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When applied to Image-to-text models, explainability methods have two

challenges. First, they often provide token-by-token explanations namely, they

compute a visual explanation for each token of the generated sequence. This

makes explanations expensive to compute and unable to comprehensively explain

the model’s output. Second, for models with visual inputs, explainability methods

such as SHAP typically consider superpixels as features. Since superpixels do

not correspond to semantically meaningful regions of an image, this makes

explanations harder to interpret. We develop a framework based on SHAP,

that allows for generating comprehensive, meaningful explanations leveraging

the meaning representation of the output sequence as a whole. Moreover,

by exploiting semantic priors in the visual backbone, we extract an arbitrary

number of features that allows the e�cient computation of Shapley values

on large-scale models, generating at the same time highly meaningful visual

explanations. We demonstrate that our method generates semantically more

expressive explanations than traditional methods at a lower compute cost and

that it can be generalized to a large family of vision-language models.

KEYWORDS

vision and language, multimodality, explainability, image captioning, visual question

answering, natural language generation

1. Introduction

Multimodal learning research has witnessed a surge of effort leading to substantial
improvements, in algorithms involving the integration of vision and language (V&L ), for
tasks such as image captioning (Lin et al., 2014; Hossain et al., 2019; Sharma et al., 2020)
and visual question answering (Antol et al., 2015; Zhu et al., 2016; Srivastava et al., 2021).
The need has arisen to create more challenging tasks and benchmarks requiring higher
fine-grained linguistic capabilities (Parcalabescu et al., 2022; Thrush et al., 2022; Li et al.,
2023) and semantic and temporal understanding (Yu et al., 2016; Park et al., 2020).

In this context, the role of interpretability methods has become central to assessing the
models’ grounding capabilities. However, such tools are often designed for specific classes
of tasks or models. To overcome this limitation, model-agnostic interpretability methods,
such as SHAP-based methods (Lundberg and Lee, 2017), are often preferred over others,
since they rely on a solid theory and benefit from desirable properties not available in other
methods.

When such methods are applied to V&L generative tasks, like image-captioning, the
goal is to explain the textual output with reference to the visual input. However, the text
generation process happens token-by-token, and as a result, most of the interpretability
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methods applied in this context tend to produce local token-
by-token explanations. Moreover, for most applications, current
methods build the explanation on top of arbitrary regions of the
visual input, usually considering superpixels (regions of adjacent
pixels of a fixed size) as the features against which to interpret the
outputs (Parcalabescu and Frank, 2022).

Token-by-token explanations are hard to interpret as they are
token-specific, and they are costly to compute since the number of
model evaluations grows exponentially with the number of features
used in each explanation. To mitigate these issues, approximation
techniques, like sampling, and input feature reduction are usually
applied. However, this produces inaccurate explanations which
lack detail and are hard to interpret. Furthermore, the reliance
on superpixels as input features makes interpretation harder
since superpixels do not necessarily correspond to semantically
meaningful regions of an image.

In this work, we address these issues by proposing:

1. A modular framework to create a new family of tools to generate
explanations in V&L generative settings;

2. A method to generate sentence-based explanations for
vision-to-text generative tasks, as opposed to token-by-token
explanations, showing that such explanations can efficiently be
generated with SHAP by exploiting semantic knowledge from
the two modalities;

3. A method to reduce the number of visual input features
by exploiting the semantics embedded in the models’ visual
backbone. We extend this method to a number of different
architectures. We further propose an alternative approach to
extract semantically meaningful features from images in case a
model architecture does not support our specific method;

4. A human evaluation designed to assess key user-centric
properties of our explanations.

2. Related work

In this section, we discuss related work on interpretable
machine learning and explainable AI (XAI) in Vision and Language
models. We also detail some of the essential properties of the XAI
framework (SHAP) on which we base our own work.

2.1. Interpretable machine learning

Interpretable machine learning is a multidisciplinary field
encompassing efforts from computer science, human-computer
interaction, and social science, aiming to design user-oriented
and human-friendly explanations for machine learning models.
It plays an important role in the field for a series of reasons: it
increases trust, confidence, and acceptance of machine learning
models by users, and enables verification, validation, and debugging
of machine learning models. Techniques for deep neural networks
(DNN) can be grouped into two main categories: white-box

methods which exploit the knowledge of the internal structure of
the model to generate the explanation and black-boxmethods, also
called model-agnostic, which operate only on the inputs and the
outputs (Loyola-Gonzalez, 2019).

White-box methods There exist two types of white-box
methods: attention-based and gradient-based methods. Attention-
basedmethods (e.g., Ahmed et al., 2021; Zheng et al., 2022) exploit
the model’s attention activations to identify the part of the input
attended by the model during the prediction. They can be used
to explain predictions in diverse tasks, like image recognition (Li
et al., 2021), authorship verification (Boenninghoff et al., 2019)
gender bias identification (Boenninghoff et al., 2019) etc. On the
other hand, Gradient-based methods (Springenberg et al., 2014;
Selvaraju et al., 2017) compute feature attributions by manipulating
the gradients computed in the backward step with respect to the
original inputs (Shrikumar et al., 2016), or with respect to a specific
baseline (Simonyan et al., 2013; Sundararajan et al., 2017).

Black-box methods do not make any assumptions regarding the
underlying model. For example, Permutation Feature Importance
(Breiman, 2001), initially designed for random forests and later
extended into a model-agnostic version by Fisher et al. (2019),
consists in randomly shuffling the input features and evaluating
the model’s output variations. Ribeiro et al. (2016) proposed
LIME (Local Interpretable Model-Agnostic Explanation), which
uses a surrogate linear model to approximate the black-box model
locally, that is, in the neighborhood of any prediction. LOCO
(Lei et al., 2018) is another popular technique for generating local
explanation models. It can provide insight into the importance
of individual variables in explaining a specific prediction. SHAP
(Lundberg and Lee, 2017) is a framework considered by many
to be the gold standard for local explanations, thanks to its solid
theoretical foundation. SHAP leverages the concept of Shapley
values, first introduced by Shapley et al. (1953), used to measure
the contribution of players in a cooperative game. This was later
extended by Lundberg and Lee (2017) for the purpose of explaining
a machine learning model.

In this work, we propose a flexible hybrid framework based
on SHAP, which benefits from properties typical of black-

box methods, since it can be applied in a completely model-
agnostic way. At the same time, our method shares some
properties with white-box approaches since, when possible, it
takes advantage of certain internal components of the model.
In particular, the framework we propose for Vision-Language
generative models can be leveraged to exploit architectural features
of a model’s visual backbone to generate more semantically
meaningful explanations.

2.2. Background on SHAP

In the context of machine learning, the cooperative framework
introduced by Shapley et al. (1953) can be framed as a game where
each input feature is a player and the outcome is determined by the
model’s prediction. Shapley valuesmeasure the contribution of each
player to the final outcome, or in other words, the input features’
importance. Shapley redistributed the total outcome value among
all the features, based on their marginal contribution across the
possible coalitions of players, i.e. combinations of input features.
The outcome of the game, namely the prediction of the model, is
redistributed across the features, in the form of contributions that
have three desirable properties:
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• Efficiency: all the Shapley values add to the final outcome of the
game;

• Symmetry: all the features generating the same outcome in the
game have the same Shapley value, thus the same contribution;

• Dummy: if adding a feature to a coalition (i.e., set of features)
does not change the outcome of the game, its Shapley value is
zero.

Furthermore, Lundberg and Lee (2017) contribute by
formulating a variety of methods to efficiently approximate
Shapley values in different conditions:

1. KernelSHAP: derived from LIME and totally model agnostic,
hence the slowest within the framework;

2. LinearSHAP: designed specifically for Linear models;
3. DeepSHAP: adapted from DeepLift (Shrikumar et al., 2017) for

neural networks, which is faster than KernelSHAP, but makes
assumptions about the model’s compositional nature.

Later on, the framework was extended with other methods with
variations for specific settings; Mosca et al. (2022a) propose a
thorough description of the SHAP family of methods.

It is important to note that all these methods work under the
so-called feature independence assumption, which is fundamental
for the theoretical resolution of the problem. Feature independence
assumes that no two features are correlated or overlapping. Since
Shapley (and SHAP) attributions are computed by marginalizing
features, if a feature is strongly correlated to or overlaps with
another, such marginalization yields unrealistic results (Molnar,
2020). However, in order to deal with real-life scenarios, this
constraint can be relaxed to some extent. For instance, in Natural
Language Processing tasks each token of a textual sequence is
considered an independent feature (Kokalj et al., 2021) whereas, in
Computer Vision, the image is usually split into squared patches or
superpixels, which are also considered independent of each other
(Jeyakumar et al., 2020). In both of these cases, the independence
assumption is a simplification. For example, language tokens
are often mutually dependent in context (and this is indeed
the property leveraged by self-attention in Transformer language
models). Similarly, pixels in neighboring patches in an image may
well belong to the same semantically relevant region (and this is
indeed the property exploited by neural architectures suited for
computer vision tasks, such as convolutional networks). Properties
of tokens in context and those of pixels in image regions, have been
taken into account in some adaptations of SHAP which consider
the hierarchical structure of the feature space, such as HEDGE for
text (Chen et al., 2020) and h-SHAP for images (Teneggi et al.,
2022).

In our work, we also relax the independence assumption, an
issue we discuss in detail in Section 4.4.2.

2.3. Kernel shap

The core method of our framework is Kernel Shap.We base our
approach on the formulation by Lundberg and Lee (2017), which
provides an accurate regression-based, model-agnostic estimation
of Shapley values. The computation is performed by estimating

the parameters of an explanation model g(x′) which matches the
original model f (x), namely:

f (x) = g(x′) = φ0 +

M∑

i=1

φix
′
i (1)

where M is the number of input features (or players) and x′i is a
player of the game. g(x′) is approximated by performing a weighted
linear regression using the Shapley kernel:

πx′ (z
′) =

M − 1

(M choose |z′|)|z′|(M − |z′|)
(2)

where z′ is the subset of non-zero entries, namely a binary
representation of the coalition of players. The Shapley kernel, in
other words, is a function assigning a weight to each coalition.
The number of coalitions needed to approximate the Shapley
values corresponds to all the possible combinations of players, i.e.,
2M coalitions. This makes Kernel SHAP extremely expensive to
compute (and slow in practice) whenM is large.

Our framework relies on KernelSHAP as is it totally model-
agnostic. We address both the efficiency issue and the strict
independence assumption of the method by generating semantic
input features (more details in Section 3.2.2) and optimizing the
approximation through sampling (full details in Section 3.1).

2.4. Explainability for vision and language

One way to characterize the scope of V&L models is with
respect to the types of tasks they are designed to address. On the
one hand, tasks like image captioning (Anderson et al., 2018; Fisch
et al., 2020; Mokady et al., 2021; Zhang et al., 2021; Li et al., 2022a),
image-text retrieval (Radford et al., 2021; Cao et al., 2022), and
visual question answering (Antol et al., 2015) require a strong focus
on the recognition of objects in images. More recently, research has
begun to explore the capabilities of models in tasks that require
some further reasoning or inference over the image contexts,
such as understanding analogies (Zhang et al., 2019a), describing
actions and rationales (Cafagna et al., 2023) and inferring temporal
relations (Park et al., 2020).

The need to understand how V&L models ground their
predictions has become essential, leading to the emergence of
Explainable Artificial Intelligence (XAI) for multimodal settings
(Zellers et al., 2019). Visual explanations can help humans to know
what triggered the system’s output and how the system attended to
the image. To this purpose, feature attribution methods are often
preferred as they can provide a visual explanation of the prediction.
Most of the XAI methods introduced for unimodal tasks can be
adapted to V&L tasks.

Some popular white-box methods use gradients to generate
saliency maps to highlight the pixels corresponding to highly
contributing regions. These methods include Grad-CAM
(Shrikumar et al., 2016; Selvaraju et al., 2017) or Layer-wise
Relevance Propagation (LRP) (Binder et al., 2016) where the
contribution is computed with respect to an intermediate layer
instead of the input layer. These methods can produce fine-grained
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pixel-level explanations. However, their outcomes can be noisy and
require many evaluations to converge to a stable explanation.

Black-box approaches are mostly perturbation-based, that is,
they compute attributions based on the difference observed in the
model’s prediction by altering the input. Such methods include
occlusion sensitivity, RISE (Petsiuk et al., 2018), and LIME (Ribeiro
et al., 2016). Other approaches are task-agnostic, like MM-SHAP
(Parcalabescu and Frank, 2022), where a SHAP-based method
is used to measure the contribution of the two modalities in
V&L models independently of the task performance. Although
these methods make few assumptions about the underlying model,
their explanations are computationally expensive, as the number of
model evaluations required grows exponentially with the number
of features. To overcome this limitation, the number of features
is usually reduced by partitioning the image into patches called
superpixels, which discretize the input into a smaller number of
features. However, this approach can lead to coarser and not very
informative explanations.

Explanations for V&L generative tasks, like image captioning,
incur even more complexity, as the prediction of the model is
now a textual sequence. As noted in Section 2.2, SHAP estimates
feature contributions based on the amount of variation observed
in the model output, with or without the feature. This requires
a numerical output value (which of course, linguistic sequences
are not). A popular solution, which is in keeping with the
autoregressive nature of neural language decoders, is to break down
the caption generation process into a series of steps where each
token is explained separately with respect to the image and the
previously generated sequence. This requires generating a single
visual explanation for each generation step. However, the meaning
of the sentence is not only determined by the meaning of the
single words it is composed of but also by the way these words are
combined and arranged together. Therefore, a global meaningful
explanation must take into account the whole textual sequence and
not just part of it, as only in this way can the explanation take into
account the whole textual context.

A popular solution is to generate the token-level explanations
using Integrated Gradients (Sundararajan et al., 2017), providing
region-level visualizations or using the attention activation scores
to visualize the model’s attended regions (Zhang et al., 2019b;
Cornia et al., 2022). However, these methods are white-box
approaches as they make assumptions about the inner workings
of the model; thus they need to be specifically re-adapted to new
systems. Furthermore, they focus on token-level explanations but
do not allow a comprehensive global explanation of the textual
output.

To the best of our knowledge, our work is the first attempt
to bring together a model-agnostic framework like SHAP, in the
image-to-text task, with the aim of providing a comprehensive
explanation of the generated textual output as a whole, rather than
on a token-by-token level. We further propose a method to provide
explanations based on features that are semantically meaningful,
rather than on patches or superpixels.

3. Method

In this section, we first address the matter of efficiency which,
as noted above, is a pressing problem for methods based on

Kernel SHAP. We then turn to the core proposals in our method,
adapting it to generative models to achieve explanations for whole
sequences rather than tokens (Section 3.2.1) and using semantically
meaningful visual regions as features (Section 3.2.2).

3.1. Kernel SHAP sampling

Kernel SHAP is model-agnostic, meaning that it cannot make
any assumption on the model to explain. For this reason, it is
also among the slowest in the SHAP family of XAI methods
(Mosca et al., 2022b). This issue is addressed by performing Monte
Carlo sampling over the pool of coalitions, allowing under certain
conditions to compute a reasonably accurate approximation of
the Shapley values, even in the case of large-sized models or low-
resource hardware.

Taking inspiration from Molnar (2020), we implement a
deterministic sampling strategy. Given a specific sampling budget
k, we prioritize coalitions which have a high weight, where
weight is computed by Equation 2. This is achieved by generating
the coalitions in decreasing weight order and selecting the first
k coalitions. In Figure 1 we compare the weights of coalitions
computed using the standard Kernel SHAP (on the left) and
using the method which prioritizes high-weight coalitions (on the
right). As can be observed, our sampling strategy with priority (on
the right) ensures that we select the high-weight coalitions first,
providing an optimal ordering among samples.

Sampling with priority offers two main advantages:

1. higher accuracy of the Shapley values estimate;
2. a deterministic sampling strategy.

In Figure 2 we report the approximation error of the Shapley
values when applying Kernel SHAP, using Monte Carlo (orange)
and the high-weight priority (blue) as sampling strategies, for
different sample sizes. The error is computed over 10 runs, using
the Mean Squared Error (MSE) with respect to the Shapley values
computed with Kernel SHAP using all the 2M coalitions. Our
sampling with priority approximates Shapley values with errors that
are orders of magnitude smaller than Monte Carlo sampling. We
observe this consistently for different sampling sizes.

With a more efficient and deterministic sampling strategy, we
now turn to the core of our method.

3.2. Adapting Kernel SHAP to vision and
language generative tasks

In the image captioning scenario, we can set up a cooperative
game, where we want to compute the contributions of the players,
i.e. the pixels of the image, with respect to the outcome, i.e.,
the caption. In Section 2, we identified two shortcomings of the
standard way in which this is performed. Here, we discuss our
contributions to overcome these shortcomings.

The first problem is related to the comprehensiveness of
explanations. In order to measure the variations of the outcome of
the function needed to run Kernel SHAP, the caption generation
process is usually broken down into token generation steps. Each
step produces logits that can be used to compute a numerical
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FIGURE 1

Standard Kernel SHAP (left) and modified Kernel SHAP with priority for high-weight coalitions (right). The y-axis corresponds to weight whereas the

x-axis is the iteration in which a particular coalition is generated.

FIGURE 2

Mean Squared Error (MSE) of the Shapley values estimated using Monte Carlo sampling (orange) and sampling coalitions with priority (blue), for

various sampling sizes. All the values on the x-axis are exponentials (2M−1, 2M−2, 2M−3) where M corresponds to the number of features. The MSE is

computed with respect to the Shapley values computed using all the 2M coalitions available in the sampling space.

outcome. However, this forces us to consider each generation step
as a separate cooperative game, meaning that we need to run a
separate instance of Kernel SHAP for each generated token, further
increasing the time and compute cost needed to explain an image-
caption pair. Moreover, such explanations refer to single tokens and
do not provide an explanation for the whole output of the model,
namely the caption.

The second problem is related to the definition of coalitions
in the visual input. The number of coalitions to be computed
grows exponentially with the number of players. This makes
the computation of the Shapley values intractable for images
and makes any sampling strategy inaccurate. In order to
overcome this limitation, the image is typically partitioned
into a grid composed of superpixels, namely groups of pixels,
each of which represents a single player. This reduces the
total number of players in the game, making computation
of the Shapley values more feasible, but at the same time, it
reduces the degree of the detail of the explanation. Moreover,
we argue that breaking the image into a grid of square
superpixels breaks the semantics underlying the image,
resulting in potentially under-informative explanations.
In particular, there is no guarantee that the pixels grouped

together in this manner correspond to semantically meaningful
image regions.

In the following sections, we address these issues, proposing
alternative solutions. Specifically, we address the first shortcoming
in Section 3.2.1, before turning to a proposal for semantically
meaningful and sparse priors in Section 3.2.2. Our solution can
be integrated with existing methods, to compose a modular
explainability framework for generative V&L models. An overview
of this framework is shown in Figure 3.

3.2.1. Toward sentence-based explanations
In order to adapt Kernel SHAP to generate global explanations

for the caption, we measure variations of the caption’s meaning
representation when perturbations are applied to the input image.
This allows us to numerically quantify the meaning variation of
the whole caption which is due to the marginal contributions of
different input features (image regions or pixels).

Formally, given an image-captioning model f and an image x
we generate a caption c = f (x) and we compute:

eref = E(c) (3)
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FIGURE 3

Overview of the explainability framework. The new components proposed in this work are shown with a dark border. Our method leverages

KernelSHAP as the core explainability method. We introduce semantic features extracted using DFF from the captioner’s visual backbone and

generate sentence-based visual explanations based on the estimated Shapley values.

where eref is the embedding representation of c that we consider
the reference embedding of the caption, and E() is a function used
to extract such a representation.

For each perturbed image x′ and its corresponding caption we
extract, analogously, an embedding e′. Then we compute:

s = cos(eref , e
′) (4)

where s is the variation in the embedding representation computed
as the cosine distance cos(·), between the reference embedding eref
and the embedding of the caption of the perturbed image e′.

In other words, we use the cosine distance between the semantic
representation of the reference caption and the caption generated
upon input perturbation, to measure the model’s variations. A
schematic representation of the method is shown in Figure 4.

Re-framing the problem as described allows us to apply Kernel
SHAP to compute feature attributions taking into account the
semantic variation of the whole caption in a single cooperative
game instance.

3.2.2. Exploiting semantic visual priors
Partitioning the image into a grid of superpixels is a

straightforward way to reduce the number of input features in the
image. We argue that, although convenient, superpixels do not
guarantee the preservation of semantic information depicting the
visual content, as they shatter the image into equally sized patches
regardless of the content represented. We address this issue by
proposing a semantically guided approach, that selects the input
features according to semantics-preserving visual concepts arising
from the visual backbone of the V&L model. This not only allows
for generating more meaningful explanations but explicitly focuses
explanations of the model’s generative choices on the output of the
model’s own visual backbone.

We generate input features leveraging the Deep Feature
Factorization (DFF) method (Collins et al., 2018). DFF is an
unsupervised method allowing concept discovery from the feature
space of CNN-based models. We refer to such concepts as
“semantic priors,” that is, the knowledge or assumptions learned by
the visual backbone, in the context of a given domain or task. We
use them to craft input features that produce semantically informed
visual explanations.

Formally, following Collins et al. (2018)’s notation, given the
activation tensor for an image I:

A ∈ R
h×w×c (5)

where h,w, c correspond respectively to the height and width, and
the number of channels of the visual backbone’s last activation layer,
we perform a non-negative matrix factorization (NMF) of A:

NMF(A, k) = argmin
ÂI k

‖A− Âk‖
2
F ,

subject to ÂK = HW,

∀i, j :Hij,Wij ≥ 0, (6)

where W ∈ R
n×k and H ∈ R

k×m enforce the dimensionality
reduction to rank k.

Each columnHj can be reshaped into k heatmaps of dimensions
h × w, each of which highlights a region that the factor Wj

corresponds to. The heatmaps are then upsampled to match the
original image size with bilinear interpolation and converted to
binary masks, each of which corresponds to an input feature. In
this way we obtain k input features, where k is the number of
concepts extracted. A schematic example of input feature extraction
performed by DFF is shown in Figure 5.

In our method, the regions identified via DFF are the features
for which attributions are computed. The key intuition is that
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FIGURE 4

Example of the sentence-based explanation. We compute the reference embedding (red) from the caption generated by the model when the input

has no perturbation. For each perturbation applied, we compute the embedding (orange, blue) of the resulting caption and use the cosine distance

between the reference and the current embedding, to measure the semantic variation of the caption.

these features correspond to meaningful sub-parts of the input
image according to the V&L model’s visual backbone. They do
not necessarily reflect humans’ visual expectations of the image
(although we find that they often do); rather they represent the
visual priors learned by the vision model after training.

To create a coalition we sum up multiple masks, then apply
them to the original image, which will contain only pixels belonging
to input features in the selected coalition.

NMF can be seen as an unsupervised clustering algorithm,
allowing control for the number of clusters or concepts to find. k
can be considered a hyperparameter of the method, which we show
can be kept small to achieve a good level of semantic detail and low
compute cost.

3.2.2.1. Non-partitioning features

DFF generates semantic masks reflecting the activations of the
model’s visual backbone. The whole process is unsupervised and
produces masks that do not constitute partitions of the image,
meaning that it is not guaranteed that the sum of all the extracted
masks will match the total size of the image.

In order to account for this issue, we create an additional
leftover mask covering the remaining area and we include it in the
SHAP cooperative game, this allows us to consider the whole visual
information represented by the image, in the game.

As noted in Section 2.2, the computation of Shapley values is
based on a feature independence assumption. Since our features
may be non-partitioning, this constraint may not hold, thus
we relax this assumption in our approach. We explore the
consequences of this in more detail in Section 4.4.2.

3.2.2.2. Intensity-preserving explanations

SHAP-based methods relying on superpixels assume that each
pixel in a patch contributes equally, thus all the pixels in a patch are
assigned the same Shapley value. However, in DFF, features in each

binary mask correspond to an equally-sized heatmap. Therefore,
we multiply the Shapley value by the heatmap corresponding to the
binary mask. This allows scaling the contribution according to the
intensity of the feature signal.

4. Experiments

The methodology described in the previous section raises an
important question which we now address experimentally: What

are the pros and cons of our method based on visual semantic priors

in comparison with standard feature selection methods used in V&L ,

based on superpixels?

In this section, we describe the data and task, as well as a state-
of-the-art vision-to-language model, which we used to perform a
human evaluation of our explainability framework.

4.1. Data

We validate the method presented in the previous section
with experiments using the HL image caption dataset. The HL
dataset (Cafagna et al., 2023) contains 15k images extracted from
COCO (Lin et al., 2014). The dataset pairs images with captions
that describe the visual contents along three different high-level
dimensions, namely scenes, actions and rationales for the actions.
These are additionally paired with the original COCO captions,
which provide a more low-level, object-centric description. The
annotations were collected by asking annotators three questions
related to each of the three high-level dimensions. The systematic
alignment of the object-centric and abstract captions provides us
with a suitable test bed to compare the efficacy of our method
in delivering global explanations in both captioning and visual
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FIGURE 5

Schematic example of input features extraction using DFF. Through thresholding, we convert the heatmaps into binary masks that we use to create

semantically meaningful features.

question-answering scenarios. An example pairing the three high-
level captions and the original COCO caption from the HL Dataset
is shown in the Supplementary material.

4.2. Model

For our experiments, we focus on one V&L model, since our
goal is to evaluate the quality of explanations, not the model itself.
Our choice is motivated by two considerations: first, a model should
ideally have good performance in zero-shot settings; second, it
should exhibit state-of-the-art performance on generative tasks.
OFA (Wang et al., 2022) is a large pre-trained multimodal model
with a CNN-based visual backbone, trained using a task-agnostic
and modality-agnostic framework. OFA is able to perform a diverse
set of cross-modal and unimodal tasks, like image captioning, visual
question answering, image generation, image classification, etc.
OFA is trained on a relatively small amount of data (20M image-
text pairs) with instruction-based learning and a simple sequence-
to-sequence architecture. Nevertheless, on downstream tasks, it
outperforms or is on par with larger models trained on a larger
amount of data. OFA is effectively able to transfer to unseen tasks
and domains in zero-shot settings, proving to be well grounded also
in out-of-domain tasks.

This makes OFA an excellent candidate to test our
explainability framework in a real-world scenario, namely a
large pre-trained generative model with SOTA performance on
downstream tasks in zero-shot conditions. Thus we use OFA
to generate textual predictions in a VQA setting. We then use
our framework, which combines DFF features and sentence-
based explanations, to generate visual explanations of such
predictions. In our evaluation, we compare these explanations
to the more standard setup for vision-to-text XAI, one based on
superpixels as features.

4.3. DFF vs Superpixel

In this Section, we focus on the comparison between the
global visual explanations produced using superpixel or DFF input
features. We focus on the capability of the two methods to adapt
to different semantic aspects of the explanation; in Section 4.3.1 we
specifically address this discussion with a focus on the VQA task.

All the experiments are performed in zero-shot by using the
OFA-largemodel in its original implementation.1 In order to ensure
a fair comparison, we extract a similar number of features for
both methods, namely 12 for superpixel and 11 for DFF. This
number allows us to execute the experiments in a reasonable
amount of time. In fact, we recall that the number of features has
an exponential impact on the number of model evaluations needed
to generate the explanations. Reducing the number of features
mitigates the efficiency issue, but does not solve it. An in-depth
discussion about the efficiency issue is provided in Section 4.3.2.

As an initial comparison, Figure 6 shows a direct comparison
between the two kinds of input features for the caption “drinking,”
generated using sentence-based Kernel SHAP. Bothmethods assign
a positive contribution to the region corresponding to the glass,
with some important differences:

• Detail: The DFF features succeed in capturing the key visual
semantics of the image, i.e., the glass, in a single input feature
(with some noise), producing a more detailed explanation
than superpixel, where the region corresponding to the glass
is shared across different patches (i.e., different features).

• Intensity: DFF scales the contributions according to
the magnitude of the feature signal (as described in
Section 3.2.2.2), providing a fine-grained visual indication of
the importance of specific sub-regions within the same input
feature region.

4.3.1. Semantic visual features improve the quality
of the explanations

We compare DFF and superpixel explanations on the VQA
task. We select images and questions for the three axes in the HL
dataset, i.e., action, scenes, and rationales, and we generate visual
explanations for the answers. This allows us to compare how the
two methods handle semantically different aspects highlighted in
the visual content.

We expect to see that the positive contribution assignment
(in blue) changes for the same image for different captions,
corresponding to different kinds of questions for which the model
generates different answers. In response to different questions
about location, rationale, or action, the model’s output should

1 https://github.com/OFA-Sys/OFA
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FIGURE 6

Global visual explanation for the question “What is the subject doing?,” and corresponding model’s answer “drinking.” Explanations are generated

using Kernel SHAP. The explanation using DFF input features (left) provides a detailed positive (blue) area. We use 11 DFF-features and 12

superpixel-features. The explanation generated by superpixel input features (right) although covering a similar region, i.e., the glass, does not provide

the same level of detail.

FIGURE 7

Examples of explanations for the VQA task from the HL Dataset for the scene, action and rationale axes. In the top row are shown the questions (Q)

and the generated answers (A). The middle and the bottom row, show visual explanation generated respectively with DFF and superpixel input

features, with comparable compute cost.

depend on different regions of the image. For instance, we expect
to observe a wider positive area highlighted in the picture for
the where question and a more specific detailed area for the what
question. As shown in Figure 7, the DFF-based method (middle
row) succeeds in highlighting in significant detail the semantic
areas contributing to the output. On the other hand, superpixels
provide coarser detail, as they are limited by the size of the patches.
This suggests that the DFF-generated explanations could lead to a

visible advantage in terms of comprehensiveness and completeness;
we further test these hypotheses by running a human evaluation, in
Section 6.

4.3.2. Semantics-guided explanations are e�cient
In order for superpixel-based explanations to achieve a level

of detail comparable to DFF, we need to significantly increase the
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number of patches. However, this causes an exponential surge
in computing cost, which makes it unfeasible to run, especially
if we are testing large models. This issue can be mitigated by
performing Kernel SHAP sampling (as described in Section 3.1).
The combination of the exponential growth of the sample space,
and the limited sampling budget can easily lead to unreliable
explanations. An example is shown in Figure 8 where we perform
Kernel SHAP sampling with a budget of 2048 samples, which is the
same budget used to compute the DFF explanation in Figure 6.

On the other hand, DFF does not suffer from this issue. In fact,
there is no clear advantage in increasing the number of features,
because the main semantic content is already embedded in a small
number of features. In our experiments, we establish that a good
number of features for DFF is between 8 and 12. This number of
features keeps the computational cost low, allowing us to compute
full Kernel SHAP or Kernel SHAP sampling with very high
accuracy. We provide full details in the Supplementary material.

4.4. Semantic features analysis

The semantic features extracted by DFF are drastically different
from superpixel features in many key aspects related to the
visual content captured. Moreover, DFF is unsupervised and
dynamically exploits the visual backbone’s priors. In this Section,
we focus on analyzing the benefits and limitations characterizing
the semantic features generated by DFF. We discuss in detail key
aspects like the kind of semantic content captured along with
possible theoretical implications and how it can be generalized over
different visual backbones.

4.4.1. What kind of semantics do DFF features
capture?

DFF features capture semantic concepts learned by the model’s
visual backbone. These do not necessarily follow human visual
expectations. In Figure 9 we show an example: features 1, 2, and 8
can be associated with three main semantic objects and entities of
the image, namely face, glass and shirt. However, we observe in the
remaining features several geometrical patterns, that highlight the
edges and the corners of the pictures. This pattern is recurrent in
the features extracted by DFF, independently of the visual content.
We believe this is partially due to the capability of CNNs to
capture spatial configuration (Zeiler and Fergus, 2014) and the
effectiveness of DFF in factorizing together model activations with
similar characteristics.

4.4.2. Relaxing the feature independence
assumption

As described in Section 2.2, SHAP in the cooperative game
formulation assumes the feature independence principle, namely
that each feature is independent of all the others. However, this
assumption does not hold for image data since each pixel is
inherently dependent on the other pixels, especially those in its
vicinity. Therefore, in order to work with visual data, this constraint
needs to be relaxed. This solution is typically applied for computer
vision tasks by graphical models like Conditional Random Fields

(CRF). CRFs relax the strong dependence assumption on the
observations (the pixels of the image) by modeling the joint
distribution of observations, usually intractable, as a conditional
distribution (Li et al., 2022b).

Along the same lines, superpixel features relax this
constraint by partitioning the image into patches that are not
independent, considering the underlying semantics depicted in
the visual content.

This issue is mitigated by the DFF features, as they tend to
cover semantically related regions of the image, preserving the
underlying visual semantics. On the other hand, as pointed out
in Section 3.2.2.1, DFF features are not disjoint, meaning that to
some extent, the contribution of overlapping regions is subject to
contamination from other regions. In this section, we analyse the
consequences of this in more detail. Our analysis follows two steps:

1. We measure the DFF feature overlap over a sample of 1,000
images. We find that the amount of overlap among the feature
masks corresponds to 0.77% of the pixels in the image with
a standard deviation of 0.63 and an average maximum peak
of 2.04%. This suggests that this phenomenon is present to a
limited extent, at least for the model we are using.

2. We compare visual explanations generated by disjoint and non-
disjoint features. In order to generate disjoint features, we post-
process the feature masks extracted, by checking all possible
pairs of feature masks and assigning the possible overlapping
region to one of the two compared features. An example is
shown in Figure 10Awhere the overlapping regions (highlighted
in red) between two feature masks are randomly assigned to one
of the features (either blue or green).

Enforcing the features’ disjointness leads to similar results to
their non-disjoint counterpart. However, in some cases, the re-
allocation of the overlapped region impacts the Shapley value
of the feature, causing unpredictable results. This suggests that
manually changing the feature masks can disruptively affect the
visual semantics captured by the feature, leading to misleading
visual explanations. A cherry-picked example is shown in Figure 10,
where using the disjoint features (Figure 10C) causes a meaningful
change in the visual explanation.

In conclusion, we observe that the phenomenon of non-

disjoint features is present to a limited extent and overall it does
not invalidate the visual explanations, as it can be considered
a relaxation of the feature independence assumption. Moreover,
as empirically observed, relaxing this assumption is unlikely to
invalidate the method, as the explanation is consistent with the
ones generated by superpixel features. On the other hand, we
observed that forcing the feature masks’ disjointness harms their

capability to preserve the visual semantics, leading tomisleading

visual explanations.

4.4.3. Does feature size matter?
Differently from superpixel patches, DFF semantic features

can have different sizes, depending on the semantic role of the
highlighted region. We ask to what extent the size of a visual
feature could affect the final contribution in the SHAP cooperative
game. In order to test for that, we normalize the Shapley value
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FIGURE 8

Example of explanations generated with superpixels, with an increasing number of features, namely 16, 64, 256 features [respectively (A–C)]. These

are obtained with Kernel Shap sampling using a fixed sampling budget of 2, 048 samples. (A) 4X4. (B) 8x8. (C) 16x16.

FIGURE 9

Binary feature masks extracted using DFF with k = 10. The 11th feature is the leftover mask. The original image is the same shown in Figures 6, 8.

obtained according to the size of the feature mask and we compare
normalized values with the un-normalized ones. To normalize a
Shapley value we compute:

ri =

∑|Mi|
j=0 mj

|Mi|
(7a)

âi =
ai

ri
(7b)

where mj is a non-zero element of the binary mask, |Mi| is
the total number of entries in mask i and ri indicates the
proportion of the image covered by the mask. ri is then used
to discount the magnitude of the Shapley value ai obtaining the
normalized value âi.

In the normalization process, the feature contribution’s
magnitude is obviously re-scaled. However, we are interested
in measuring to what extent the normalization has affected

the features’ importance in relative terms. Therefore, we use
the Rank Biased Overlap (RBO) (Webber et al., 2010), a
similarity metric for ranked lists, to measure the difference in
the feature attribution ranking after normalization for a sample
of 100 DFF-based explanations. A significant change in feature
ranking would entail a positive correlation between size and
feature importance.

In Figure 11 we show the results of this experiment: the

RBO is overall at ceiling, with a minimum value of 0.9

(in a range where 1 is identical ranking and 0 is totally
different). The positive contributions, which are the most
informative to understand the explanations, are the most stable
in terms of ranking. This suggests that the size of the features

extracted using DFF does not significantly affect the final

contribution of the semantic features and does not harm the

visual explanations.
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FIGURE 10

Example of overlap (highlighted in red) between two feature masks (A) and comparison between visual explanations generated given the question

“What is the subject doing?” and the model’s answer “drinking.” We compare regular DFF features (B) and disjoint DFF features (C). Although the

masks overlap only to a small extent, the explanation is visibly a�ected. (A) Overlapping features. (B) Non-disjoint features. (C) Disjoint features.

FIGURE 11

RBO scores computed between normalized and un-normalized Shapley values, for positive (blue), negative (orange), and all (green) features.

4.5. Does DFF adapt to other visual
backbones?

DFF is designed to perform concept discovery in CNN-
based visual backbones. However, current pre-trained V&Lmodels’
vision encoders often rely on different architectures, such as
Vision Transformers (ViT) (Dosovitskiy et al., 2020), FasterRCNNs
(FRCNN) (Ren et al., 2015), or their variants. In this section, we
show how DFF can be adapted to these architectures. Moreover, we
provide an alternative solution to performmodel-agnostic semantic
feature extraction, which is applicable to any architecture.

4.5.1. Vision transformers
In order to apply DFF to ViT encodings, we need to take

into account two substantial differences with respect to CNNs: (1)
firstly, ViT splits the image into a grid of patches and generates an
embedding vector for each patch. To obtain an activation matrix,
each embedding vector is stacked together and a special vector
is added in position 0 to indicate the beginning of the sequence.
Differently from CNNs, the spatial information related to a patch is
lost in the encoding process and added later on, by concatenating a
positional embedding to the embedding vectors. (2) Secondly, ViT

activations contain both positive and negative values, differently
from CNNs which generate only positive activations.

As described in Section 3.2.2, DFF requires a non-negative
activation matrix as it is based on NMF, therefore in order to
address (2) we normalize the ViT features to values between 0 and 1.

As a consequence of (1) above, when we apply DFF to the
normalized ViT activations, we obtain binary masks with vertical
bands, where each band corresponds to a patch in the image. We
use the index of the highlighted vectors in the binary mask to select
the patches to be grouped together in the semantic features. In this
way, we obtain feature masks by grouping together semantically

related patches. A schematic example is depicted in Figure 12.

4.5.2. FasterRCNNs
FRCNNs are often used as feature extractors in V&L models

(Anderson et al., 2018; Tan and Bansal, 2019; Zhang et al., 2021).
They extract feature vectors representing bounding boxes of salient
objects identified in the image. Similarly to ViT, the FRCNN’s
activation matrix is a stack of feature vectors, therefore we can
extract semantic features, similarly to the method described in
Section 4.5.1. However, FRCNNs tend to extract highly overlapping
bounding boxes, which results in massively redundant semantic
features. This prevents the features from effectively selecting
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FIGURE 12

Schematic example of how to generate semantic features with DFF from a ViT visual backbone. The index of the highlighted band in the heatmap is

used to select the patches to create the feature.

specific semantic content, as they often result in sharing most of the
selected area. A schematic example is shown in Figure 13, where
although DFF manages to cluster semantically related boxes (like
collar, man, neck, sleeve), it ends up selecting a large portion of the
image in a single input feature.

An excessive amount of overlap among the features affects
their capability to identify specific semantic concepts. Thus, we
conclude that DFF can be adapted to FRCNN’s features but

does not produce the desired results of capturing enough fine-

grained semantic concepts to support informative explanations.
In the following subsection, we describe an alternative route
toward obtaining semantically meaningful visual regions that can
act as features for explaining V&L models, in cases where the
visual backbone does not permit an application of bottom-up,
unsupervised methods such as DFF.

4.5.3. Beyond DFF: a model-agnostic semantic
feature extraction

As shown in the previous sections:

• the full potential of DFF is evident with CNNmodels;
• it can be adapted to extract features from ViT models, though

they are less detailed due to the initial discretization of the
image into patches operated by the model;

• it does not produce satisfactory results on FRCNN activations,
because of the redundancy of the bounding boxes extracted by
the model.

In order to address limitations coming from the visual
backbone’s architecture (e.g., in the case of FRCNNs), we propose to
use STEGO (Hamilton et al., 2022)2 a state-of-the-art segmentation
model, to extract semantic feature masks. It is unsupervised,
meaning that it does not require ground truth labels. As a
consequence, the number of features extracted can not be
controlled, though in our experiment we observe that it extracts a
small number of semantic masks (usually less than 10). This keeps
the Shapley value computation low but could limit the number

2 At the time of this work, STEGO was the state-of-the-art model for

semantic segmentation. However, the approach proposed here is agnostic

as to the segmentation model used. For example, Segment Anything (Kirillov

et al., 2023), a more recent model proposed after the present experiments

were completed could yield better results.

of semantic concepts captured, differently from DFF where the
number of features is a controllable hyperparameter.

The biggest advantage of using an off-the-self segmentation
model is that it supports the generation of visual explanations,
independently of the visual backbone’s architecture. On the other
hand, we have the downside of no longer relying on the visual
backbones’ priors, embedded in the captioning model.

In Figure 14 we directly compare the visual explanations
generated by all methods, DFF on CNN and ViT (Figures 14A,
B), STEGO (Figure 14C), and superpixel (Figure 14D). All the
explanations are generated with similar compute costs, apart from
STEGO which uses a smaller amount of features (6). As expected,
the explanations generated with STEGO’s semantic features are
more fine-grained than the others, as the model is trained on
the semantic segmentation task. However, they come from an
external model and do not necessarily reflect the visual priors of
the V&L model itself. Nevertheless, this provides a flexible solution
to adapt the explanation of V&L models with visual priors to any
visual backbone. Furthermore, any segmentation model can in
principle be used.

5. Discussion

We have now all the elements needed to answer the question
posed at the beginning of this Section. Exploiting the model’s
visual priors exposes several significant advantages with respect to
standard superpixel features. As shown in Section 4.3 input features
based on the model’s visual priors provide more semantically
detailed explanations namely, they succeed in emphasizing salient
semantic relevant elements to a higher extent in the image,
providing also information regarding the intensity of the area
of contribution. The semantic nature of the inputs produces
more comprehensive explanations (Section 4.3.1) than standard
superpixel features at a lower compute cost, thus being also more
efficient (Section 4.3.2).

However, the introduction of semantic visual features
introduces several potential issues that we have thoroughly
analyzed in this section. From the theoretical point of view,
our method requires a relaxation of the feature independence
assumption (Section 4.4.2) which however, does not compromise
the validity of the underlying core method (i.e., KernelSHAP) as
we empirically show that non-disjoint features do not significantly
affect the visual explanation. In fact, forcing the disjointness
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FIGURE 13

Schematic example of how to generate semantic features with DFF from a FRCNN visual backbone. The index of the highlighted band in the binary

mask is used to select the bounding boxes corresponding to objects that compose the input features. However, the bounding boxes highly overlap

with each other and cover the majority of the pixels in the image.

FIGURE 14

Direct comparison of explanations generated for the caption “riding a dirt bike” from di�erent visual backbones and methods. The two leftmost

explanations (A, B) are generated from features extracted using DFF and activations of di�erent visual backbones, namely a CNN (A) and ViT (B). (C)

uses semantic masks extracted by a segmentation model (STEGO) and (D) uses superpixel features. All the explanations have comparable compute

costs, apart from (C), where only 6 features are used. (A) DFF (CNN). (B) DFF (ViT). (C) STEGO. (D) Superpixel.

of semantic features leads to misleading visual explanations.
Similarly, different sizes in the input feature dimension, do
not significantly affect the final contribution, as we show (in
Section 4.4.3). Our method is flexible enough to be adapted to
Vision Transformers other than CNNs; however, it adapts with
difficulty to FasterRCNNs (as discussed in Section 4.5.2). To
overcome this issue we propose using an off-the-self semantic
segmentation model to extract semantic visual features. In
light of our work, which finds its primary motivation is
exploiting the model’s internal semantic priors, we argue that
this solution is not optimal, as it relies on external semantic
priors, however, it is a reasonable trade-off that allows us to
deal with architectures that do not accommodate DFF to extract
such priors.

6. Human evaluation

The experiments in the previous section made direct
comparisons between our method and superpixel-based
explanations for V&L generative models. In this section, we
report on an evaluation of human participants aiming to assess the
benefits and potential limits of our method for human users.

Evaluating XAI techniques is a notoriously challenging
task (e.g., Adebayo et al., 2022; Nauta et al., 2023). Here,

we take inspiration from the work of Hoffman et al.
(2018) and compare the judgments of participants on
three qualities, namely detail, satisfaction and completeness

of explanations generated using the two methods
under consideration.

6.1. Participants

For the purposes of this study, it is important to source
judgments from participants who are knowledgeable about
machine learning and explainable AI. Relying on crowd-
sourcing is a risky strategy, as there is no guarantee that
participants will be in a position to evaluate explanations

rather than, say, the quality of model outputs. We, therefore,
recruited 14 researchers (9 male, 5 female; 9 aged 18–30,
4 aged 31–40, 1 aged 41–50) from our own network. All
are researchers in AI-related fields and are familiar with XAI
methods. Two of these are senior researchers who obtained
their PhD more than 5 years ago; all the others were doctoral
students at the time the experiment was run. Six participants
are native speakers of English; the remainder are fluent or
near-fluent speakers.
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FIGURE 15

Distribution of the Likert scores obtained in the human evaluation for detail, completeness and satisfaction for both DFF in (orange) and superpixel (in

blue). The lower the score the higher the rating.

6.2. Design and materials

We randomly selected 40 images from the HL dataset, for
which we generated the corresponding answers to questions. In
order to create a more challenging scenario, we framed it into
a visual question-answering task, thus for each image, we select
one of the available questions and we generate the corresponding
caption.Moreover, for each image-caption pair, we generated visual
explanations using both DFF and superpixels features.

Each participant was shown the question, the generated answer,
the original image, and the visual explanation which can be either
generated by DFF or by superpixel. In order to counterbalance
the experimental materials, we divided images randomly into two
groups, and further assigned participants randomly to two groups.
We rotated items through a 2 (participant group) × 2 (image
group) Latin square, such that participants in any experimental
group evaluated all images, but each image was always seen once
and evaluated in only one condition (DFF or superpixel).3

The participants were asked to judge explanations based on
their agreement to each of the following statements:

• Detail: the areas highlighted in the explanation are detailed
enough to understand how the model generated the caption;

• Completeness: the highlighted areas cover all the regions
relevant to the caption;

• Satisfaction: based on the areas highlighted in the explanation
I feel that I understand how the system explained makes its
decisions.

Responses to each dimension were given on a Likert scale
from 1 to 5, where 1 corresponds to the total agreement and
5 to total disagreement. For the full evaluation form see the
Supplementary material.

3 In the end, the experiment was completed by 8 participants in one group,

and 6 in the other.

7. Results

As shown in Figure 15, DFF-based explanations (in orange) are
considered on par with superpixel-based explanations (in blue) in
terms of completeness, but at the same time, they are considered
more detailed and more satisfactory for human judges. Thus, the
score distributions for detail and satisfaction are more skewed
toward lower (better) scores for the detail and satisfaction criteria.
More detailed statistics are reported in the Supplementary material.

Although the superpixel and DFF methods differ in the judged
level of detail of the explanations, they yield attributions that are
similarly located in the input image. This is in part due to the fact
that in both cases, we are using the same feature attributionmethod,
namely Kernel SHAP. However, in some cases, we observe a certain
degree of divergence in the visual explanation, meaning that the
two methods assign opposite attributions to similar regions. An
example is reported in the Supplementary material.

This is probably due to the particular configuration of
features selected by both methods, which in some instances might
select insufficiently detailed regions, preventing the method from
highlighting the semantically relevant areas of the image.

In order to quantify this phenomenon we manually inspected
the 40 samples used in the human evaluation. We found
that around 10% of the explanations diverged to some extent
between the two feature selection methods. We analyzed separately
this sub-sample of divergent explanations. We find that the
average scores given by experimental participants for this subset
are overall slightly worse (higher) than the full results (see
Supplementary material for details). Nevertheless, the trends
observed in relation to Figure 15 for the three evaluation criteria
still hold. This suggests that this phenomenon does not significantly
affect the participants’ judgments, except for a slight drop in the
perceived quality of the explanations.

Moreover, in qualitative feedback given by participants, some
declared that in some instances, their assessment was affected by
the correctness of the caption, which in some cases was considered
wrong or partially inaccurate. We quantified the inaccuracy of
the caption by computing their lexical and semantic similarity
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with respect to the reference captions, using respectively, BLEU
(Papineni et al., 2002) and Sentence-Bert (Reimers and Gurevych,
2019). We computed the Pearson correlation (Cohen et al., 2009)
between the Likert scores and the lexical and semantic similarity
previously computed. We find that the Likert scores slightly but
not significantly positively correlate with both lexical and semantic
similarity (ρ = −0.023 for lexical similarity and ρ = −0.004
for semantic similarity).4 This suggests that despite the fact that
participants did note the quality of the captions, this did not
significantly affect their judgments of the explanations.

In conclusion, we found that assessing visual explanations
is a hard task even for specialists in the field. We observed a
relatively low inter-annotator agreement for both groups in the
Likert judgments [Krippendorff ’s α = 0.23 (Krippendorff, 2004)].
However, besides possible confounding factors, like inaccuracies
of the captions and divergent explanations, the DFF-based
explanations are generally perceived as higher quality explanations
than superpixel-based ones.

8. Limitations

Some potential limitations of our method arise from the
adaptations we havemade to Kernel SHAP as the core explainability
method.

First, we observe that semantic features extracted with DFF
may overlap with each other and therefore may generate non-
disjoint features. This directly affects the assumption of feature
independence, which is a theoretical requirement for SHAP.
However, we study (in Section 4.4.2 the extent to which this
phenomenon is present and how it affects the outcome of
our method finding that it does not significantly affect our
visual explanations, thus, our method features a relaxation of
this assumption.

Second, semantic feature extraction, namely DFF, is designed
to extract visual priors from CNN-based models. In Section 4.5.3,
we show that this method can successfully adapt to Vision
Transformers, but not to FasterRCNNs. To overcome this
limitation we propose to use an off-the-shelf segmentation
method to extract semantic features. This solution supports visual
explanation, independently of the visual backbone’s architecture.
However, in view of the motivation of our work, whose main goal
is to exploit the model’s visual priors to explain its own predictions,
we argue that this solution is not optimal, as it relies on external
visual priors (i.e., a third-party semantic segmentation model),

Ultimately, as shown in Section 6, we validate our method
through a human evaluation. We leverage experts in AI and we
design our evaluation in an unambiguous way for our annotators.
However, we are aware that evaluating visual explanations for
humans can be a hard task. In particular, the task of evaluating
XAI is ambiguous, since evaluators are asked to judge the quality
of explanations, which is in principle distinct from the quality of
model outputs (that is, one can have a satisfactory explanation of an
incorrect or infelicitous output). As the qualitative feedback from
our evaluation suggests, keeping output quality and explanation

4 Note that since in the Likert score, 1 is the maximum agreement and 5

the minimum, a positive correlation corresponds to a negative ρ.

quality separate is not always an easy task and this may influence
the evaluation outcomes.

9. Conclusions

In this work, we proposed an explainability framework to
bridge the gap between multimodality and explainability in image-
to-text generative tasks exploiting textual and visual semantics.

Our method is developed around SHAP, as it provides a
model-agnostic solution with solid theory and desirable properties.
We design our approach to address certain crucial limitations of
current approaches.

First, SHAP-based methods are rarely employed to explain
large models as they are extremely expensive to compute. Our
solution is efficient and allows an accurate approximation of the
Shapley values.

Second, we overcome the limitations of current token-by-
token explanations by proposing sentence-based explanations
exploiting semantic textual variations which are also more efficient
to compute.

Finally, based on the rationale that a model’s generative outputs
should be explained with reference to the knowledge encoded
by the visual backbone, we propose an unsupervised method
to extract semantically informative visual features. Using these
features rather than superpixels means that we obtain explanations
which are cheaper (insofar as more can be gleaned from fewer
features) but also more intuitive, especially when compared to
superpixel-based approaches.

We show that our method can be employed with different
visual-backbones architectures like CNN and Vision Transformers.
In the case of visual backbones for which desirable results cannot
be produced, such as FasterRCNN-based models, we propose an
alternative solution based on a semantic segmentation model, to
generate semantically meaningful input features.

Through a human evaluation, we show that using semantic
priors improves the perceived quality of the explanation, resulting
in more detailed and satisfactory explanations than superpixels
though matching the same level of completeness.

Moreover, our framework is totally modular and it can co-
exist with a wide range of possible configurations for all of its
components. For example, it is possible to produce token-by-token
explanations and still rely on DFF to extract visual features. The
core method, Kernel SHAP, can be replaced with another SHAP-
based method, and the visual features can be extracted with one of
the proposed methods or with any other method of choice.
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