
TYPE Review

PUBLISHED 19 September 2023

DOI 10.3389/frai.2023.1203546

OPEN ACCESS

EDITED BY

Ruopu Li,

Southern Illinois University Carbondale,

United States

REVIEWED BY

Kasper Johansen,

King Abdullah University of Science and

Technology, Saudi Arabia

Jana Kierdorf,

University of Bonn, Germany

*CORRESPONDENCE

Sakib Mostafa

sakib.mostafa@usask.ca

RECEIVED 10 April 2023

ACCEPTED 25 August 2023

PUBLISHED 19 September 2023

CITATION

Mostafa S, Mondal D, Panjvani K, Kochian L and

Stavness I (2023) Explainable deep learning in

plant phenotyping.

Front. Artif. Intell. 6:1203546.

doi: 10.3389/frai.2023.1203546

COPYRIGHT

© 2023 Mostafa, Mondal, Panjvani, Kochian and

Stavness. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Explainable deep learning in plant
phenotyping

Sakib Mostafa1*, Debajyoti Mondal1, Karim Panjvani2,

Leon Kochian2 and Ian Stavness1

1Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada, 2Global Institute

for Food Security, University of Saskatchewan, Saskatoon, SK, Canada

The increasing human population and variable weather conditions, due to climate

change, pose a threat to theworld’s food security. To improve global food security,

we need to provide breeders with tools to develop crop cultivars that are more

resilient to extreme weather conditions and provide growers with tools to more

e�ectively manage biotic and abiotic stresses in their crops. Plant phenotyping,

the measurement of a plant’s structural and functional characteristics, has the

potential to inform, improve and accelerate both breeders’ selections and growers’

management decisions. To improve the speed, reliability and scale of plant

phenotyping procedures, many researchers have adopted deep learning methods

to estimate phenotypic information from images of plants and crops. Despite the

successful results of these image-based phenotyping studies, the representations

learned by deep learning models remain di�cult to interpret, understand, and

explain. For this reason, deep learning models are still considered to be black

boxes. Explainable AI (XAI) is a promising approach for opening the deep learning

model’s black box and providing plant scientists with image-based phenotypic

information that is interpretable and trustworthy. Although various fields of study

have adopted XAI to advance their understanding of deep learning models, it has

yet to be well-studied in the context of plant phenotyping research. In this review

article, we reviewed existing XAI studies in plant shoot phenotyping, as well as

related domains, to help plant researchers understand the benefits of XAI and

make it easier for them to integrate XAI into their future studies. An elucidation

of the representations within a deep learning model can help researchers explain

the model’s decisions, relate the features detected by the model to the underlying

plant physiology, and enhance the trustworthiness of image-based phenotypic

information used in food production systems.
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1. Introduction

The emergence of deep learning has allowed researchers to perform tasks that were

previously thought to be impossible. Deep learning is popularly used in the fields

of computer-aided diagnosis (Xie et al., 2021), drug discovery (Chen et al., 2018),

healthcare (Esteva et al., 2019), law enforcement (Raaijmakers, 2019), autonomous

vehicles (Rao and Frtunikj, 2018), robotics (Sünderhauf et al., 2018), and so on. Research

(2020) predicted that the global market value of the deep learning industry will increase to

$60.5 billion by 2025 from $12.3 billion in 2020, an increase in the growth rate of 37.5%.

Among industrial sectors, agriculture is one of the slowest to adopt deep learning but has a

high potential for its use to combat global food insecurity.
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The increasing world population poses a threat to food security.

According to the Food and Agricultural Organizations of the

United Nations, global food production needs to increase by

70% to provide for 9 billion people by the year 2050 (Askew,

2017). However, this increased food production must be done on

about the same amount of farmland used today. The only way to

ensure food security is to increase the production of the crops.

According to the world food summit in 1996, food security is

defined as, “Food security exists when all people, at all times,

have physical and economic access to sufficient, safe and nutritious

food that meets their dietary needs and food preferences for

an active and healthy life” (Godfray et al., 2010). So, ensuring

increased food production is not enough for food security. We

need to provide nutritious food (Tripathi et al., 2019). We can

ensure food security by breeding new cultivars of crops that have

higher quality, higher yield, better nutrition, and greater resilience

to variable environmental conditions. Food security can also be

enhanced by introducing better management systems to maximize

the outcome of our food production systems (Jiang and Li, 2020).

Scientists have been working relentlessly to introduce new ways

of achieving food security, and they believe that the inclusion

of technology in agriculture can help us achieve this goal. The

study of plant phenotyping can not only help us in designing

better crop management systems but also provide new ways of

improving crop characteristics, such as yield. Along with increasing

food production, we also need to ensure food quality and safety, as

well as the economic and environmental sustainability of the food

production system. Plant phenotyping plays an important role by

informing both crop breeding and crop management.

Plant phenotyping is the assessment of complex plant traits

such as growth, development, abiotic and biotic tolerance and

resistance, architecture, physiology, ecology, yield, and the basic

measurement of individual quantitative parameters that form the

basis for complex trait assessment (Li et al., 2014). Recently,

there has been significant improvement in plant phenotyping

studies. The inclusion of smart farming (Wolfert et al., 2017) and

precision agriculture (Gebbers and Adamchuk, 2010) have allowed

the extension of conventional tools and provided farmers aware

systems that are autonomous, context-aware, and can be controlled

remotely. Big data technology is playing an essential role in this

development (Wolfert et al., 2017), and deep learning models are

an integral part of it. Recently, there has been an increased interest

in deep learning-based plant phenotyping studies due to their

superiority over traditional analysis (Chandra et al., 2020; Jiang

and Li, 2020; Ren et al., 2020; Kolhar and Jagtap, 2021; Arya et al.,

2022).

We use deep learning models to process a large amount of

data to build decision systems without properly understanding

the decision-making process (Guidotti et al., 2018). In May 2018,

the General Data Protection Regulation law was enforced in the

European Union and European Economic Area, which indicates

that whoever uses automated systems for profiling and/or decision

making has to ensure fairness, transparency and provide anyone

with a meaningful explanation of the logic used (EU, 2018). As

a result, in recent years, there has been significant growth in the

study of explainable deep learning models (Biran and Cotton,

2017; Preece, 2018; Vilone and Longo, 2021), more commonly

known as Explainable AI (XAI). XAI is being adopted in different

fields of study to explain existing models and develop better

models (Tonekaboni et al., 2019; Bhatt et al., 2020; Bai et al., 2021;

Gulum et al., 2021; Thomas et al., 2021). Table 1 shows the number

of publications each year where the studies used deep learning or

XAI for plant phenotyping. We retrieved the data from a PubMed

search with the keywords machine learning or deep learning

and plant phenotyping, and machine learning or deep learning

and plant phenotyping and explainability. We considered other

keywords (e.g., explainable AI, transparent AI, XAI) during our

search, however, we found that the combination of the mentioned

keywords returned the most relevant papers. From Table 1 it is

evident that more plant phenotyping studies are adopting deep

learning. Although the trend shows that more researchers are using

XAI for studies, it is still in its early stages.

The availability of deep learning algorithms has allowed plant

scientists to easily incorporate them into their studies and achieve

impressive results on challenging problems. However, due to the

black-box nature of deep learning models, plant scientists are

sometimes unaware of how such results were achieved. As a

result, any mistake in the development of a deep learning model

remains unnoticed, which might affect the generalisability of the

models. This black box nature also limits the ability of plant

scientists to understand the relation between the results of a

deep learning model and plant traits. Additionally, the lack of

understanding makes it difficult for scientists to explain the results

of a deep learning model to the user of the resulting tool or

services. XAI has the capability of explaining the decisions of a

model. Such explanations can be utilized to better understand

the model and relate the features detected by the model to the

plant traits.

The motivation of this study is to provide a detailed overview

of the recent developments in XAI techniques so that researchers

working in plant phenotyping are able to develop explainable and

transparent deep learning models. We thus focus on achieving the

following objectives.

• ReviewXAI techniques in deep learning studies: This objective

focuses on reviewing existing XAI techniques that may assist

researchers in interpreting the predictions and explaining

the decisions of a deep learning model. This comprehensive

review is to help researchers understand the capabilities of

different XAI techniques and the appropriate contexts and

modalities for their application.

• Explore the application of deep learning in plant phenotyping:

This objective focuses on reviewing popular studies in the field

of plant phenotyping that have utilized deep learning models,

to provide researchers insights into how deep learning is

advancing and improving the outcomes of plant phenotyping

studies.

• Investigate the limitations and opportunities of XAI

techniques in plant phenotyping: This objective includes a

review of plant phenotyping studies utilizing XAI techniques.

Also, an exploration of how XAI can reveal plant traits by

analyzing large plant datasets, as well as help build trust in

the predicted traits for use in downstream experiments and

sections in breeding programs.
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TABLE 1 Evolution of the number of publications that refers to deep learning in plant phenotyping and XAI in plant phenotyping.

2016 2017 2018 2019 2020 2021 2022

Machine learning, deep learning, plant phenotyping 13 39 48 80 113 135 168

Machine learning, deep learning, plant phenotyping, explainability 3 3 3 4 6 9 13

Darker red and blue represent higher numbers.

2. Background

Researchers have been using intelligent and automated systems

for a long time. Moore and Swartout (1988) was the first to point

out the necessity of explaining intelligent systems. During the

same period, Swartout (1983) developed a system to justify the

decision of a code, and used it to explain the behavior of a Digitalis

Therapy Advisor. However, Van Lent et al. (2004) was the first

to use the term XAI to describe the architecture and reasoning

capabilities of a U.S. Army’s training system. We have come a

long way since then. In this section, we first define XAI, then

describe its categories, and finally provide an overview of existing

XAI techniques.

Despite the recent development, researchers are still divided

on the definitions and terminologies used in XAI techniques.

XAI refers to tools, techniques, and methods that help humans

understand, interpret and trust the decision of an artificial

intelligence model (Adadi and Berrada, 2018; Gunning et al.,

2021; Vilone and Longo, 2021). XAI methods are also commonly

known as interpretable AI, which is a system where the users can

interpret how the input and output are mathematically related

(Bellucci et al., 2021). Although the tools provide an interpretation

of the features a model uses for its decision-making, the terms

interpretability and explainability are used interchangeably in the

literature. However, Adadi and Berrada (2018) stated that the

interpretable model could be considered explainable if humans can

understand the operation of the model. Additionally, Linardatos

et al. (2020) mentioned that the depth of human understanding

of the internal procedure of a model depends on the quality of

the explanation. In the context of machine learning, explainability

techniques summarize the behavior of the models and describe the

system’s internal reasoning and dynamics (Gilpin et al., 2018). On

the other hand, interpretability is considered to be the degree to

which a human can understand the reason for a machine learning

model’s decision (Miller, 2019). Although the techniques described

in the following sections are more concerned with interpretation

than explanation, for consistency with other literature, we address

them as XAI techniques.

The ethical aspects of a deep learning model have given rise

to the term responsible AI. Explainability techniques that deal

with the social impact and ethical and moral obligations are called

responsible AI (Dignum, 2017; Arrieta et al., 2020). Transparent AI

is another common term that is related to explainability techniques.

Lipton (2018) considered an AI model transparent if a domain

expert is able to calculate the model’s prediction in a reasonable

time using the input data and model parameters. Although

this definition applied to linear models, through transparent AI,

researchers try to build non-linear models whose decisions can

be explained even when they behave unexpectedly (Lyons, 2013;

Larsson and Heintz, 2020).

2.1. Categories of XAI techniques

There are several ways to categorize different XAI techniques.

The most common ways of categorizing XAI techniques are based

on the scope of explanation, the level of implementation, and the

transferability of algorithms. Figure 1 shows an overview of the

different categories of XAI Techniques.

2.1.1. Global and local
Depending on the explanation’s scale, several researchers have

categorized the explanation as either global or local (Ribeiro et al.,

2016; Adadi and Berrada, 2018; Ghorbani et al., 2019b; Ibrahim

et al., 2019; Burns et al., 2020; Mohseni et al., 2021). Global

explainability techniques provide a comprehensive explanation

of how the model works (Liu et al., 2016; Nguyen et al., 2016;

Kim et al., 2018; Ghorbani et al., 2019b; Ibrahim et al., 2019).

Although global explanations allow the user to gain an overview

of the model and help them quickly identify what features might

be impacting the model’s performance, the global explanation’s

efficiency is largely dependent on the complexity of the model. On

the other hand, the explanation of themodel’s decision for a specific

instance is considered to be a local explanation (Ribeiro et al.,

2016; Lundberg and Lee, 2017; Mehdiyev and Fettke, 2021; Huang

et al., 2022). Local explainability techniques can easily be adapted

for a complex model but lack generalizability. We can use local

explainability techniques to help users understand how a model

performs for different examples. In our study, we found that local

explanation techniques are more popular than global explanation

methods. This may be due to the complexity of the process of how

a deep learning model makes a decision. Designing an algorithm to

explain the model’s decision for a single example is generally easier

than designing the algorithm considering the decisions for all the

instances. In future, the innovation of global XAI techniques can

provide detailed insight into the inner working of the models.

2.1.2. Post-hoc and intrinsic
Another important categorization of XAI techniques relates to

how the XAI method is implemented in the model. It can either

be implemented within the model or implemented as an external

algorithm (Samek and Müller, 2019; Danilevsky et al., 2020; Das

and Rad, 2020; Belle and Papantonis, 2021). XAI techniques

that are model dependent and embedded within the model, are

called intrinsic XAI techniques (Schetinin et al., 2007; Grosenick

et al., 2008; Caruana et al., 2015; Letham et al., 2015). Intrinsic

techniques are usually applicable to linear models. Such techniques

are nontransferable, and any change in the architecture can cause

the XAI technique to fail. A more popular way of explaining deep

learning models is called post-hoc explanations. An XAI technique
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FIGURE 1

Graphical representation of the categories of XAI techniques.

is considered post-hoc if an external explainer is used on a trained

model to understand the reasoning behind its decision (Bach et al.,

2015; Lundberg and Lee, 2017; Tan et al., 2018; Brunese et al., 2020;

Soares et al., 2020). We found that most XAI techniques designed

for deep learning models are post-hoc. The intrinsic explanations

require the techniques to be embedded within the model. In deep

learning models, there are a large number of parameters which

are distributed over different layers and the layers are non-linearly

correlated to each other. As a result, it is difficult to develop intrinsic

explanations for deep learning models. So, researchers tend to use

post-hoc external algorithms to explain models.

2.1.3. Model agnostic and model specific
Depending on the transferability of an XAI method, it can

either be model-specific or model-agnostic. A model-agnostic XAI

technique does not depend on the model architecture. These

methods can be applied to any deep learning model (Ribeiro

et al., 2016, 2018; Li et al., 2018). Model-agnostic techniques

provide a trade-off between the accuracy of the explanation and

generalizability. Explanations produced by a model-specific XAI

technique are restricted to a specific model or dataset. Such

techniques are not transferable to other models (Hendricks et al.,

2016; Lapuschkin et al., 2016; Soares et al., 2020; Agarwal et al.,

2021). As a result, they tend to be more accurate in explaining

a specific model’s decision. So, researchers prefer model-specific

techniques rather than model-agnostic ones.

2.2. Overview of XAI

The first deep learning algorithmwas developed by Ivakhnenko

(1968), where the authors proposed a multilayer artificial neural

network that was capable of updating its own architecture and

complexity. Fukushima (1988) was the developer of the first

Convolutional Neural Network (CNN) model, Necognition, that

used reinforcement learning for training and used pooling layers

and convolutional layers. Inspired by Necognition, LeCun et al.

(1989) proposed ConvNet, a deep learning model using supervised

training and backpropagation for analyzing image data. Since

then, researchers have developed more complex and more capable

models, such as Generative Adversarial Networks (Goodfellow

et al., 2014), Inception (Szegedy et al., 2015) architectures,

and Transformers (Vaswani et al., 2017). In comparison to the

development ofmore accurate and efficientmodels, there have been

far fewer prior works focusing on explaining such complex models.

However, there has been a recent increase in interest in model

explainability techniques (Arrieta et al., 2020).

2.2.1. Analysis of existing XAI review articles
The notions used in XAI studies lack a proper and consistent

definition, and therefore researchers without domain knowledge

may find it difficult to understand XAI concepts. To close the

gap of understanding, a popular structure for review papers on

this topic are to introduce notions, taxonomies, and relatable

concepts and then review the related articles (Adadi and Berrada,

2018; Gilpin et al., 2018; Arrieta et al., 2020; Das and Rad,

2020; Vilone and Longo, 2020). Arrieta et al. (2020) reviewed

400 articles and proposed a novel definition of explainability, and

emphasized that XAI is necessary to ensure security. In machine

learning, fairness is considered a subsection of machine learning

interpretability and addresses the social and ethical consequences

of machine learning algorithms (Tian et al., 2022). Linardatos

et al. (2020) studied the fairness of machine learning models

where the authors mentioned that researchers favor groups of

individuals with different attributes over ensuring individuals are

treated similarly; thus, the importance of individuals is often

ignored. Chatzimparmpas et al. (2020) reviewed the studies of

visualization and visual interpretation of machine learning models

by categorizing them and qualitatively representing them, and

finally identified the research gaps in the utilization of XAI and

proposed ways of integrating them. Liu et al. (2017) provided an

overview and summary of interactive models in deep learning,

which can help users better explain models by interacting with

them. In their study, Adadi and Berrada (2018) described the need

for XAI in different fields and the implication of adapting it to the

current AI systems. A methodological approach to evaluate XAI

based on a taxonomy of interpretability was proposed by Gilpin

et al. (2018). Preece (2018) reviewed the latest XAI techniques

and demonstrated that the fundamental problems associated with

machine learning algorithms have a long history and the elements

of earlier research can help advance today’s XAI models.

There are also domain-specific reviews of XAI

studies (Danilevsky et al., 2020; Jiménez-Luna et al., 2020;

Tjoa and Guan, 2020). Danilevsky et al. (2020) reviewed the
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TABLE 2 Overview of the review of XAI techniques.

References Categories discussed Additional information and findings

Belle and Papantonis (2021) 1. Perspectives on explainability 1. Examples of how data scientists can apply XAI techniques in practice.

2. Exploring explainable machine
learning

2. Suggested that researchers need to focus on building trust in the explanations themselves.

3. Transparent models

4. Opaque models

5. Explainability approaches

Vilone and Longo (2020) 1. Review articles 1. Discussion on the boundaries of XAI

2. Theories 2. Proposed a framework that ensures human incorporation in the development of XAI

3. Methods

4. Evaluations

Das and Rad (2020) 1. Scope of explanation 1. Presented historical timeline for XAI studies

2. The difference in methodology 2. Provided mathematical overviews and algorithms of seminal works in the field of XAI

3. Implementation level 3. Provided reference to some popular XAI software

4. Evaluation methodologies 4. Suggested that current XAI utilize model agnostic and post-hoc techniques in additive and
surrogate models

Linardatos et al. (2020) 1. Explain black-box model 1. Discussed the effect of XAI in bias study

2. Create white-box model 2. Provided links to the programming implementation of XAI techniques

3. Enhance fairness 3. Proposed a taxonomy of the existing machine learning interpretability methods

4. Analyze the sensitivity of model
predictions

Chatzimparmpas et al. (2020) 1. Visual analytics 1. Review of visual analytics in machine learning

2. General ML models 2. Future opportunities

3. Predictive visual analytics 3. Research opportunities

4. Interactive machine learning 4. Review of reviews

5. Deep learning

6. Dimensionality reduction

Danilevsky et al. (2020) 1. Categorization of explanations 1. Discussion is specific to natural language processing

2. Aspects of explanations 2. Emphasized the importance of including humans in the development of XAI techniques

3. Explanation quality

Jiménez-Luna et al. (2020) 1. Feature attribution methods 1. Discussion is specific to drug discovery

2. Instance-based approaches 2. Provides an overview of the packages

3. Graph-convolution-based methods 3. Suggested that XAI can help avoid human bias in the formulation of complex
pharmacological hypotheses

4. Self-explaining approaches

5. Uncertainty estimation

Xu et al. (2019) 1. Making the parts in DNN
Transparency

1. Discussed the history of XAI

2. Learning semantic graphs from
existing DNNs

2. Suggested that deep learning models should be transparent for mission-critical tasks

3. Generation of explanations

Samek and Müller (2019) 1. Explaining with surrogates 1. Discussed the necessity of XAI

2. Explaining with local perturbation 2. Showed that current evaluation techniques are inadequate for evaluating the quality of
explanations

3. Propagation-based

4. Meta explanations

(Continued)
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TABLE 2 (Continued)

References Categories discussed Additional information and findings

Arrieta et al. (2020) 1. Transparent machine learning models 1. A brief discussion of future opportunities

2. Post-hoc explainability techniques for
machine learning models

2. Discussion of bias and fairness in XAI

3. Toward responsible AI 3. Unvelied that XAI has the potential to compromise the data when explaining the models

Adadi and Berrada (2018) 1. XAI methods taxonomy: overview of
the existing XAI methods

1. Discussion of potential domains where XAI can benefit existing AI systems

2. XAI measurement: XAI evaluation
techniques

2. Found evidence of lack of formalism and insufficient human role in the development of
XAI

3. XAI perception: role of humans in
XAI

4. XAI antithesis: works that challenge
XAI techniques

Preece (2018) 1. Explanation in classical AI systems 1. Proposed a framework that researchers can follow to develop XAI techniques

2. Interpretability in ML-based AI
systems

2. Emphasized the necessity of automated tools to easily generate explanations

3. An explainable AI framework

Gilpin et al. (2018) 1. Explanations of deep network
processing

1. Review of related works in various domains

2. Explanations of deep network
representations

2. Evaluation techniques

3. Explanation-producing systems 3. Observed that current XAI techniques are siloed and algorithms should be developed to
incorporate multiple techniques in a single explanation

Liu et al. (2017) 1. Understanding 1. Review of visualization tools for XAI

2. Diagnosis 2. Suggested that it is important to quantify the uncertainty of the XAI techniques to gain
human trust

3. Refinement

Tjoa and Guan (2020) 1. Perceptive interpretability 1. Discussion is specific to the medical domain

2. Interpretability via mathematical
structure

2. Discussion on general XAI techniques and XAI in the medical domain follows the same
categories

3. Other perspectives to interpretability 3. Found that in the medical domain, a unified notion of interpretability is elusive and
requires more comparative studies between the performance of XAI techniques

recent advancement of XAI techniques in natural language

processing and found that researchers prefer local XAI over

global ones. This preference is influenced by the increased

usage of the black box models in comparison to the white box

models. Tjoa and Guan (2020) studied the state-of-the-art XAI

techniques and suggested how the techniques can be utilized in

the medical domain. The authors emphasized the importance

of accountability and transparency in deep learning models

within the medical sector and how XAI can help ensure these

attributes. In the review conducted by Jiménez-Luna et al. (2020),

the authors explore the application of XAI in the field of drug

discovery and highlight the potential of XAI techniques to
address the challenges faced in this domain. They emphasize that

despite the popularity of deep learning models, the mathematics

behind the model still remains elusive to most researchers,

and XAI can help expand our understanding by providing

interpretability and insights into these models. In Table 2, we

have summarized the reviews on explainability techniques, which

can help us understand the structure of the reviews and the

techniques discussed.

2.2.2. Methods of XAI
To study the prospect of XAI techniques in plant phenotyping,

we believe it is important to have knowledge of the existing XAI

techniques. We have categorized the existing XAI techniques into

six different categories based on the explanation generated by the

techniques. Table 3 provides an overview of the models discussed

in this section.

2.2.2.1. Visualization-based XAI

Visualizing the decisions made by different parts of a deep

learning model or visualizing the learned features that contributed

to the prediction of an instance is a popular way of explaining a

model. Layer-Wise Relevance Propagation (LRP) is a deep learning

model explanation technique which helps to quickly find relevant

features responsible for the prediction (Bach et al., 2015). LRP

can be used for various deep learning architectures and data

types, which makes it popular in XAI. Lapuschkin et al. (2016)

analyzed the reasoning behind the prediction of a Fisher Vector

and Deep Neural Network (DNN) models. The authors used a

heat mapping technique to find the pixels contributing to the
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prediction which can be used to determine whether or not the

model uses relevant features for prediction. Hendricks et al. (2016)

combined natural language processing with visual analytics to

generate explainable systems that humans easily understand. The

authors trained to separate systems where the first system was

trained for image classification, and the second system was trained

to generate text descriptions of the discriminating features of a

class. The loss function is an essential part of a deep learning

model. Instead of optimizing the loss functions, Li et al. (2018)

proposed a loss landscape visualization technique that can better

capture the sharpness and flatness in the landscape. They also

showed that the visualization technique is more intuitive and easily

understandable than other techniques. Gradient-weighted class

activation mapping (GradCAM) uses the class-specific gradient

flowing through a CNN’s final convolutional layers to visualize the

input’s important features in a saliency map. Assaf and Schumann

(2019) used GradCAM to explain a model trained on multivariate

time-series data.

2.2.2.2. Saliency map based XAI

GradCAM++ is an extension of GradCAM (Chattopadhay

et al., 2018). It allows for the visualization of multiple objects of the

same class in the image as it uses a weighted combination of positive

partial derivatives of the last convolutional layer to generate the

visualizations. Ghorbani et al. (2019b) proposed a concept-based

approach called Automated Concept-based Explanations (ACE)

which can help reveal whether a model’s prediction correlates

to any unwanted features. Zintgraf et al. (2017) proposed a

saliency map generation technique, where for each prediction,

a relevance value is assigned to each input feature with respect

to the class. Simonyan et al. (2013) created saliency maps

representing the discriminative features of a class by passing a

single backpropagation through a CNN. Guided Backpropagation

(GBP) is a gradient-based visualization technique that allows the

visualization of the image features that activate the neurons in a

deep learning model (Springenberg et al., 2014). In the field of

medical science, Lee et al. (2019) proposed a deep learning-based

explainable acute intracranial hemorrhage system that generated

saliency maps showing the relevant features in a class.

2.2.2.3. Surrogate models

A surrogate model is a simple model that is used to explain

a complex model. Local Interpretable Model-agnostic Explanation

(LIME) (Ribeiro et al., 2016) is a popular example of a surrogate

model, that can help identify regions in the input essential for

the prediction. Ribeiro et al. (2016, 2018) proposed extensions of

LIME called Sub-modular Pick LIME (SP-LIME) and Anchors,

respectively. Shapley additive explanations (Lundberg and Lee,

2017) is another example of using the surrogate model to explain

a deep learning model, which assigns an importance value to

each feature for an instance. Tan et al. (2018) proposed Distill-

and-Compare that can explain an inaccessible black-box model

by training a model with labeled data with risk factors and

then training another model to predict the outcome. Che et al.

(2015) used knowledge distillation from deep learning models to

explain the features and prediction rules with gradient boosting

trees. Soares et al. (2020) proposed a rule-based surrogate XAI

model for deep reinforcement learning where the results of

the reinforcement learning model are replicated with an if-then

rule-based model.

2.2.2.4. Attribution mapping

The benefit of a global explanation is that it allows for a

description of the neural network using a single set of features.

Global Attributions Mapping proposed by Ibrahim et al. (2019)

allows granularity of analysis by increasing or decreasing the size

of the subpopulation. Erion et al. (2019) developed a framework

called attribution prior using the feature attribution method that

enforces a deep learning model to train based on prior expectations

and allows encoding of human intuitions without the necessity of

knowing unimportant features beforehand.

2.2.2.5. Additive models

Generalized additive models are a class of linear model (Lou

et al., 2012) that combines multiple models where each model is

trained with individual features. A drawback of this model is that

it fails to work with non-linear functions. An extension of this

approach was proposed by Agarwal et al. (2021), called Neural

Additive Models (NAM), where, a linear combination of neural

networks models is used to generate a prediction. NAM can help

generate an explanation of individual features for a prediction.

2.2.2.6. Perturbation-based models

In a perturbation-based XAI technique, explanations are

generated by probing a trained model with different variations

of the input data. The Interpretability Randomization Test and

the One-Shot Feature Test proposed by Burns et al. (2020)

are perturbation-based XAI methods. The intermediate layers

of a CNN model were visualized by Zeiler and Fergus (2014).

The authors hide different parts of an input image and used

a Deconvolutional Neural Network to regenerate the input.

The saliency maps generated by this process represent the

features responsible for the activation of the feature map.

Angelov and Soares (2020) proposed a generative explainable

deep learning model that is automatically built from the training

data without defining parameters, problem-specific thresholds, and

intervention. The swap test is an explainable deep learning model

that generates heatmaps representing the area of interest in theMRI

images of Alzheimer’s patients (Nigri et al., 2020).

Recently several XAI techniques have been developed and

applied in different fields of studies (Cabitza et al., 2017; Bhatt

et al., 2020; Bai et al., 2021; Gulum et al., 2021; Puyol-Antón

et al., 2021; Thomas et al., 2021). In our review, we found that

researchers prefer the visualization-based XAI and saliency map-

based XAI techniques over others. These models are capable of

explaining the decisions of a model through the generation of

different visualization maps and images, therefore researchers find

them easy to understand and adopt. In Table 3 we summarize

the XAI techniques described above. In addition, Table 3 offers

valuable insights into the dataset employed and the deep learning

models utilized in each study, along with the scope and type of

the explanations. Specifically, we provided information regarding

where the dataset was first proposed, enabling researchers to

acquire comprehensive knowledge about its intricacies.

An XAI technique aims to generate explanations that can help

humans understand how the decisions are made in a deep learning
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TABLE 3 Overview of XAI techniques.

References Local/ Model specific/ Intrinsic/ Dataset Models examined
global model agnostic post-hoc

Che et al. (2015) G MA PH Khemani et al. (2009) 1. Deep feed-forward neural network

2. Stack denoising autoencoder

3. Long Short-Term Memory

Ribeiro et al. (2016) L MA PH Blitzer et al. (2007) 1. InceptionV3

2. Word2vec

Ribeiro et al. (2018) L MA PH Ribeiro et al. (2018) InceptionV3

Lundberg and Lee (2017) L, G MA PH Deng (2012) CNN: 2 Conv layer, 1 FCN layer

Lapuschkin et al. (2016) L MS PH Everingham et al. (2015) 1. BVLC reference classifier

2. VGG16

3. GoogleNet

Hendricks et al. (2016) L MS PH Wah et al. (2011) Proposed model combining VGG16 and
LSTM

Zhou et al. (2016) L MS PH Russakovsky et al. (2015) 1. Network in network

2. GoogleNet

3. VGG16

Selvaraju et al. (2017) L MS PH Russakovsky et al. (2015) 1. VGG16

2. AlexNet

3. Neuraktalk2

Chattopadhay et al.
(2018)

L MS PH 1. Russakovsky et al. (2015) VGG16

2. Everingham et al. (2015)

Simonyan et al. (2013) L MS PH Berg et al. (2010) ImageNet Classification with deep
sonvolutional neural networks

Li et al. (2018) G MA PH Krizhevsky and Hinton
(2009b)

1. ResNet

2. DenseNet

3. VGG16

Bach et al. (2015) L MA PH 1. Everingham et al. (2015) 1. Shallow CNN

2. Deng (2012) 2. Caffe open source pack-age

Ghorbani et al. (2019b) G MA PH Russakovsky et al. (2015) InceptionV3

Ibrahim et al. (2019) G MA PH 1. Synthetic data Shallow CNN

2. Dua et al. (2017)

Agarwal et al. (2021) G MS PH 1. Saeed et al. (2011) Shallow CNN

2. ProPublica (2016)

Zeiler and Fergus (2014) L MA PH 1. Fei-Fei et al. (2006) ImageNet Classification with deep
convolutional neural networks

2. Griffin et al. (2007)

3. Everingham and Winn
(2011)

4. Deng et al. (2009)

Zintgraf et al. (2017) L MA PH Deng et al. (2009) 1. AlexNet

2. GoogleNet

3. VGG16

(Continued)

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2023.1203546
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Mostafa et al. 10.3389/frai.2023.1203546

TABLE 3 (Continued)

References Local/ Model specific/ Intrinsic/ Dataset Models examined
global model agnostic post-hoc

Springenberg et al.
(2014)

L MA PH 1. Krizhevsky and Hinton
(2009b)

1. ImageNet Classification with deep
convolutional neural networks

2. Krizhevsky and Hinton
(2009a)

2. Network in network

3. Russakovsky et al. (2015)

Burns et al. (2020) L MA PH Deng et al. (2009) 1. InceptionV3

2. Bidirectional encoder representations
from transformers

Soares et al. (2020) G MS PH Nageshrao et al. (2019) -

Angelov and Soares
(2020)

G - I 1. Rezaei and Terauchi (2013) Proposed the model

2. Griffin et al. (2007)

3. Fei-Fei et al. (2006)

4. Yang et al. (2020)

Lee et al. (2019) L MA PH Wang et al. (2017) 1. VGG16

2. ResNet50

3. InceptionV3

4. Inception-RecNet-v2

Brunese et al. (2020) L MA PH Cohen et al. (2020) VGG16

Assaf and Schumann
(2019)

L MS PH Energy consumption of
photovoltaic power plant

Proposed the model

Nigri et al. (2020) G MS PH 1. Weiner et al. (2013) 1. AlexNet

2. Ellis et al. (2009) 2. VGG16

3. ResNet50

Erion et al. (2019) G - I Krizhevsky and Hinton
(2009b)

VGG16

L, Local; G, Global; MA, Model Agnostic; MS, Model Specific; PH, Post-Hoc; I, Intrinsic; and Dataset refers to where the dataset used in the study was first proposed.

model (Gerlings et al., 2020). Existing XAI techniques are more

focused on explaining the models, or variables responsible for

the decisions of a model, and there is a lack of XAI techniques

that utilize the explanations to improve the model’s performance.

Furthermore, although XAI techniques are designed to explain the

decision of deep learning models, they are used less frequently

in deep learning studies than expected. The inadequate adoption

of the XAI techniques can be attributed to the lack of proper

XAI evaluation techniques, the unreliability of XAI techniques,

and the unavailability of XAI platforms and tools. Although

researchers have proposed a few XAI evaluation techniques

(Arras et al., 2016, 2017; Samek et al., 2016; Ancona et al.,

2017; Adebayo et al., 2018a,b; Alvarez Melis and Jaakkola, 2018;

Mohseni et al., 2018; Ribeiro et al., 2018; Yang and Kim, 2019;

Holzinger et al., 2020), the techniques usually suffer from limited

generalizability and inconsistency. Furthermore, researchers found

that the explanations for similar models vary from one XAI

technique to another thus promoting reliability concerns (Adebayo

et al., 2018b; Ghorbani et al., 2019a; Kindermans et al., 2019;Weerts

et al., 2019). Finally, compared to the deep learning models, there is

a lack of platforms and resources that can help researchers easily

adopt XAI in their studies. Explaining the decisions of a deep

learning model is crucial for fostering user trust and facilitating

transparency. This practice can enable researchers from diverse

domains to confidently integrate deep learning models into their

studies, ensuring a robust foundation for their investigations. We

believe the implementation of XAI techniques in the analysis of

plant phenotyping data can help plant scientists develop a better

understanding of data-derived plant traits. We explore this topic in

the following section.

3. Explainable AI and plant
phenotyping

Plant phenotyping is the study of characterizing and

quantifying the physical and physiological traits of a plant

(Chandra et al., 2020). Plant phenotyping can help us understand

plant characteristics like chlorophyll content, leaf surface

temperature, leaf size, leaf count, shoot biomass, photosynthesis

efficiency, plant growth rate, germination time, and emergence

time of leaves (Kolhar and Jagtap, 2021). The results of plant
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phenotyping studies allow us to develop a better crop management

system (Bauer et al., 2019). We can detect plant disease, type of

plant, the water content in the plant, and flowering of plants, and

take necessary steps if a problem arises (DeChant et al., 2017;

Ghosal et al., 2019; Arya et al., 2022). Recently, scientists have

started applying deep learning techniques to plant phenotyping

studies (Almahairi et al., 2018; Ghosal et al., 2019; Mortensen et al.,

2019). Deep learning models can analyze large amounts of data,

find previously thought impossible features, and do all these more

accurately than ever before. As a result, researchers are increasingly

adopting deep learning into their studies. However, deploying

deep learning techniques requires domain knowledge of machine

learning algorithms as numerous models perform various tasks. It

creates a dilemma among plant scientists in deciding which model

to choose, how to use it, and how to incorporate the results into

their studies.

3.1. Deep learning models in plant
phenotyping

There are few reviews that look into the advancements of deep

learning techniques in plant phenotyping. Jiang and Li (2020); Arya

et al. (2022); Chandra et al. (2020); Ren et al. (2020); Kolhar and

Jagtap (2021) provide detailed overviews of how deep learning is

advancing plant phenotyping studies. Although they used different

categorization techniques to discuss the papers, the motivation

was to introduce plant scientists to deep learning (Ubbens and

Stavness, 2017). A more domain-specific study was conducted by

Singh et al. (2018), where the authors reviewed deep learning

for plant stress phenotyping and suggested that deep learning

models utilizing image data in plant phenotyping hold significant

potential for early diagnosis of plant stress. The study conducted

by Atkinson et al. (2019) emphasizes the importance of integrating

deep learning-based 2D systems with large-scale quantitative

genetic data analysis as a pivotal progression in the field of root

phenotyping, offering valuable insights for understanding root

biology and its implications. Themodern deep learning-based plant

disease detection techniques were discussed in Lee et al. (2020).

The authors found that models trained on disease and independent

of crops performed better than crop disease pair, and for transfer

learning, a popular concept in plant phenotyping, pre-training with

a plant-specific task can help reduce the effect of overfitting. The

review on the advancement of deep learning for pest and leaf

disease detection by Ngugi et al. (2021) reported a notable challenge

faced by the deep learning models used in plant phenotyping is

the model’s inability to generalize across diverse datasets and field

conditions. Hasan et al. (2021) reviewed the machine learning

techniques for weed detection and classification and revealed the

necessity of a large labeled dataset specifically designed for weed

detection to overcome the limitations of the current studies that

require pre-trained models to improve the detection accuracy

and only utilize the existing small datasets. Danilevicz et al.

(2022) addresses the challenges of applying machine learning

models for predicting phenotypic traits using genetic markers and

presents the advantages and disadvantages of using explainable

model structures in plant phenotyping. Additionally, the authors

reiterated the necessity of labeled data in plant phenotyping

studies and suggested that the model accuracy can be improved

if the weights of the existing models are updated by training on

new datasets.

To help the researchers understand the capabilities of deep

learning models and their usage in plant phenotyping, we reviewed

the popular deep learning studies in this area in the following

sections. We categorized the papers based on the application of

deep learning models.

3.1.1. Classification
Plant disease can severely damage the quality and production of

crops. Timely and accurate disease detection can help take proper

steps to prevent or stop its spread. A simple LeNet (LeCun et al.,

1989) based architecture was used by Amara et al. (2017) to classify

banana disease using the PlantVillage dataset. Despite its simple

architecture, the model performed well under varying conditions.

In plant phenotyping, the most popular dataset for

classification tasks is the PlantVillage dataset. The dataset

contains images of leaves of 14 crop species and 26 diseases. The

dataset consists of colored, grayscale, and segmented images of the

leaves which were captured in a controlled environment. There are

39 classes in the PlantVillage dataset and the distribution of images

among different classes is shown in Figure 2 which also provides

information about the different diseases and species covered in

the dataset. In their paper, Mohanty et al. (2016) introduced

the dataset and also classified the images using AlexNet and

GoogleNet. The authors demonstrated the models’ performance

for different training and test combinations and showed that the

models performed exceptionally well. However, the classification of

their best-trained model dropped to 31% when tested on field data.

Such results might be because images of individual leaves in the

dataset were taken in controlled conditions and against a constant

background. So, the trained models failed to generalize and

performed inadequately when there were changes in illumination,

background, or number of leaves. However, this dataset is still

used frequently in plant phenotyping and helps scientists develop

their models.

DeChant et al. (2017) proposed a deep learning-based

framework capable of detecting northern leaf blight-infected maize

plants from images acquired by unmanned aerial vehicles (UAV).

The framework consists of training several models and combining

their results for prediction. At first, the authors trained five

deep learning models on image patches to detect the presence of

lesions and achieved 94% accuracy. Next, they generated heatmaps

showing the probability of infection of every region in an image

using the trained models. Finally, they trained another CNNmodel

to classify whether there were infected leaves in the image and the

inclusion of the heatmaps increased the classification to 97.8%.

A different approach for analyzing the plant phenotyping traits

was adopted by Taghavi Namin et al. (2018). They proposed a

CNN and Long Short TermMemory (LSTM) based classifier where

the plant growth information was used for the classification. A

sequence of plant images representing different stages of growth

was used as the input for the CNN model. The CNN model

extracted features of an individual plant and passed them on to
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FIGURE 2

Plot of the distribution of images in di�erent classes of the PlantVillage dataset.

LSTM. LSTM analyzes this sequence of features by considering the

temporal features and using them to classify plants. CNN-LSTM

can use the plant’s growth information and model the phenotypic

and genotypic information. The combination of CNN and LSTM

helped the authors achieve 93% accuracy in comparison to 76.8%

accuracy by using just CNN. A similar structure was adopted by

Ubbens et al. (2020) to detect and quantify a plant’s response to

the treatment.

Lodging is a state of the crop where it bends and does not

return to its original state, often the shoot lays on the ground and is

subject to disease and decomposition. LodgeNet is a CNN classifier

that can classify images of lodged crops from five spectral channel

orthomosaic images of canola and wheat plants (Mardanisamani

et al., 2019) where the images are captured using UAVs. In

LodgeNet, a seven-layer CNN model is used to extract texture

features from the orthomosaic images. In addition, two texture

feature extraction algorithms (local binary patterns and gray-level

co-occurrence matrix) are also used to extract additional features.

Features extracted from the CNN and the texture descriptors

were combined to train a deep learning classifier and achieved

97.70 and 99.06% accuracy for wheat and canola, respectively.

The results of the LodgeNet were compared with other popular

deep learning models and the authors reported an improvement of

classification accuracy by 8.84%. The authors concluded that simple

deep learning models are capable of performing as efficiently as

complex models. The capability of simple deep learning models

were also tested by Hati and Singh (2021) where the authors

implemented Residual Network (ResNET) based classifiers for the

classification of different species and plant health conditions. The

results of the ResNet-based classifier were compared with AlexNet

and ResNet provided 16% higher F1-score than AlexNet.

3.1.2. Regression
In deep learning, regression is used to investigate the

relationship between independent variables or features and a

dependent variable or outcome (Kuleshov et al., 2018), and

segmentation is used to partition an image into different parts or

regions depending on the image pixel’s characteristics (Haralick

and Shapiro, 1985). In a deep learning-based regression,

segmentation is usually used to detect the objects and count

them. To accomplish this, an annotated dataset is required. The

lack of annotated datasets for plant phenotyping magnifies the

challenges and limitations faced in this field of study. To resolve

this issue, Dobrescu et al. (2017) proposed a ResNet-based leaf

counter that only requires the total leaf count per plant. Another

interesting contribution is that the authors combined a dataset

of different sources and species to perform better than previous

models. In the analysis, the authors observed that using a pre-

trained ResNet on the ImageNet dataset performed better than

training the model from scratch. It shows that transfer learning can

be a viable option to resolve the insufficient data problem.

The authors of Aich and Stavness (2017) used a combination

of deconvolutional networks and convolutional networks to count

rosette leaves. The networks were trained separately but not

independently. At first, a segmentation network was trained to

generate binary masks representing the leaves in the image.

Next, the binary mask and the images were used to train
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a counting network. The segmentation was developed using

SegNet (Badrinarayanan et al., 2017), and the counting network

was developed using VGG16. The study’s results showed that the

proposed network’s generalization capability was better than other

state-of-the-art leaf counters. Ubbens et al. (2018) also developed a

rosette leaf counter using deep learning. The authors also showed

that the synthetic 3D plants could be used to generate augmented

training data for the deep learning model when the dataset is not

large enough.

A deep learningmodel is initially trained in a weakly supervised

training process with few labeled data. Then the trained model

is again retrained with unlabeled data. Ghosal et al. (2019) used

weak training to develop sorghum head detection and a counting

network. The deep learning model was based on RetinaNet (Lin

et al., 2017) and ResNet50. In this work, the first stage was to detect

the sorghum heads in the image, and the next stage was to count

those heads. In addition, a regression model was used to generate

bounding boxes around the sorghum heads. To understand the

learning of the residual network, feature maps were visualized. The

authors considered the visualization a “trust mechanism”, which

showed that the model extracted a significant amount of features

from the plant head. The authors proposed a counting framework

that can work when there is a shortage of labeled data for the deep

learning model.

Pound et al. (2017) proposed an hourglass (Newell et al., 2016)

based deep learning architecture capable of localizing wheat spikes

and spikelets with 4.09 and 0.34% error, respectively. Another

important contribution of the paper is the introduction of the ACID

dataset which consists of wheat crop images with annotation and

labeling. The model could also classify awned wheat with 99%

accuracy in the segmented images. The accuracy curve of the model

indicates that it achieved peak accuracy at ∼200 epochs out of the

total 500 epochs of training, raising the possibility of overfitting as

the model at the 500th epoch was utilized for the analysis.

3.1.3. Segmentation
Segmentation plays a crucial role in plant phenotyping. In field

conditions, the crop or leaf of a plant is usually accompanied

by other plant parts. Proper segmentation is often required

to detect the object of interest and use the object of interest

for other purposes. However, another interesting application of

segmentation is to generate annotated datasets. An oil radish

growth dataset was presented by Mortensen et al. (2019), which

contained images of oil radish collected over weeks. In the study,

the authors used the fully connected neural network proposed by

Long et al. (2015) for semantic segmentation of the oil radish and

other plants and achieved 71.2% mean intersection over union

(mIoU). For annotation in the GrassClover image dataset, Skovsen

et al. (2019) used a similar network for semantic segmentation

of grass and clover from the field images, where both crops were

mixed and reached a mIoU of 55.0%. Bernotas et al. (2019) used

recurrent neural network (RNN) (Ren and Zemel, 2017) and Mask

R-convolutional neural network (Mask R-CNN) (He et al., 2017) for

instance segmentation of rosettes and individual leaves to monitor

the growth of the plant. Using RNN and Mask R-CNN Keller et al.

(2018) also segmented soybean leaf using color-based thresholding,

random forest classifier and deep convolutional network and

achieved 87.52, 51.24, and 78.65% mIoU, respectively.

Two stages of CNNmodels were used for citrus plant detection

in Ampatzidis and Partel (2019) by utilizing multispectral images

from a UAV. In the first stage, a YOLOv3 model was used to detect

tree locations in the images. After using computer vision algorithms

on the detected trees, another YOLOv3 was used to find trees in the

locations that the first model might have missed. These images were

then used in a threshold-based algorithm for image segmentation.

The proposed method detected trees with 99.8% accuracy, tree gaps

with 94.2% accuracy, and estimated individual tree canopy area

with 85.5% accuracy. In Vit et al. (2019), object detection and point

of interest identification models were introduced to measure the

height of a banana tree and the length, width, and aspect ratio

of a banana leaf. The models were developed using Mask R-CNN

and Faster RNN and obtained an average deviation of 3% for

detecting the height of the tree and 7–8% deviation for leaf width

and length estimation.

3.1.4. Synthetic data generation
To train deep learning models, a large dataset is required.

In plant phenotyping, there is a lack of such datasets. Also,

collecting data for the datasets is very time-consuming and

costly. So, Generative Adversarial Network (GAN) to synthesize

images to mitigate the scarcity of plant images for deep learning

is a popular choice. Cycle-GAN, an image-to-image translator

developed by Almahairi et al. (2018), has inspired researchers to

adopt this in plant phenotyping studies to generate augmented

plant phenotyping data.

Nazki et al. (2020) proposed an unsupervised image-to-image

translator called AR-GAN by adopting and improving the concept

of CycleGAN. The authors transferred diseased patches from an

unhealthy tomato leaf to a healthy tomato leaf. The leaf texture in

the synthetic data was consistent with the actual data. The synthetic

data was mixed with the training data, and a ResNet model was

trained to classify different types of disease. The inclusion of the

synthetic data increased the classification accuracy by 5.2%. AR-

GAN can help plant phenotyping-based deep learning studies

generate cost-effective, larger, and more diverse datasets. Figure 3

shows examples of images generated by AR-GAN.

Cap et al. (2022) showed that AR-GAN failed to synthesize

images when the images had a complex background similar to field

conditions. So the authors proposed LeafGAN, an image-to-image

translating GAN model. Compared to the AR-GAN, LeafGAN

utilizes a proposed image segmentation technique, LFLSeg, which

segments the leaf from the background. LFLSeg is a CNN that

is trained to classify between whole leaf, partial leaf (parts of the

whole leaf), and non-leaf. After training the CNN model, for

a prediction, Grad-CAM is used to generate a heatmap of the

features, which are supposed to be the leaf pixels in this case. The

heatmap is turned into a binary mask, and the input image is

segmented. The purpose of LFLSeg is to guide the CycleGANmodel

to focus on the leaf instead of the background. In comparison

with CycleGAN, LeafGAN performed superiorly. However, for a

new dataset training, the LFLSeg might be difficult. As the partial

leaf class was hand-picked, it may require considerable time to

generate. The Grad-CAM itself still lacks reliability. Analyzing

individual masks generated by Grad-CAMmight be impossible for

a large dataset.
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FIGURE 3

Examples of synthetic images generated by AR-GAN. The leftmost column shows the real images and the rest of the columns show synthetic images

with e�ects of canker, miner, whitefly, powdery mildew, plague, and low temperature (left to right), respectively (Nazki et al., 2020).

To generate rosette plant leaves, Valerio Giuffrida et al. (2017)

developed ARIGAN, a GAN-based synthetic image generator. This

DCGAN (Radford et al., 2015) based model takes the number of

leaves that should be present in the image, uses random noise,

and transforms it into the image of a rosette plant with a given

number of leaves. The authors used the model to generate 57

images of rosette plants with a varying number of leaves. However,

if we look closely at the images in Figure 4, the leaves’ variability

seems minimal.

3.1.5. Root phenotyping
The focus of this review has been on shoot phenotyping

as the majority of the deep learning-based plant phenotyping

analyses in the literature have focused on shoot phenotyping.

Recently, there has been an extensive increase in deep learning-

based root phenotyping. Root phenotyping or the study of plant

root architecture and morphology aims at understanding the role

of genetic differences in root system architecture in more efficient

acquisition of mineral nutrients and water, and response to climate

and soil change (Gong et al., 2021). Roots are harder to study in situ

as roots grow in opaque and complex soil. Along with growing the

roots in a transparent media or soil-filled rhozoboxes (Lube et al.,

2022), researchers also have focused on developing nondestructive

tools and systems to analyze the roots and deep learning has proved

to be a great asset for such studies (Mairhofer et al., 2013; Shen et al.,

2020).

Segmentation of the plant roots from images captured using

different nondestructive imaging techniques is an important part

of root phenotyping studies. Thesma and Mohammadpour Velni

(2022) proposed a binary semantic segmentation model to

segment plant root images of the Arabidopsis thaliana using

SegNet (Badrinarayanan et al., 2017). Although SegNet was

designed to consume less memory during inference time, it

achieved comparable segmentation performance with a mean

intersection over union of 60.10%. RootNav 2.0 is an automatic root

system extraction tool proposed by Yasrab et al. (2019). Along with

providing root architecture from images, this autoencoder based

deep learning model can locate seeds, and first order and second

order root tips with 66.1%mean intersection over union. Seidenthal

et al. (2022) proposed an iterative deep learning architecture

ITErRoot that allows the refinement of the detected roots during

each iteration of model training. The iterative approach of the

model can accurately detect the thin and branched root system

and generate high quality segmented root images. The authors also

proposed a 2D root image dataset with ground truths.

Falk et al. (2020) proposed a high-throughput, cost-effective

end-to-end root phenotyping pipeline. The authors developed a

low-cost growth chamber to observe the growth of plant roots in

a non-destructive manner, a CNN to segment the root structure,

and finally used an automatic root imaging analysis tool on the

segmented images to study the plant traits. Yasrab et al. (2021) took

a different approach to study root phenotyping by developing a

GAN model that can forecast the growth of a plant and generate

segmentation masks of root and shoot systems by using the forecast

data. A simple deep learning classifier was developed by Xu et al.

(2022) to classify root types into branch type, taproot type, and

an intermediate taproot-branch type. Xu et al. (2022) compared

the results of the deep learning model with supervised and semi-

supervised traditional machine learningmodels and concluded that

deep learning models perform better.

3.1.6. Deep learning platform for plant
phenotyping

Deep learning models demonstrate superior performance

compared to shallow and traditional machine learning algorithms

across a wide range of tasks due to their ability to learn intricate
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FIGURE 4

Samples of augmented images generated by ARIGAN. The bottom

right represents the number of leaves (Valerio Giu�rida et al., 2017).

representations and capture complex patterns in data (Hu et al.,

2021; Janiesch et al., 2021; Sarker, 2021). Despite its efficiency, deep

learning models are rarely adopted to perform plant phenotyping

tasks. The main reasons for the lack of adoption of deep learning in

plant phenotyping can be attributed to the absence of proper tools

and the lack of large adequately labeled, task-specific plant datasets.

Researchers require domain knowledge of the models to build and

apply the models to their studies. Furthermore, the development of

a generalizable deep learningmodel relies heavily on the quality and

quantity of available data. Substantial computational resources are

also necessary to train and deploy deep learning models. To resolve

the lack of proper tools, Ubbens and Stavness (2017) developed an

open-source deep learning tool called Deep Plant Phenomics. This

tool contains pre-trained deep learning models for leaf counting,

mutant classification, and age regression. The models were trained

for canola and rosette leaves. Hypocotyl UNet by Dobos et al.

(2019) is another publicly available tool that can estimate the

hypocotyl length in seedlings and can be adapted for different

datasets. Nakhle and Harfouche (2021) developed an interactive

tutorial with open-source libraries to analyze plant phenotyping

data using deep learning models. The authors believe that the

tool can benefit early career researchers and students in extracting

biologically meaningful information from deep learning models.

They also reviewed the tools, techniques, and services available

to study plant phenotyping with XAI based image analysis. Plant

scientists may consider incorporating these tools into their studies

to obtain previously thought impossible results.

In this review paper, we have summarized the plant

phenotyping studies utilizing deep learning, as presented in Table 4.

The table encapsulates essential details about the purpose of the

deep learning model and the specific phenotyping task performed

by the researchers. Furthermore, detailed information about the

dataset and deep learning model employed in each study has

been incorporated into the table. This includes information as to

whether the researchers proposed a novel model or dataset, utilized

an existing model and dataset, or employed well-established,

commonly known datasets and models.

3.2. Explainability in plant phenotyping

As discussed earlier, explainability is becoming an important

part of deep learning models as it allows better understanding

and provides model optimization capabilities. XAI is needed in

plant phenotyping studies as plant scientists need to verify the

predictions and be confident in the result so that the model

can be applied in practice. Explaining the prediction of the

model works as an extra layer of security for plant scientists. In

comparison with other fields of study, XAI is still in its earlier

stage in plant phenotyping. To the best of our knowledge, the

article by Harfouche et al. (2022) is the only other review that

discusses XAI in plant phenotyping. However, the focus of the

review was to analyze the contribution of XAI in data bias, the

infrastructure needed to accommodate XAI in plant phenotyping

and the responsibility of humans to utilize XAI. The focus of

this study is to discuss XAI techniques and their use cases. In

this section, we discuss the studies where XAI was used in plant

phenotyping for validation and analysis of results.

3.2.1. Classification of plant phenotyping traits
Classification is an important and common task in plant

phenotyping studies concerned with identifying plant species,

rating plant traits, or rating disease severity. Consequently, the

majority of the XAI techniques in plant phenotyping are tailored for

the classification models, enabling researchers to better understand

the important features for model development and validate the

results produced by deep learning models.

3.2.1.1. Disease classification

Deep learningmodels have significantly improved the efficiency

of detecting plant and leaf diseases from plant images, surpassing

the traditional image analysis methods. A stress identification and

classification framework for soybean were developed by Ghosal

et al. (2018). The proposed framework had two parts. In the first

part, a modified version of the CNN proposed by Krizhevsky et al.

(2017) was used for stress identification and classification. In the

second part, the authors proposed a visualization technique to

identify the features in the input image responsible for a prediction.

For the visualization, the authors used all the feature maps for all of

the healthy leaf images of a low-level layer and calculated a stress

activation threshold by computing the probability distribution of

the mean activation levels of the feature maps. Next, a feature
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TABLE 4 Overview of the deep learning models in plant phenotyping.

References Deep learning
approach

Phenotyping task Dataset Model

Amara et al. (2017) Classification Banana leaf disease detection PlantVillage LeNet

Mohanty et al. (2016) Classification Disease detection PlantVillage 1. AlexNet

2. GoogleNet

DeChant et al. (2017) Classification Northern leaf blight detection in maize Proposed dataset Proposed model

Taghavi Namin et al.
(2018)

Classification Classification of various accessions of
Arabidopsis thaliana

1. Created the dataset Proposed CNN-LSTM framework

2. Ara-2013

Ubbens et al. (2020) Classification Detection and quantification of
response-to-treatment from images for
C4 grass Setaria, sorghum, canola

1. Veley et al. (2017) Proposed CNN-LSTM framework

2. Feldman et al. (2018)

3. Proposed dataset

Mardanisamani et al.
(2019)

Classification Lodging classification of wheat and
canola

Proposed dataset Proposed model

Hati and Singh (2021) Classification Plant species recognition and health
condition identification

Chouhan et al. (2019) ResNet

Xu et al. (2022) Classification Classified root types into branch types Proposed dataset Proposed model

Dobrescu et al. (2017) Regression Leaf counting in rosette plants Leaf counting challenge
Tsaftaris and Scharr (2017)

ResNet50

Aich and Stavness (2017) Regression and
segmentation

Leaf counting in rosette plants Leaf counting challenge
Tsaftaris and Scharr (2017)

SegNet

Ghosal et al. (2019) Regression Sorghum head detection and counting Guo et al. (2018) 1. RetinaNet

2. ResNet50

Pound et al. (2017) Regression Localizing wheat spikes and spikelets Proposed ACID dataset Newell et al. (2016)

Ubbens et al. (2018) Regression and data
augmentation

Augmented Arabidopsis thaliana rosette
dataset dataset to enhance counting
capabilities

1. Ara-2012 1. Ubbens and Stavness (2017)

2. Ara-2013 2. Mundermann et al. (2005)

Mortensen et al. (2019) Segmentation Proposed oil radish dataset and
segmented crops

Proposed dataset Long et al. (2015)

Skovsen et al. (2019) Segmentation Segmentation of grass and clover from
field images

GlassClover Long et al. (2015)

Bernotas et al. (2019) Segmentation Instance segmentation of Arabidopsis
thaliana

Proposed dataset 1. RNN

2. Mask R-CNN

Keller et al. (2018) Segmentation Segmentation of soybean leaf Proposed dataset DeepLab

Ampatzidis and Partel
(2019)

Segmentation Citrus plant detection Proposed dataset YOLOv3

Vit et al. (2019) Segmentation Measured the height of a banana tree,
and measured the length, width, and
aspect ratio of banana leaves in potted
plants

Proposed dataset 1. Mask R-CNN

2. Faster RNN

Thesma and
Mohammadpour Velni
(2022)

Segmentation and data
augmentation

Proposed binary semantic segmentation
of plant root

Gaggion et al. (2021) 1. Badrinarayanan et al. (2017)

2. Wang T.-C. et al. (2018)

Yasrab et al. (2019) Segmentation Developed root system extraction tool 1. Pound et al. (2017) Proposed model

(Continued)
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TABLE 4 (Continued)

References Deep learning
approach

Phenotyping task Dataset Model

2. Proposed dataset

Seidenthal et al. (2022) Segmentation Detect and segment root system Proposed dataset Proposed model

Falk et al. (2020) Segmentation Proposed end-to-end root phenotyping
pipeline including root segmentation

1. Oliveira et al. (2010) Proposed model

2. Song et al. (2013)

Nazki et al. (2020) Data augmentation Image translator to translate disease
images from healthy ones in tomato

1. Proposed dataset Proposed model

2. Cityscapes

3. Zhu et al. (2017)

Cap et al. (2022) Data augmentation Generates diseased leaf images from
healthy ones

Proposed dataset Proposed model

Valerio Giuffrida et al.
(2017)

Data augmentation Generated images of Arabidopsis
Rosette

Leaf counting challenge
Tsaftaris and Scharr (2017)

Proposed model

Yasrab et al. (2021) Data augmentation and
segmentation

Forecasted the development of plant
roots and generated segmented root
images

1. Uchiyama et al. (2017) 1. Proposed model

2. Wilson et al. (2015) 2. Yasrab et al. (2019)

importance score was assigned to every feature map based on each

feature map’s mean activation level, computed over those pixels

with activation levels above the threshold computed earlier. Finally,

based on the importance score, k-feature maps were selected, and

an explanation map was generated by computing the weighted

average of the top-k feature maps. The average intensity of the

explanation map worked as the percentage of the stress level.

The framework worked well for plant stress identification and

quantification. The authors mentioned it to be a model-agnostic

technique with transfer learning ability. So, it may be used to

identify stress in other plants. However, the dataset used in the

study was collected in a lab environment where the picture of

individual leaves was taken by placing them in front of a black

background. In calculating the stress activation threshold, only the

foreground pixels were used. In a field condition, several leaves may

stay together, and it is hard to distinguish the foreground from

the background in such cases. Moreover, we might need a very

large dataset to apply the framework to other plants. The plant

phenotyping community still lacks such large labeled datasets.

In deep learning-based plant phenotypic studies, researchers

often use popular pre-trained models (e.g., InceptionV3,

GoogleNet, AlexNet, ResNet) to perform a task (Ngugi et al.,

2021). However, these models are designed for large datasets and

are very complex in design. Toda and Okura (2019) studied plant

disease classification and using visualization techniques showed

that complex models do not necessarily contribute to the inference.

At first, the authors developed an InceptionV3 (Szegedy et al.,

2016) based classifier to classify plant diseases using the Plant

Village (Hughes and Salathé, 2015) dataset. Next, the authors used

four different classes of visualization techniques, i.e., hidden layer

output visualization, feature visualization, semantic dictionary,

and perturbation-based visualization, to explain the model. They

visualized every layer of the model to understand the learning of

the model. Based on the visualization, the authors removed 75%

of the network parameters and achieved similar performance.

The authors also found that GradCAM (Assaf and Schumann,

2019) and Explanation Map (Krizhevsky et al., 2017) were the most

descriptive and cost-effective explanation techniques for visualizing

feature maps. Although the study showed that XAI could help

select a desirable model depth for plant phenotypic tasks, using the

framework in practice could be time-consuming. Domain expertise

and understanding of the deep learning architecture might be

required to perform the analysis and develop the desired model.

The visualization of the feature maps of a deep learning

model has helped plant scientists diagnose the internal disorder

in persimmon fruit which the experts even missed. Akagi et al.

(2020) developed a deep learning classifier capable of classifying

calyx-end cracking in persimmon fruit. They used five different

CNNs for the classification between healthy and cracking and

achieved 90% accuracy. In the final step, the authors visualized

the feature maps to detect cracking (Figure 5). The visualization

showed higher relevance around the apex area and peripheral of

the fruits, which might be related to particular stress. The lack of

a large dataset to validate the findings is a significant drawback of

the study.

The contribution of the appearance characteristics and the

texture characteristics of leaf lesions during the feature extraction

process of a deep learning model was studied by Wei et al.

(2022). The authors trained VGG, GoogleNet, and ResNet

for disease classification and used GradCAM, LIME, and

Smoothgrad (Smilkov et al., 2017) to visualize the features learned

by the models. The visualization showed that the pixels of

the lesion position are the most important for the prediction.

However, the authors were inconclusive of the contribution of

the appearance of the leaves. During the comparison of the

explanations generated by different XAI techniques, the authors

found that the explanations generated by GradCAM were more

intuitive and easy to understand than the Smoothgrad and LIME.

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2023.1203546
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Mostafa et al. 10.3389/frai.2023.1203546

FIGURE 5

Visualization of the feature maps representing significant features contributing to the diagnosis of calyx-end cracking for the VGG16 model (Akagi

et al., 2020). (A) Original image. (B) Grad-CAM. (C) Guided backpropagation. (D) LRP-Sequential B. (E) LRP-Epsilon. (F) Guided Grad-CAM.

Mostafa et al. (2021, 2022) studied the relation between the

depth of a deep learning model to its performance by using GBP.

The authors proposed using a SSIM cut curve, which can help select

the required depth of a model to achieve the desired performance

by utilizing the structural similarity index (SSIM) of the feature

maps generated at different depths of the model. In the study,

different plant datasets were used to verify the results of the SSIM

cut curve. Using the proposed algorithm the authors showed that

higher depth deep learning models do not necessarily contribute to

better performance.

Ghosal et al. (2017) proposed a classification model for foliar

stresses in the soybean plant. The authors used GradCAM to isolate

the visual symptoms that contribute to the model’s prediction.

Nagasubramanian et al. (2020) also proposed a DenseNet-121-

based soybean stresses classifier and used several XAI techniques

to understand the features learned by the model. The authors

observed that sometimes the deep learning models learn features

that might not be relevant to the infection in the plant.

In plant phenotyping, hyperspectral imaging (HSI) plays an

important role. It allows for capturing plants’ abiotic, biotic,

chemical, and quality traits along with spatial and spectral

information. In Nagasubramanian et al. (2019), the authors utilized

HSI to develop a soybean disease classifier. They proposed a

3DCNN to utilize the HSI images’ spectral and spatial information

for the classification. Next, a saliency map (Simonyan et al., 2013)

was used to detect the regions in the images that contributed to

the prediction. Due to the use of HSI, the saliency maps helped

detect the wavelength channel that maximally activated the feature

maps. Using this information, a histogram showed the distribution

of wavelengths across all the pixels. The use of saliency maps

helped the authors authenticate the proposed method. This study

opens new avenues of plant disease classification using HSI and

deep learning.

Schramowski et al. (2020) proposed explanatory interactive

learning, a framework for deep learning models in plant

phenotyping. The authors used HSI images to demonstrate that

inclusion of explanations of the decisions of a deep learning

model into the model development process can help reveal Clever

Hans (utilization of insignificant features within datasets) like

behavior. The authors developed an interactive deep learning

model where users can control the model development based on

the explanations.

3.2.1.2. Plant classification

Desai et al. (2019) proposed a classifier-based paddy rice’s

flowering panicle counter. Desai et al. (2019) used a sliding window

that passes over the training image and extracts image patches. The

patches were then used in a classifier to detect whether a flowering

panicle was present in the patch. Depending on the presence of

the flowering region, a bounding box is generated. Finally, the

flowering regions are counted to get an estimation of the number

of flowering in the image. The authors used GradCAM to observe
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the regions that the model used for classification and found that the

flower regions mainly influenced the prediction.

A different approach for plant classification was adopted by

Grinblat et al. (2016), where a vein morphological pattern was

used to classify white bean, red bean, and soybean plants using

deep learning models. The hit or miss algorithm by Soille (1999)

was used to extract the veins and create a binary image. Next,

patches of veins were cropped from the images, and the images

were used to train a deep learning model, which was proposed in

this study. In addition, the feature maps for different classes were

visualized using the saliency map visualization by Zeiler and Fergus

(2014). The visualization helped the authors realize that the model

extracted features from different parts of veins for the prediction of

different classes.

Minamikawa et al. (2022) proposed a method to automatically

measure the morphological features of citrus fruits by the image

analysis of cross-sectional images of citrus fruits. The authors used

GradCAM to visualize the features in the fruit images that were

important for the classification of peeling and fruit hardness. The

authors combined GradCAM visualization with the information of

the fruit morphological features to reveal key features important for

the prediction. The authors proposed that it is important to connect

the visualization results with knowledge on plant physiology and

breeding to increase the reliability of deep learning models and

understand the molecular mechanism of targeted traits.

3.2.2. Regression
In Dobrescu et al. (2017), the authors proposed a leaf counter

for rosette plants. The salient regions that contributed to the

regression were shown in work using a simple heatmap technique.

It helped the authors emphasize that the model was learning from

the leaf regions as obstructing the leaf generated error and was

visible in the heatmap. To investigate the learning of the VGG16

based regression model counting plant leaves, Dobrescu et al.

(2019) used GBP and LRP to visualize the feature maps of the

model (Figure 6). The authors found that the initial layers learn

low-level features, the deeper layers focus on the leaf edge, and

the final layer produces the highest activation in the plant region.

Experiments also showed that the regression model discards the

leaf surface and uses the leaf edge information for counting. In a

regression model, the visualization techniques may ensure that the

model is indeed learning from the object of interest, allowing users

to gain confidence in the results but also helps them explain the

model accurately.

TasselNetV3 is a plant counting deep learning model that uses

model explanation to enhance the human-level interpretability

(Lu et al., 2021). In TasselNetV3, the authors proposed dynamic

unfolding that assigns weights to the local region by learning from

the ground-truth density maps. Dynamic unfolding replaces the

averaging of the local count into the receptive field, which greatly

improves the model performance. The authors also visualized the

feature maps that helped them find which instances were counted.

Such visualization helped to find what might have caused the model

to fail.

Regression plays a crucial role in high-throughput plant

phenotyping, facilitating rapid and precise counting of plants and

plant organs (e.g., flowers, leaves, spikes, kernels). Through the XAI

techniques, researchers have gained insight into the importance of

object edges in regression and identified the probable cause for

model failures. However, further investigation and validation across

diverse datasets consisting of various imaging and field conditions

are necessary to generalize and replicate these findings effectively.

3.2.3. Synthetic data generation
Drees et al. (2022) proposed TransGrow, a conditional

generative adversial network that can generate time-dependent

high-quality and realistic images of irregular and incomplete

sequences in above-ground plant phenotypes. TransGrow allows

farmers to predict future above-ground phenotype at any time

point in the growing season. In addition to proposing TransGrow,

the authors visualized the pixel-wise uncertainty of plant growth for

each time and found noticeable differences at the leaf edges, where

the variance of plant growth is naturally the highest.

The lack of large plant phenotyping dataset has already been

discussed. An overview of XAI studies in plant phenotyping is

provided in Table 5.

4. Significance of deep learning in
plant science and future work for XAI

As the field of plant sciences continues to embrace the potential

of deep learning, it is essential to recognize the ethical implications

and biases that can arise in the development and use of these

deep learning models. These biases can impact various aspects,

including data collection, analysis, decision-making, and the overall

outcomes of plant research. In this section, we explore the potential

benefits of using deep learning, the challenges associated with

it, and how explainability can help in addressing some of these

challenges in adopting deep learning.

4.1. Significance of deep learning in plant
science

Deep learning algorithms excel at analyzing large scale datasets

and finding patterns within these datasets to gain insights that

might not be feasible with traditional approaches to analyzing

data. This can significantly reduce the amount of time required

in decision-making processes and potentially uncover hidden

insights that were previously thought not feasible to identify.

Deep learning models can help in predictions for improving crop

varieties by optimizing crops for disease and drought resistance,

mineral nutrient uptake and planning to adapt to and also mitigate

environmental change. By harnessing the power of deep learning

algorithms, researchers can improve crops to be more resilient to

environmental challenges and for better resource use efficiency.

Image-based analysis can be deployed in multiple scenarios

to assess and enhance the performance of the plants in different

conditions. For example, in disease and pest detection, images can

be used to categorize and quantitatively assess diseases on a plant.

In plant phenotyping to improve shoot and root architecture traits
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FIGURE 6

Visualization of the learning of a VGG16 based regression model using GBP and LRP (Dobrescu et al., 2019). (A) GBP and LRP visualization of di�erent

plants. (B) Average activations at the end of several convolutional blocks at the start and end of training.

using plant breeding programs, deep learning algorithms can be

used to improve plant image quality and data consistency while

reducing the workload of researchers so they can focus on other

important research components. Traditional image processing

algorithms can be rigid to specific applications, while deep learning

algorithms can model to provide generalization capability for

processing images that aid plant phenotyping research. Employing

deep learning for analyzing plant phenotyping datasets can

significantly improve the throughput of the research as there is

less time required to design tools specifically for all different

applications. Hence, the application of deep learning to process

images (plant phenotyping) related to changes in DNA sequence

(plant genotyping) can help in accelerating breeding programs,

ultimately leading to reduced time in generating improved varieties

of plants.

Moreover, deploying deep learningmodels for analysis can help

uncover insights that may have been thought too difficult to achieve

before. For example, in plant research, the use of deep learning

models can help uncover a phenotype in an abstract domain (such

as latent space) that may help understand treatment effects on

genetically different plants of the same species. In another example,

a functional phenotype of root architecture can help understand

variations in root architecture by comparing how similar they are

to each other.

4.2. Challenges of deploying deep learning
in plant research

The adoption of deep learning in plant science is impacted by

many challenges associated with understanding how these models

operate and provide insights into collected data. Moreover, it is

critical to fully incorporate plant biologists who are experts in the

specific area of research the deep learning model is being applied

to, as plant growth is a complex process with a number of factors

involved. Specifically, understanding Genotype by Environment

(GxE) interaction to produce a phenotype is an active area of

research. Plants have evolved elegant response systems to adapt

to changes in their local environment. One example, in the soil,

there can be a very complex heterogeneity of the concentrations of

specific soil mineral nutrients the plant roots must absorb to thrive

[especially themajor fertilizer nutrients, nitrogen (N), phosphorous

(P), and potassium (K)]. For example, the primary form of nitrogen

absorbed from the spoil is the nitrate (NO3) anion. Nitrate is very

mobile in soils and can move with the groundwater. Hence there

can be patches of soil that are low or high in nitrate. Plant roots

have evolved an elegant nitrate sensing and response system. This

involves complex gene and protein networks that note when the soil

nitrate is low and shut down lateral root growth. This enables more

of the root carbon to be used by the primary root to grow faster and

find regions of high soil nitrate. When these regions are accessed

by the primary root, these networks then turn on and stimulate

lateral root growth to absorb this much-needed nutrient (Remans

et al., 2006; Wang Y.-Y. et al., 2018; Maghiaoui et al., 2020). Hence,

relatively minor changes in the plant environment or plant genetic

makeup could produce quite different plant phenotypes, be they

above or below ground.

4.2.1. Interpretation results derived by deep
learning

As plant researchers embrace advances in deep learning to aid

in enhancing crops for sustainable production of food, the relatively

black box nature of the deep learning algorithms can deter some
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TABLE 5 Overview of XAI studies in plant phenotyping.

References XAI technique Purpose of XAI Phenotyping
task

Plant dataset Model

Ghosal et al. (2018) Ranked features and
generated saliency map of
features

Explain model
understanding

Identification of
soybean stresses
from plant leaves

Proposed dataset Proposed model

Nagasubramanian et al.
(2019)

Saliency map visualization Track physiological
insights of model
prediction

Classification of
charcoal rot

Proposed dataset 3D CNN

Toda and Okura (2019) 1. Occlusion analysis, 2.
LIME, 3. GBP, 4. GradCAM,
5. DeepLIFT, 6. Explanation
map

Interpret the
representation of plant
disease by a CNN

Plant disease
classification

PlantVillage InceptionV3

Grinblat et al. (2016) Saliency map visualization Understand the features
learned by a CNN for
classification

Plant
classification
using vain
morphological
pattern of white
bean, red bean,
and soybean

Larese et al. (2014)

Shallow CNN

Wei et al. (2022) 1. GradCAM, 2. LIME,
3. Smilkov et al. (2017)

Study the contribution of
appearance and texture
characteristics to model
prediction

Leaf lesion
classification

PlantVillage 1. VGG,
2. GoogleNet, 3. ResNet

Mostafa et al. (2021) GBP Selection of model depth
and analyzing overfit
model

Plant and leaf
classification

1. PlantVillage 1. Shallow CNN

2. Plant Seedling 2. ResNet50

3. Beck et al., 2020

Mostafa et al. (2022) GBP Selection of model depth Plant and leaf
classification

1. PlantVillage 1. Shallow CNN

2. Plant Seedling 2. ResNet50

3. Beck et al., 2020

Ghosal et al. (2017) GradCAM Isolate visual symptoms
that contribute to model
prediction

Classification of
foliar stresses in
the soybean plant

PlantVillage Proposed model

Nagasubramanian et al.
(2020)

1. Saliency map,
2. SmoothGrad, 3. GBP.
4. Deep taylor decomposition,
5. Integrated gradients,
6. LRP, 7. Gradient times
input

Compare different XAI
techniques to interpret
the prediction

Plant leaf
classification Ghosal et al., 2018

DenseNet-121

Minamikawa et al.
(2022)

GradCAM Visualize features
relevant to the prediction

Measure the
morphological
features of citrus
fruits

Proposed dataset 1. VGG16 2. ResNet50
3. InceptionV3
4. InceptionResNetv2

Akagi et al. (2020) 1. GradCAM, 2. GBP, 3. LRP,
4. Guided GradCAM,
5. InceptionResNetv2

Diagnose internal
disorder in permission
fruit using the
visualization

Classify calyx-end
cracking in
persimmon fruit

Proposed dataset 1. AlexNet 2. VGG16
3. InceptionV3
4. ResNet50

Schramowski et al.
(2020)

1. GradCAM Analyze Clever
Hans-like behavior in
deep learning models

HSI classification 1. Proposed dataset Proposed model

2. LIME 2. Fashion MNIST

3. Pascal VOC 2007

Desai et al. (2019) GradCAM Study image features that
contribute toward the
classification

Paddy rice’s
flowering panicle
counter

Developed dataset ResNet50

Dobrescu et al. (2019) 1. GBP Study of the features
extracted in regression

Count leaf of
rosette plants

Leaf counting challenge
Tsaftaris and Scharr (2017)

VGG16

(Continued)
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TABLE 5 (Continued)

References XAI technique Purpose of XAI Phenotyping
task

Plant dataset Model

2. LRP

Lu et al. (2021) Proposed visualization
technique

Human interpretable
visualization of the
learned features of the
proposed model

Count maize
tassels, wheat
ears, and rice
plants

1. Lu et al., 2017 Proposed model

2. Madec et al., 2019

3. Liu et al., 2020

Drees et al. (2022) Proposed visualization Data augmentation Data
augmentation

Proposed dataset Proposed model

plant researchers from adopting these tools and techniques in their

research programs.

Due to a lack of available and accessible data, some of the

trained deep learning models augment datasets with simulated

plant datasets. The field of plant research is always evolving, and it

is difficult to model plant growth to simulate plant images. Some

available tools for simulating plants digitally do not consider all

the different factors involved in plant growth. For example, a tool

developed by (OpenSimRoot), simulates plant root growth based

on multiple parameters. However, it assumes that when drought-

stressed, bean roots tend to grow deeper, which might not be

completely true. Drought often quickly inhibits both root and

shoot growth (Reinelt et al., 2023). When a deep learning model

is trained with such simulated datasets, it raises the question of

whether the bias of the simulator is built into the deep learning

model as well and may prevent other researchers from using it. In

a different scenario, if it was used by a research group, the built-in

bias would propagate through other research projects and lead to

improper outcomes.

Abstract phenotypes obtained by using machine learning

models proposed by Ubbens et al. (2020), (based on latent space

phenotyping) may not help plant scientists understand what that

means even after finding a region of interest other than that there is

some difference in latent space phenotype for treated vs non-treated

plants of the same line. Being able to interpret what that actually

means in the realms of plant physiology may be more useful to

other researchers. There is a huge potential for new phenotypes,

such as latent space phenotype, in understanding plant function,

but having a translation of what that actually means in real-world

physiology is as important.

4.2.2. Biased dataset
The deep learning models are trained with large datasets of

images or other data related to plant phenotyping. These trained

models can inherit the bias present in the dataset itself. For

example, training a model with an image dataset that consists of

data points collected in highly controlled environments such as

growth chambers with highly regulated lighting and temperature

growth conditions can make it biased toward predicting better with

images acquired in those conditions, but could fail to predict when

the deep learning algorithm is subjected to images from real-world

conditions where light and temperature (and other conditions)

can vary significantly throughout the day/night cycle. From our

experience, for phenotyping plant roots grown in hydroponics,

even in the more controlled growth chambers, root growth can be

affected by a number of factors, including changes in temperatures,

light and humidity in different growth chambers, use of different

materials for germination, the pH of nutrient solutions, and proper

aeration within the growth solution. When imaging the plant root

systems, factors that can impact datasets, which may not be directly

related to genetic variation, include proper lighting conditions, the

color of the filter paper used to provide optimal contrast with the

white roots, imaging roots placed under water vs out of the water,

camera parameters such as exposure, aperture and shutter speed,

and presence of a meniscus along roots that are grown in water but

imaged in air, can lead to generating biased datasets that can result

in deep learning model favoring one imaging condition than other.

These biased datasets raise concerns about the generalizability

and reliability of deep learning models and can lead to a skeptical

view about the efficacy of these approaches by some plant

researchers. Another possibility is that the use of these models as de

facto state-of-the-art models in assessing plant varieties can result

in poor decision-making and skewed, possibly wrong, results being

published in high-quality journals, which are followed by other

researchers. This can have a negative ripple effect on the future of

plant research.

4.2.3. Ethical considerations
Incorporating ethical considerations while training large-

scale deep learning models for use in plant science can help

ensure reliability and impact on the agricultural environment

and stakeholders, including farmers, breeders, and consumers.

For instance, models trained on biased datasets from one region

and plant species or genetic variety could lead to challenges

in another region, such as improper use of resources such as

water and environmental degradation, for example, from overuse

of fertilizers. Another example could be where a deep learning

model trained with a dataset acquired from a highly controlled

environment being deployed in a field breeding program or farm,

resulting in crop failures due to the lack of ground truth data from

the lab with plant growth in the real world, the farmer’s field. This

points to a lack of accountability in training such models.

Transparency in the availability of datasets used to train

such models could be another aspect that can be put under
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the lens. In today’s competitive research environment, focus

on publishing results of perceived “black box” deep learning

models rather than on open access and transparency in availing

datasets and other experimental materials (including protocols

and growth conditions) could be potentially more harmful to

plant research than benefiting. Researchers should strive for

transparency by openly sharing methodologies, data sources,

and model architectures. This enables the scientific community

to scrutinize and evaluate the reliability, biases, and potential

limitations of deep learning models. Considerations should be

given to the potential unintended consequences of altering plant

root architectures, such as potential ecological disruptions or

unforeseen impacts on soil health or nutrient cycling. Furthermore,

focusing solely on agricultural productivity without considering

ecological sustainability can lead to detrimental consequences,

such as soil erosion, loss of biodiversity, and negative impacts

on ecosystems.

4.3. Impact of explainability and
interpretability

Explainability can provide transparency and build trust

among researchers, policymakers, and stakeholders in the plant

science community. When deep learning models are interpretable,

researchers can understand how the models make predictions

or decisions. This transparency helps to mitigate skepticism or

reluctance surrounding the adoption of deep learning, ensuring

that stakeholders have confidence in the reliability and accuracy of

the deep learning model-driven solutions.

XAI allows researchers to gain scientific insights and

validate the results obtained through deep learning models. By

understanding the factors or features that contribute to specific

predictions or outcomes, researchers can validate whether the

deep learning models align with existing scientific knowledge or

identify novel insights. This promotes robust scientific inquiry

and ensures that deep learning is used as a tool to augment

research rather than replace traditional scientific methods. XAI

aids in identifying biases or unintended consequences in deep

learning models. Researchers can examine the underlying data,

algorithms, and decision-making processes to uncover biases or

discriminatory patterns. This insight enables researchers to rectify

biases, promote fairness, and ensure that deep learning models do

not perpetuate inequitable practices in plant science research. XAI

also facilitates collaboration among researchers by enabling them

to share and discuss deep learning models, methodologies, and

findings. Interpretable deep learning models provide a common

ground for researchers to analyze, critique, and improve upon each

other’s work. This collaborative environment fosters collective

learning, encourages interdisciplinary approaches, and advances

the adoption of deep learning in plant science research. XAI

can also help in knowledge transfer and education about deep

learning in plant science research. Researchers can explain the

workings of deep learning models to non-experts, policymakers,

or the general public in a comprehensible manner. This fosters

a broader understanding of deep learning and its applications,

dispelling misconceptions or fears surrounding the technology.

By promoting deep learning literacy, explainability paves the

way for wider adoption and acceptance of deep learning in plant

science research.

In conclusion, XAI can play a pivotal role in the adoption of

deep learning in plant research by fostering trust, enabling scientific

validation, being a more inclusive environment for plant scientists,

identifying biases, facilitating collaboration, ensuring compliance

with regulations and ethical guidelines, and promoting deep

learning literacy. By prioritizing XAI, researchers can effectively

harness the benefits of deep learning while addressing concerns and

promoting the responsible and transparent use of deep learning in

plant science research.

5. Proposal for an XAI framework in
plant phenotyping

Adaptation of XAI techniques is still in the early stages for

plant phenotyping studies. In this section, we propose an XAI

framework that can help researchers understand the steps required

to utilize XAI techniques. An overview of the proposed framework

is illustrated in Figure 7. The first step of the framework is the

collection of data. The recent advancements in smart machines,

cameras, and sensors have helped us acquire large amounts of plant

phenotyping data. The data is directly collected from the fields.

The next step is the utilization of the data for developing deep

learning models performing plant phenotyping tasks. Plant and

computer scientists, biologists, agriculturalists, and researchers in

the industry are using the data to develop deep learning models

which are performing different plant phenotyping tasks, e.g.,

classification of plants and diseases associated with plants, counting

of different plant parts, segmentation of specific plant parts, and

generation of synthetic plant phenotyping data. Although scientists

are using deep learning models to achieve superior results, the

black-box nature of these models means that the scientists may

not fully understand the model’s behavior. So, the next step is the

integration of XAI techniques. Researchers can use XAI techniques

to understand the performance of a model, which can help them

improve the performance of a model. Additionally, researchers

can take advantage of the XAI techniques to explain the results

of a model, providing users with an added level of transparency

and reliability.

Data scientists can benefit from XAI by understanding the

features responsible for a model’s decision, while plant scientists,

biologists, and agriculturalists can find the plant traits responsible

for the model’s superior performance. A proper understanding

of a model’s decision will help increase trust in deep learning

models, and in turn, inform policies and regulations regarding

their deployment in safety critical sectors, such as food production.

User trust is also important for stakeholders in safety critical

sectors. XAI can also help practitioners take the necessary steps

to regularize and standardize deep learning studies. XAI can

help explain whether the data is used properly to develop a

deep learning model, and most importantly, whether the deep

learning model is making the correct decisions. In the development

of smart machines, XAI can help greatly. As smart machines

are mostly automated and have to make decisions on their

own, XAI can help developers find whether the deep learning
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FIGURE 7

Overview of a framework incorporating XAI in deep learning based plant phenotyping studies.

model is considering relevant and desired features to make

the decisions.

6. Conclusion

In this study, we conducted a comprehensive analysis of

XAI techniques used in deep learning studies in the context

of plant phenotyping research. Our study revealed that deep

learning models have the potential to uncover novel plant

traits and provide more efficient and accurate tools for plant

phenotyping. Additionally, we discovered that XAI techniques

can elucidate the outcomes of deep learning models and present

avenues for enhancing existing models. We identified areas where

XAI has potential across the various task domains of plant

phenotyping. Although the existing XAI literature predominantly

focuses on classificationmodels, leveraging XAI techniques in other

deep learning models (e.g., regression, generative) could propel

advancements in plant phenotyping. Consequently, our review

serves as a valuable reference for integrating deep learning models

into plant data analysis and underscores the significance of XAI in

such investigations.
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