now construct our

color-corrected image x′, where the individual pixels have values

x′ijk = xijk +mij(x̄
′
k − x̄k) (6)

and x̄′
k
is the desired average value for the k-th channel of x′.

We found that choosing the CIELAB channels to have average

values x̄′L = 170, x̄′A = 100, and x̄′B = 160 provides a suitable

plant color. Note that in the definition of x′
ijk
, one can assign pixel

values that exceed the valid range [0, 255]. In this case, one must

also constrain x′
ijk

to the same range. In general, color-correction

leads to a composite image where the plant has enhanced lightness,

greenness, and yellowness. An example of a composite image with

and without color-correction is shown in Figure 7.

For small-scale translation experiments, our input domain

consists of 64 (optionally color-corrected) composite images.

Larger-scale experiments use datasets composed of 512 composites.

The method and parameters used to construct each dataset are

summarized in Table 1.

3. Single-plant image translation
results

In this section, we provide single-plant translation results for

several GANs trained on the datasets described in Section 2.

Training hyperparameters are consistent for all models, where we

train for a total of 400 epochs and use a dynamic learning rate that

begins to decay linearly to zero after the 200th epoch.

3.1. Cropped lab dataset

Training a generator on the Cropped Lab dataset allows

us to directly translate indoor plants to outdoor, without the

intermediate step of creating composite images. This dataset

contains 64 indoor and outdoor images of soybean (128 total),

aged 10–40 days. Twenty additional indoor photos of soybean from

the same age range unseen during the training process compose
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FIGURE 7

Composite image of a soybean plant without (A) and with (B) color-correction. The color-corrected image contains plant leaves that better match

the outdoor domain (C). Images such as (A) or (B) can be used to provide the input domain X for generator training.

FIGURE 8

Soybean images sampled from the distribution Y (A), images sampled from the distribution X (B), translated images G(x) (C), images sampled from the

distribution V (D), and translated images G(v) (E).

the distribution V for qualitative evaluation of the model. Figure 8

shows translation results for this generator.

Referring to both the training and evaluation images, the

generator appears to be capable of image translation between

these two domains with little error. Details such as leaf color, leaf

destruction, and soil are suitably added in each translated image.

Leaf veins, which are greatly pronounced in some indoor images,

are removed in the translated images, reflective of the images

from the outdoor domain. Despite the ability to translate indoor

plants to appear as true outdoor plants, the greatest drawback

to a generator trained on these images is the inability to control

the image background in the translated images. As discussed in

Section 4, this is problematic for the construction of images with

multiple plants, where one wants consistency in the background

throughout the image.

3.2. Composites dataset

Training a generator on the Composites dataset allows us

to translate uncorrected composite images to outdoor-appearing

plants. Here, we expect that the background in the output image

remains consistent with the input. This dataset contains 64

composite and outdoor images of soybean (128 total), aged 10–

40 days. Twenty additional composite photos of soybean from the

same age range unseen during the training process compose the

distribution V for qualitative evaluation of the model. Figure 9

shows translation results for this generator.

Referring to both the training and evaluation images, the

generator is capable of image translation between these two

domains. Similar to the previous section, plant details such as

leaf color, destruction, and veins are suitably added/removed in
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FIGURE 9

Soybean images sampled from the distribution Y (A), images sampled from the distribution X (B), translated images G(x) (C), images sampled from the

distribution V (D), and translated images G(v) (E).

the translated images. In general, the image backgrounds are

consistent before and after translation. Small changes, such as the

addition/removal of straw or pebbles in the background, are seen in

the translated images. However, these details are sufficiently small

so as not to have any negative effect during the construction of a

synthetic multi-plant image.

3.3. Color-corrected composite datasets

Training a generator on the Color-Corrected Composite datasets

allows us to translate color-corrected composite images to outdoor-

appearing plants. Similar to the previous section, we expect

that the background in the output image remains consistent

with the input. The first generator in this section is trained

on a dataset that contains 64 color-corrected composite and

outdoor images of soybean (128 total), aged 10–40 days. Twenty

additional color-corrected composite photos of soybean from the

same age range unseen during the training process compose the

distribution V for qualitative evaluation of the model. Figure 10

shows translation results for this generator. Additional translation

results for generators trained on similar datasets of different species

are shown in Appendix 2 (Supplementary material).

Referring to both the training and evaluation images, the

generator is capable of image translation between these two

domains. Similar to the previous section, plant details are suitably

added or removed in the translated images, and the image

background is consistent before and after translation. Additionally,

little-to-no positional drift is seen between plants in the input and

output images, indicating a model such as this could be used for

multiple-plant image synthesis.

We now turn our focus to translating images of additional plant

species. The Color-Corrected Composites 2 training dataset contains

128 color-corrected composite and 128 field images of each of

the four available species: canola, oat, soybean, and wheat (1,024

images total). Twenty additional color-corrected composites for

each species compose the distribution V for qualitative evaluation

of the model. Image translation results are given in Figure 11.

From the above translation results, it can be seen that our

method is easily extendable to additional species. Translated plants

have no noticeable positional drift and background appearance is

consistent between the input and output. A model such as the

one providing image translations in Figure 11 could be used to

construct synthetic multiple-plant images in a field setting with

multiple plant species while retaining the original bounding boxes

to enable the production of object detection data.

4. Multiple-plant image translation
results

The results in the previous section suggest that a generator

trained to translate composite images would be suitable for multi-

plant image construction. Here, one expects to be able to place

several synthetic plants within a real soil background to produce

plausible outdoor images of multiple plants. Domain translation

by the GAN should produce outdoor plant images with lightness

similar to that seen typically in our outdoor data, as well as sufficient

blurring of the plant relative to the real background. Using a single-

plant translation generator, multi-plant images are constructed

via the following algorithm. The algorithm makes use of existing

full-scale soil images (see Figure 12A for an example) and indoor
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FIGURE 10

Soybean images sampled from the distribution Y (A), images sampled from the distribution X (B), translated images G(x) (C), images sampled from the

distribution V (D), and translated images G(v) (E).

FIGURE 11

Field images sampled from the distribution Y (A), images sampled from the distribution X (B), translated images G(x) (C), images sampled from the

distribution V (D), and translated images G(v) (E).

single-plant images with their binary masks (see Figures 6A2, B2

for examples).

Algorithm 1 effectively creates several composites, translates,

and places them back into the full-scale image. Instead of selecting

composite backgrounds from a pre-defined set, small sections are

randomly cropped from 20 larger images. Figure 12 provides an

example of composite background selection from a large-scale

soil image.
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FIGURE 12

Full-scale soil image (A), cropped section of the image (B), and the color-corrected composite image to be passed to the generator (C). The

cropping bounds are given by the green bounding box in (A).

1: randomly select a full-scale soil image

2: for number of plants do

3: randomly select an indoor plant image

4: select corresponding binary mask

5: select a sub-section of the soil image as the

composite background

6: form a composite image using the image, mask,

and background section

7: if color-correct is true then

8: color-correct the composite image

9: end if

10: translate composite image

11: color-correct the translated image

12: replace background sub-section with translated

composite image

13: end for

Algorithm 1. Algorithm for constructing a synthetic outdoor multiple-

plant image.

To improve generator performance when translating images

with these new backgrounds, we contruct an additional training

dataset with 512 new color-corrected composite images and train

a new CUT-GAN. Here, the composite backgrounds are randomly

selected sub-sections of the large-scale backgrounds, as opposed to

randomly selecting from the set of 128 small backgrounds used in

the dataset Color-Corrected Composites 2. This training dataset uses

the same 512 images as Color-Corrected Composites 2 for the target

domain Y . Table 2 summarizes the parameters for constructing our

new dataset.

In line 11 of Algorithm 1, composite images are color-corrected

following translation. This is a necessary step to help ensure a

consistent background of our multi-plant images after translation.

Background correction becomes especially useful if one chooses an

image background that differs from our training data. If one were

to train a model to detect plants in our synthetic images without

correction, it is possible that the model learns to locate plants

through inconsistencies in the background where the translated

plant is placed. Background color-correction is used as an attempt

to mitigate this risk. Additional processing can be done to improve

the joining of the translated composite with the background, but is

not shown in this article.

The procedure for background correction follows similarly to

that of color-correction for composite images. However, rather than

only correcting the pixels belonging to the plant, we correct all

pixels in the translated image by adding a uniform offset to all

pixels of a given channel. This offset is found by calculating the

difference in average values for each RGB channel in the composite

and translated images, only for pixels in a small region outside

the plant bounding box. In general, for background correction, we

assume that the translated plant does not exceed the bounding box.

However, small patches of green outside the bounding box (see

Figure 13B) lead to little difference in the result.

To achieve background correction, three inputs are required:

the (M × N × 3) composite single-plant image x, (M × N × 3)

translated single-plant image ŷ, and the (M × N) binary mask m.

Example images are given in Figure 13.

The offset dk for the k-th channel of the corrected image ŷ′ is

calculated as

dk =

M
∑

i=1

N
∑

j=1
(xijk − ŷijk)mij

M
∑

i=1

N
∑

j=1
mij

. (7)

Equation (7) can equivalently be considered as the difference in

weighted averages for the input and output images where the weight

of all pixels within the bounding boxes is zero and one elsewhere.

The pixels of ŷ′ are then given by

ŷ′ijk = ŷijk + dk, (8)

constrained to the range [0, 255]. Figure 14 shows the effect

of translating a single-plant image with and without applying

background correction afterwards. Figure 15 demonstrates

the difference between multi-plant images with and without

background correction.

In general, the translation capabilities of the generator are

invariant to the position of plants in a given image. As a result, there

is no restriction on placement, aside from avoiding overlapping

plants. Our approach provides the option to place plants randomly,

or by alignment into rows, as they would be in a production field.
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TABLE 2 Parameters for the new training dataset.

Dataset name Nx Ny Species Age (days) Nbackgrounds Smin Smax

Color-corrected

composites 3

512 512 All Varies 512 0.50 0.85

The dataset contains each of the four available species; canola, oat, soybean, and wheat. These plants are aged 10–40, 0–365, 10–40, and 0–365 days, respectively. Each composite image possesses

a unique background that comes from randomly cropping small sections from 20 large soil images.

FIGURE 13

Color-corrected composite single-plant image (A), translated single-plant image (B), and the associated binary mask (C). The binary mask is false for

all pixels within the bounding box and true for all other pixels.

FIGURE 14

Single-plant images before (A) and after (B) translation and the corrected translated image (C). The soil color and lightness in (C) is more consistent

with the input (A).

Additionally, the minimum and maximum scales of the plants

relative to the background can be chosen by the user. Datasets can

be made to contain plants of all species or individual plants can

be selected. Examples of labeled synthetic multi-plant images are

given in Figure 16. From the multi-plant images presented here,

one can see that the position of each plant is maintained after

translation, suggesting that such data could be useful for training

a plant detection network.

5. Results of plant detection using
augmented datasets

In general, object detection is a machine learning task that

refers to the process of locating objects of interest within a

particular image (Zhao et al., 2019). Models capable of object

detection typically require training data consisting of a large

number of images as well as the location and label of all objects

within said images, usually given by bounding boxes. Such data

is often produced by manual annotation, a procedure that is both

time- and cost-intensive, especially as the number of objects within

an image increases (Guillaumin and Ferrari, 2012; Ayalew, 2020).

As a result, object detection is an excellent test case of our image

transformation methods.

As proof of concept that our synthetic multi-plant images

can be beneficial for detection of real plants, we trained several

YoloV5 (Redmon et al., 2016; Bochkovskiy et al., 2020) nano

object detection models on various augmented datasets (Jocher

et al., 2022). The nano is chosen in particular as it has the fewest

number of trainable parameters in comparison to all other YoloV5

networks. This is most desirable for our training datasets which

contain few classes and little variability in the data itself. In all cases

the network is trained to locate canola, oat, soybean, and wheat.

However, we are not attempting to find a solution to a classification

problem, so these four species are grouped into a single class named

plant. Three primary training dataset types are described below,

and each includes the random placement of non-overlapping plants

onto an image background. The size and location of the single plant
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FIGURE 15

Translated multi-plant image without (A) and with (B) background

correction. Note that the backgrounds of the translated sections of

the image di�er in color and lightness from the soil in the rest of the

image. Background correction lessens this e�ect, especially seen for

the soybean plant in the bottom-right.

FIGURE 16

Composite (A) and synthetic (B) multi-plant images where plants are

placed randomly (A1, B1) or ordered into two rows (A2, B2). The

randomly placed plants are chosen to be any of the four available

species, the ordered plants are all soybean.

image embedded within the background are used as the ground

truth bounding boxes for our training data.

The first training dataset contains 80,000 blue screen

images with color-corrected plants randomly placed throughout

Figure 17A). The dataset is split into training, validation, and

testing sets with proportions 80% (64,000 images), 10% (8,000

images), and 10% (8,000 images), respectively. Note that no

background replacement or GAN is used, so the differences

between the training data and real field data are significant.

Hence, we expect the performance of this network to be poor

in general. For future references this dataset is referred to as the

Baseline dataset.

The Composite dataset contains 80,000 multi-plant color-

corrected composite images (see Figure 17B) with the same 80%

(64,000 images), 10% (8,000 images), and 10% (8,000 images) split

as above. Here we include a real soil background, but no GAN is

used to individually translate each plant. Since this dataset is more

similar to real data than the baseline we expect to see improved

performance on an evaluation set composed of real images.

The third dataset used to train the network consists of 80,000

multi-plant GAN images (see Figure 17C) split identically as

above. This training data is created through the multi-plant GAN

procedure previously described in this section. Here we expect

network performance to be the greatest, since the training and

target datasets are most similar. For future references this dataset

is named GAN.

An additional dataset, known as the Merged dataset, is

composed as the union of both the Composite and GAN datasets.

As such, this training dataset consists of 160,000 total images for

the network with half of the images including the usage of a GAN

for plant translation.

With several plant detectionmodels trained on various datasets,

our models are evaluated on 253 additional real multi-plant images

of canola and soy. These images were excluded during the training

process and ground truth bounding boxes are determined by

hand. The evaluation metrics used are precision, recall, and mean

average precision (mAP). Before defining themetrics, onemust first

consider the intersection over union (IoU), given by Everingham

et al. (2010):

IoU : =
Area of Overlap

Area of Union
, (9)

where Area of Overlap refers to the area of overlap between the

ground truth and predicted bounding boxes and Area of Union

is the total area from joining the bounding boxes. Whether a

bounding box prediction is considered to be successful is dependent

on the IoU threshold, where we consider any prediction leading

to an IoU greater than the threshold to be correct. Now, with IoU

being used to determine if a model prediction is correct, the metrics

precision and recall are defined by Everingham et al. (2010) as

precision : =
tp

tp+ fp
, (10)

recall : =
tp

tp+ fn
(11)

where tp denotes the number of true-positives, fp the false-positives,

and fn the false-negatives. We interpolate precision over 101 recall

values in the range [0.00, 1.00] in steps of 0.01. For notational

simplicity, we define the set of recall valuesR = {0.00, 0.01, ..., 1.00}.

The interpolated precision is given by Everingham et al. (2010) as

precisioninter(r) : = max{precisionr̃ : r̃≥r(r̃)}. (12)

Finally, mAP is defined by Everingham et al. (2010) as

mAP : =
1

n

n
∑

k=1

1

|R|

∑

r∈R

precisioninter(r), (13)

where n denotes the number of classes and the outer sum

leads to a mean precision for all classes. Note that since

we group our species into a single class we have n = 1

and the outer sum is presented here only for verbosity. The
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FIGURE 17

Sample images from the Baseline (A), Composite (B), and GAN (C) datasets used to train the YoloV5 nano networks. In all cases, plants are

color-corrected and randomly placed into non-overlapping positions onto an image background. The GAN images receive the additional step of

plant translation.

FIGURE 18

Sample images labeled by YoloV5 nano object detection models trained on various augmented datasets (see labels). Note that the ground truth

bounding boxes are determined by hand. The top three image rows contain only soybean plants, the bottom three contain only canola.

notation mAP@0.5 denotes the evaluation of mAP using an

IoU threshold of 0.5, consistent with the Pascal VOC evaluation

metric (Everingham et al., 2010). Alternatively, mAP@0.5:0.95

denotes the average mAP value for all IoU thresholds in the

range [0.50, 0.95], in steps of 0.05, which is identical to

the evaluation metric for the COCO dataset challenge (Lin

et al., 2014). Sampled visual results for the performance

of each network are given in Figure 18, numerical results

are provided by Table 3, including both the mAP@0.5 and

mAP@0.5:0.95 metrics.

From both Figure 18 and Table 3 it is clear that the

baseline model shows no capacity to detect plants. This is

expected as the training data is vastly different from the

real images through which our models are evaluated. Both

the Composite- and GAN-trained models show good ability

to locate plants in the evaluation images, however the GAN-

trained model performs better according to both the mAP@0.5

and mAP@0.5:0.95 metrics. The combination of the Composite

and GAN datasets led to the greatest performing network in

terms of our metrics. However, this could come as a result
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TABLE 3 Precision, recall, and mAP metrics when evaluating our four

YoloV5 nano models on 253 real images of canola and soybean.

Training
dataset

Precision Recall mAP@0.5 mAP@0.5:
0.95

Baseline 0.030 0.099 0.010 0.002

Composite 0.597 0.468 0.454 0.202

GAN 0.647 0.459 0.479 0.209

Merged 0.673 0.500 0.528 0.240

The training dataset denotes the images used to train the network for which we are evaluating,

not the set from which the evaluation images are taken.

of being exposed to twice the number of training images. In

general, the Yolo models trained on the Composite, GAN, and

Merged datasets all appear capable of plant detection on the

provided images.

6. Conclusion

The contribution of this work is an image translation process

through which one can produce artificial images in field settings,

using images of plants taken in an indoor lab. The method is

easily extendable to new plant species and settings, provided

there exists sufficient real data to train the underlaying GAN.

The construction of one’s own augmented datasets enables further

training of neural networks, with applications to in-field plant

detection and classification. More importantly, this work is a first

step in demonstrating that plants grown in growth chambers

under precise and fully-controlled conditions can be used to easily

generate large amounts of labeled data for developing machine

learning models that operate in outdoor environments. This work

has the potential to significantly improve and accelerate the

model development process for machine learning applications

in agriculture.

Future work will consist of mimicking outdoor lighting

conditions via controllable led-based growth-chamber lights,

leading to more variety in the input data and hopefully

more realistic synthetic data. Additional work will focus

on using the approach presented here to develop in-

field plant-classification models, as well as developing

outdoor datasets and machine learning models for other

problem domains (such as disease detection). This will

include an investigation into whether classification tasks

require their own species-specific GAN for the image

translation process.
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