
TYPE Original Research
PUBLISHED 09 October 2023
DOI 10.3389/frai.2023.1232640

OPEN ACCESS

EDITED BY

Nebojsa Bacanin,
Singidunum University, Serbia

REVIEWED BY

Umut Özkaya,
Konya Technical University, Türkiye
Bayram Akdemir,
Konya Technical University, Türkiye
Miodrag Zivkovic,
Singidunum University, Serbia

*CORRESPONDENCE

Serestina Viriri
viriris@ukzn.ac.za

RECEIVED 31 May 2023
ACCEPTED 04 September 2023
PUBLISHED 09 October 2023

CITATION

Bakasa W and Viriri S (2023) Stacked ensemble
deep learning for pancreas cancer classification
using extreme gradient boosting.
Front. Artif. Intell. 6:1232640.
doi: 10.3389/frai.2023.1232640

COPYRIGHT

© 2023 Bakasa and Viriri. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Stacked ensemble deep learning
for pancreas cancer classification
using extreme gradient boosting

Wilson Bakasa and Serestina Viriri*

School of Mathematics Statistics & Computer Science, College of Agriculture, Engineering and Science,
University of KwaZulu-Natal, Durban, South Africa

Ensemble learning aims to improve prediction performance by combining
several models or forecasts. However, how much and which ensemble learning
techniques are useful in deep learning-based pipelines for pancreas computed
tomography (CT) image classification is a challenge. Ensemble approaches are the
most advanced solution to many machine learning problems. These techniques
entail training multiple models and combining their predictions to improve the
predictive performance of a single model. This article introduces the idea of
Stacked Ensemble Deep Learning (SEDL), a pipeline for classifying pancreas CT
medical images. The weak learners are Inception V3, VGG16, and ResNet34, and
we employed a stacking ensemble. By combining the first-level predictions, an
input train set for XGBoost, the ensemble model at the second level of prediction,
is created. ExtremeGradient Boosting (XGBoost), employed as a strong learner, will
make the final classification. Our findings showed that SEDL performed better, with
a 98.8% ensemble accuracy, after some adjustments to the hyperparameters. The
Cancer Imaging Archive (TCIA) public access dataset consists of 80 pancreas CT
scans with a resolution of 512 * 512 pixels, from 53male and 27 female subjects. A
sample of two hundred and twenty-two images was used for training and testing
data. We concluded that implementing the SEDL technique is an e�ective way
to strengthen the robustness and increase the performance of the pipeline for
classifying pancreas CT medical images. Interestingly, grouping like-minded or
talented learners does not make a di�erence.

KEYWORDS
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1. Introduction

Recent years have seen a remarkable expansion in automated medical image analysis

(Wang, 2016; Litjens et al., 2017). Deep neural networks are one of the most well-liked

and commonly used algorithms for computer vision problems (Goceri and Goceri, 2017;

Fourcade and Khonsari, 2019; Wang et al., 2021). Deep convolutional neural network

architectures serve as the foundation for this trend. These designs performed well with

clinicians and demonstrated strong prediction ability (Currie et al., 2019; Lundervold and

Lundervold, 2019; Zhou et al., 2021). Deep learning-based automatedmedical image analysis

is currently a prominent academic topic being integrated into clinical workflow.

Medical image classification categorizes an entire image into specified classes according

to a pancreatic cancer diagnosis or condition. To increase the accuracy of diagnoses or

automate time-consuming procedures, these models are intended to be used as clinical

decision support for physicians (Lee et al., 2017; Puttagunta and Ravi, 2021). Ensemble

learning combines multiple machine learning models to produce superior results. The
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fundamental idea is a deep learning model combination, such as

VGG16 (Kaur and Gandhi, 2019), Inception V3 (Alsabahi et al.,

2018; Godasu et al., 2020), and ResNet34 (Dai et al., 2021; Xie et al.,

2021), can produce more accurate results than any single machine

learning model.

The world has moved toward a data-driven medical time, and

artificial intelligence and machine learning are using this data to

analyse diseases, forecast treatment results, and guide decision-

making and drug development. The supervised machine learning

classification approach is among the most popular and frequently

used fields (Rauschert et al., 2020). It aids in sorting data into

several categories. It has many uses, including speech recognition,

image classification, fraud detection, and spam identification in

email and other diagnostic tests and medical procedures (Dargan

et al., 2020). Identifying a set of target classes (feature to identify

in images) is the first step in the supervised learning process for

classifying images. A model is trained to identify the target classes

using labeled sample images. Rough pixel data was used as the

model’s input in early computer vision algorithms.

Medical image classification is a work in medical image analysis

that entails categorizing medical images, such as X-rays, MRI scans,

and CT scans, into different groups depending on the type of image

or the presence of particular structures or disorders (Siddiq, 2020).

One of the most significant issues in the field of image recognition

is medical image classification, which aims to categorize medical

images to aid physicians in the diagnosis of disease or further

study. In general, there are two parts tomedical image classification.

The first step is to take the image and extract its useful elements.

The second phase entails using the features to create classification

models for the dataset of images. A tough, tedious, and time-

consuming operation, classifying medical images into multiple

classes traditionally required clinicians to apply their professional

skills to extract features (Goel and Adak, 2021). This method is

likely to produce unstable or unpredictable results. The application

research for medical image categorization has had significant worth

compared to previous studies.

Compared to individual models, ensemble approaches have

higher predictive accuracy (Sundaramurthy et al., 2020). The

approaches are particularly helpful when a dataset contains linear

and non-linear data types since they combine several models to

manage this data. Through ensemble approaches, bias and variance

can be decreased, and the model is typically neither under nor

overfitted (Zhang et al., 2022). Always less noisy and more stable

is an ensemble of models. Utilizing an ensemble of models rather

than a single model was the main objective while developing

our proposed SEDL model to boost robustness and performance.

The spread or dispersion of the forecasts and model performance

decreases, while an ensemble can produce superior predictions and

performance than any contributing model.

Models are also known as learners. Each learner is regarded

as “weak” on their own. On the other hand, a robust model can

be created when several weak learners are linked in some way. In

our case, this robust model—SEDL—will be called an ensemble

model. The models should be as diverse as possible. Each model

may perform well on different subsets of the data. When the

individual models are combined, their flaws are balanced out. The

premise of ensemble models is that there is greater strength in

multiple models than in a single one. In the approach section,

we outline our suggested SEDL model and go into ensemble

learning techniques (Ganaie et al., 2021). The experiments section

describes our experiments and the procedures we used to develop

and evaluate the model. The results section reviews the findings

and some of the performance metrics we employed. Lastly, the

concluding section provides a succinct summary.

2. Related work

Recent research has shown that ensemble learning algorithms

are a significant component of the most effective and precise

medical images categorization pipelines (Pintelas and Livieris,

2020; Xue et al., 2020; Yang et al., 2021a; Müller et al., 2022).

Finding a model that maximizes prediction accuracy is the goal of

machine learning. Themethod to combine numerousmodels into a

better predictor closer to an optimal model was developed because

it is challenging to determine the optimal model. The combining

of models to provide improved prediction performance is what is

referred to as ensemble learning. Deep ensemble learning (Pratiwi

et al., 2021; Müller et al., 2022) incorporates ensemble learning

techniques into a deep learning pipeline. Several recent research

studies have effectively applied this method to increase a pipeline’s

performance and resilience for classifying medical images.

In the study (Barstugan et al., 2020), coronaviruses are

categorized into two stages. Before this, the classification algorithm

was applied to four subsets without first extracting the feature.

Before SVM classification, the subsets underwent a vectorization

step. The second stage involved the extraction of features using

five distinct feature extraction methods, including the Discrete

Wavelet Transform (DWT) (13), the Gray Level Size Zone Matrix

(GLSZM) (12), Local Directional Patterns (LDP) (10), the Gray

Level Run Length Matrix (GLRLM) (11), and the Gray Level

Cooccurrence Matrix (GLCM) (7-9). SVM was used to classify

the characteristics after that (14). The classification phase included

cross-validationmethods of 2x, 5x, and 10x. Themean classification

results were found once the cross-validations were finished. The

best classification accuracy was obtained as 99.68% with 10-fold

cross-validation and GLSZM feature extraction method.

A convolutional Support Vector Machine is suggested in

Özkaya et al. (2020b) and can categorize computed tomography

images automatically. The CSVM model is trained from scratch

instead of the pre-trained Convolutional Neural Networks trained

with the transfer learning method. The dataset is separated into two

parts: training (75%) and testing (25%) to assess the effectiveness

of the CSVM approach. Three distinct numbers of SVM kernels

are contained in each block of the CSVM model. With 94.03%

ACC, 96.09% SEN, 92.01% SPE, 92.19% PRE, 94.10% F1-Score,

88.15%MCC, and 88.07% Kappa metric values, the performance of

pre-trained CNN networks and CSVM models are compared. The

CSVM (77, 33, 11) model performs the best.

According to empirical data, ensemble learning-based pipelines

are often preferable because they combine the capabilities of various

models to concentrate on distinct aspects while compensating

for each model’s specific limitations (An et al., 2020). It is still

unclear whether ensemble learning models are useful in deep

learning-based medical image categorization pipelines. Although

generic ensemble learning is not new, the literature has yet to
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investigate how ensemble learning strategies affect deep learning-

based classification. Few publications have begun to examine the

deep ensemble learning field, unlike the authors who provide

thorough reviews on general ensemble learning, such as according

to Ganaie et al. (2021). While Sagi and Rokach (2018) and Kandel

et al. (2021), they provide descriptions or analyses of general deep

ensemble learning methods, while Cao et al. (2020) investigated

deep learning-based ensemble learning methods in bioinformatics.

In this study, we aim to create a SEDL pipeline to demonstrate

the effect of ensemble learning techniques on deep convolution

neural network performance for medical image categorization. We

wish to evaluate the performance of deep learning techniques as

base learners for XGBoost (Ramaneswaran et al., 2021) to uncover

potential performance gains.

Firstly, the authors, Öztürk et al. (2021), use typical image

augmentation on minority classes, which involves rotating, scaling,

and other image modifications. The total number of photographs

is now 260 more than before image enhancement. Fourth, four

manually produced features are selected from all of the images.

Seventy-eight features are created for each image by combining

these feature vectors. The 78 feature vectors from the 260 images are

then oversampled using the SMOTE technique. This methodology

results in 495 feature vectors. Using these feature vectors, sAE

and PCA are both trained. Out of a total of 78 features, 20

features were selected in this study using the sAE and PCA

approaches. To classify data, SVM is trained using 495 vectors with

20 characteristics. The depth of the unbalanced structure in the

dataset leads to the requirement for image augmentation and data

over-sampling. Only two images will be created in many classes

if image augmentation is the only technique used, and these two

images will be nearly identical. Overfitting within the class takes

place here. When solely employing a synthetic data oversampling

method, performance data is obtained that is only a simulation

of real-world performance, which may not improve. Two data

replication methods are therefore combined for this purpose.

For detecting COVID-19 (Özkaya et al., 2020a), where early

diagnosis is crucial for human life, CT image features are retrieved

using the convolutional neural network architecture, currently

the most successful image processing technique. Representational

power is improved by fusing data and four CNN architectures’

output features. Finally, the features integrated with the feature

ranking algorithm are sorted, and their length is decreased. The

dimensional curse is averted in this way. A subset was produced

from 16 16 (Subset-1) and 32 32 patches taken, combining the

predictions sent into the XGBoost (Liew et al., 2021) as a new train

set; the ensemble prediction is the approach for use during the

training and testing phases. The data that has been processed was

then categorized using the Support Vector Machine technique.

3. Methods and techniques

Deep ensemble learning is commonly defined as assembling

a group of many predictions derived from various deep

convolutional neural network models (Kandel et al., 2021).

Ensemble learning must now be defined in deep learning as

combining data, most frequently predictions, for a single inference

due to recent breakthrough methodologies. This data or these

forecasts may come from a single model, several independent

models, or none. Using numerous unique models in a stacking

method, we investigated the performance impact of ensemble

learning techniques in this investigation. The ensemble prediction

is obtained by combining the predictions sent into the XGBoost

(Liew et al., 2021) as a new train set.

On the TCIA dataset, the SEDL classification architectures

we employed in this study had good results. VGG16, ResNet34,

and Inception V3 are the architectures selected for first-level

predictions. At the second level prediction, we used XGBoost.

These networks have been specially designed for classifying pdac

CT images and have undergone extensive training. Each of these

networks has a different hyper-parameter value that is optimized.

Here’s a basic description of these architectures:

3.1. Deep ensemble learning

In a machine learning paradigm known as ensemble learning,

multiple learners are trained to solve the same problem (Sagi

and Rokach, 2018; Ganaie et al., 2021). In contrast to traditional

deep learning approaches, which attempt to learn one hypothesis

from training data, ensemble methods attempt to generate and

combine several hypotheses. Several students who make up an

ensemble are typically referred to as base students. An ensemble’s

capacity for generalization is typically substantially greater than

that of basic learners. Deep ensemble learning (An et al., 2020;

Pintelas and Livieris, 2020) is intriguing because it can transform

weak predictors that are only marginally better than random

guesses into strong predictors that can make extremely precise

predictions. In this sense, “base learners” and “weak learners” are

synonyms. To create heterogeneous learners, we used a variety of

learning algorithms. Since there is no one base learning algorithm

in heterogeneous learning, some people prefer the terms “base

learners” over “individual learners” or “component learners.”

By considering the nature of machine learning as exploring a

hypothesis space for the best accurate hypothesis, Gu et al. (2019),

Alam et al. (2020), and Wu et al. (2020) provided explanations

for why the generalization ability of an ensemble is typically

significantly stronger than that of a single learner. The training data

may not contain enough details to identify only one best learner,

which is the first justification. For instance, multiple students might

perform equally well on the practice data set. Therefore, it could be

preferable to combine these learners. The second concern is that the

learning algorithms’ search methods may be flawed. For instance,

even if there is a single best hypothesis, it could be challenging since

applying the algorithms yields less-than-ideal hypotheses.

3.2. Stacking

A technique for combining multiple regression or classification

models, as illustrated in Figure 1. Bagging and boosting are the

two most well-known ensemble modeling techniques. Bagging

(Chatterjee et al., 2019; Liu and Long, 2019) allows for averaging

several comparable models with high volatility to reduce variance.

Increasing (Chatterjee et al., 2019; Iranzad et al., 2022) generates
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many incremental models to reduce bias while minimizing

variation.

Stacking is a different paradigm. Stacking’s goal is to explore

a space of several models for the same problem. A learning

problem can be approached using several models to learn a

portion of the problem but not the entire problem space. As

a result, we can generate several learners and use them to

generate intermediate predictions, one for each learned model.

Then we add a new model that targets the same target as the

intermediate forecasts.

The name of the last model comes from the claim that it is

layered on top of the others. As a result, we may enhance our total

performance, and frequently we produce a model superior to each

intermediate model.

3.3. Max voting implementation

Voting is effective because it gives most models’ opinions

more weight than the vote on a single model. When the models

may vote on discrete possibilities, maximum voting is utilized.

The choice is the proposal that has received the most votes. It is

employed to solve classification issues. The option with the most

votes is chosen. Each deep learning model casts a vote. Max voting

comes in two flavors: harsh and soft. We attempt to predict five

classes, T0 (no cancer signs), T1 (tumor ≤ 2 cm), T2 (tumor

> 2 cm ≤ 4 cm), T3 (tumor > 4 cm), and T4 (tumor spread),

using three basic classifiers, VGG16 (Jiang et al., 2021), ResNet34

(Godasu et al., 2020), and Inception V3 (Xie et al., 2021). After

training the base classifier models, we attempt to predict a single

point’s class.

3.4. Models used in ensemble

The following models were used in the first level prediction

stage to implement the ensemble:

3.4.1. VGG16
Oxford University developed one of the most popular deep

learning architectures, VGG16 (Kaur and Gandhi, 2019). It

has 41 strata that have been disturbed: 13 convolutional layers

(Conv.), 16 weight layers, and 3 Fully Connected layers. All

Conv Layers in VGG16 use a tiny 3 × 3 kernel (filter) with

stride 1. Conv. Max pooling layers always follow layers. Three

fixed-size channels of 224 × 224 pixels make up the input

for VGG16.

The three Fully Connected layers in VGG16 (Chhabra and

Kumar, 2022) have various depths. The soft-max layer controls

the probability specified for the input image and serves as the

output layer. If the weights are started randomly, VGG16 (Jiang

et al., 2021) requires extensive training, just like any pre-trained

model. Consequently, transfer learning methods are generally used

in Convolutional Neural Network (CCN) models. TL describes a

technique where a model developed for one activity is used in some

way for another comparable task.

3.4.2. ResNet34
Given that neural networks are models of the human brain

and how it thinks, it stands to reason that deeper networks would

be used to mimic the deeper thinking required to solve difficult

problems. The issue of vanishing gradients is the fundamental issue

facing deep networks (Godasu et al., 2020).

ResNet34 (Alsabahi et al., 2018) is a neural network that solves

the issue of training deep learning networks using skip connections.

It “skips” several convolutional layers in each basic network block,

providing alternate paths for the original and derived data and

enabling training to be completed more quickly. The following

equation, which describes such skip connections, adds the outputs

of the preceding blocks to the ones that follow:

y = F(x)+ x (1)

When F is the residual function, as in Equation (1), x is the

input, and y is the output. Two convolution layers, a pooling

layer (3 × 3 size), a (ReLU) activation function, and batch

normalization comprise each basic block. ResNet has significantly

improved neural network performance by stacking more layers

onto neural networks to provide a deeper architecture and, thus,

deeper learning instead of shallower learning. The ResNet-34 (Talo

et al., 2019; Nayak et al., 2021) (ResNet with 34 layers) comprises a

fully connected layer, a max-pooling layer (3 × 3 size), a layer with

average pooling, and 33 convolutional layers.

3.4.3. Inception V3
In 2014, Google proposed the GooLeNet network, which is a

CNN. It employs the Inception network topology, which reduces

the number of network parameters while increasing network depth.

As a result, it is frequently used in image classification jobs. Because

its primary component is the (Li et al., 2019; Singh et al., 2020),

the GoogLeNet network is also known as the Inception network.

The four primary versions of Google Net are Inception v1 (2014),

Inception v2 (2015), Inception v3 (2015), Inception v4 (2016), and

Inception-ResNet (2016). The Inception module typically includes

one maximum pooling and three varying-sized convolutions.

After the convolution operation, the channel is aggregated

for the net output of the preceding layer, and the non-linear

fusion is then carried out. This method can avoid over-fitting

while enhancing the network’s expression and flexibility to various

scales. The main component of Inception v3 is a network structure

created by Keras that has already been trained on Image Net.

Three channels and a preset image input size of 299*299 are

used. Unlike the Inception v1 and v2 network structures, the

Inception v3 network structure splits huge volume integrals into

smaller convolutions using a convolution kernel splitting technique

(Ganaie et al., 2021).

3.5. XGBoost

The sophisticated use of the gradient boosting method is

called XGBoost. An extremely successful deep learning algorithm

is XGBoost (Ramaneswaran et al., 2021). Compared to other
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FIGURE 1

The demonstration of a stack for first-level prediction.

gradient-boosting approaches, XGBoost is nearly ten times faster

and has strong predictive power. Additionally, it contains a range

of regularizations that lessens overfitting and enhances general

performance. It is often referred to as the “regularized boosting”

technique. Due to the following characteristics, XGBoost (Liew

et al., 2021) is compared to other approaches as being superior:

1. Regularization (Shilong and Diaru, 2021):

• Unlike XGBoost, the standard Gradient Boosting Machine

(GBM) implementation does not regularize.

• As a result, XGBoost also aids in lowering over-fitting.

2. Parallel Processing (Henriques et al., 2020):

• In comparison to GBM, XGBoost uses parallel processing

and is faster.

• XGBoost also supports Hadoop implementation.

3. High Flexibility (Zhang D. et al., 2021):

• With the help of XGBoost, users can create unique

optimization goals and assessment standards, giving the

model an entirely new dimension.

4. Handling Missing Values (Zhang et al., 2020):

• A built-in procedure in XGBoost can deal with missing

values.

5. Tree Pruning (Sagi and Rokach, 2021):

• After splitting the tree to the maximum depth chosen,

XGBoost begins to prune the tree backwards and removes

the splits above without benefit.

6. Built-in Cross-Validation (Wang et al., 2020):

• Because the user can perform cross-validation at each

stage of the boosting process, obtaining the precise ideal

number of boosting iterations in a single run is simple with

XGBoost.

3.6. Proposed model

Stacking (Wang et al., 2019) is a sophisticated ensemble

learning model. The fundamental idea behind stacking is that we

base our future forecasts on the base data’s derivative models.

Now, the outcomes would also be comparable if the models were.

To better understand the outcome, we purposefully chose various

models, as those models may have learned some aspects of the

data more effectively. Stacking (Haq et al., 2022) takes diverse weak

learners into account. Stacking combines several weak learners

by training a meta-model to produce predictions based on the

numerous predictions that these weak learners returned.

The suggested SEDL framework has two layers, depicted in

Figure 2. Each basic classifier in the first layer—VGG16, Inception

V3, and ResNet34—was trained using training data. Different

classifiers in the representation learning technique of stacking

express heterogeneity for various features (Tang et al., 2019). High

diversity and high accuracy are two conditions the first layer’s basic

classifiersmustmeet to learn features from the raw input effectively.

The three base classifiers are highly good at solving the non-linear

problem, but their modeling approaches are very dissimilar.

Inception V3, VGG16, and ResNet34 are used to make first-

level predictions from the dataset, divided into training and test

sets. The three models are each trained from scratch on the dataset

to generate feature predictions for pdac CT images. The feature

predictions from the first-level prediction models are combined

and sent as input to the XGBoost-based second-level prediction.

The new test data is used to evaluate the performance and progress

of the algorithm training and adjust or optimize it for improved

results. XGBoost will make the final prediction and classifications.

The training grounds for ensemble classification systems are

developing various single classification methods to solve the same

job and the subsequent aggregation of their results using a

particular combiner. The suggestedmodel uses transfer learning for

image classification (Jaiswal et al., 2021). It holds that a model can
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FIGURE 2

Proposed SEDL Model: Each model at the first level prediction produces its own independent set of the base feature vector. These features from
each ensemble model are then fused to make the meta feature vector that will be input into XGBoost to learn from and evaluated using the new test
set. The results are di�erent classes depending on the prediction based on the features obtained.

effectively function as a generic model of the visual world if trained

on a sizable and general enough dataset. By training a big model on

a big dataset, we can use these learnt featuremaps instead of starting

from scratch. Take advantage of a prior network’s representations

learned to identify significant aspects in fresh data. On top of the

pre-trained model, add a fresh classifier trained from scratch to

reuse the feature maps previously learned for the dataset. Following

that, the classifier receives the features learned from the ensemble

models. Transfer learning has made it possible to train deep neural

networks even with little or no data by utilizing the capacity to reuse

previous models and their understanding of new issues (Iman et al.,

2023). Transfer learning has the advantages of using fewer data,
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TABLE 1 Hardware and software specifications for the experiments.

Hardware Software

Graphical Processing Unit
(GPU)

Programming language: Python version
3.9

RAM: 32 gigabytes Backend: Tensorflow GPU

Processor: core i5 2.2
gigahertz

Deep learning API: Keras GPU

NDVIDIA 16 gigabytes RAM

Hard drive: 500 gigabytes

requiring the classifier to train more quickly, and performing better

on neural networks.

We ultimately integrated all three models to produce the

first layer of the stacking model due to their similarities and

differences, as well as the positive results from cross-validation.

Strong generalization skills are necessary for the meta-learner in

the second layer to rectify the bias of various learning algorithms

toward the training set and prevent the over-fitting effect through

aggregation. Therefore, we used XGBoost (Shilong and Diaru,

2021) to benefit from its second-level meta-learner generalization

capacity. This approach employs the greatest likelihood method to

estimate the parameters after assuming all data follow the logical

distribution.

A broad range of hyperparameters offered by the XGBoost

algorithm needed to be adjusted for a better classification model. A

machine learning model’s overall performance and behavior can be

enhanced by hyperparameter adjustment (Zhang B. et al., 2021).

It is a particular parameter chosen before learning that occurs

outside the model. If the loss function is not minimized, improper

results may follow from a lack of hyperparameter tweaking. We

aim to have as few errors as feasible produced by our model.

Finding a collection of ideal hyperparameter values that maximizes

the model’s performance, minimizes loss, and generates superior

outputs is the main goal of hyperparameter tweaking. We had to

adjust the XGBoost hyperparameters like model_colsample_bytree,

model_gamma, model_learning_rate, model_max_depth,

model_min_child_weight, model_n_estimators, model_reg_

lambda, and model_subsample, to achieve better

classification results.

4. Experiments

We used logic to create parallel ensemble models (Wei et al.,

2020) that take advantage of the basic learners’ independence

(rather than the Sequential ensemble models, which employ logic

to leverage the dependence between the base learners.). As a result,

labeling errors generated by one model are distinct from those

made by a different independent model. The ensemble model can

then average out the mistakes as a result. Table 1 shows some of the

computational specifications required for the experiments.

The data for classifying pdac contains CT scans from 80

subjects, and 222 images were used. Two hundred twenty-two

images were used, of which 0.80 was train data, and 0.20 was test

data. As shown in Figure 3, there were different stages of pdac:

• T0 = Image_A_stage,

• T1 = Image_C_stage,

• T2 = Stage_between_Image_C_and_E,

• T3 = Image_E_stage,

• T4 = Image_G_stage.

Image A shows a Normal pancreas, while Image C shows an

unenhanced stage of pdac. Image E shows the arterial phase, a

contrast-enhanced CT series, in which the contrast is still in the

arteries and has not reached the organs and other soft tissues. Image

G shows the portal phase, a contrast-enhanced CT series at its peak

enhancement.

The steps followed to do the experiments on each base model

are in the Algorithm 1, which shows how VGG16, ResNet34 and

Inception V3 are trained and used in the first-level prediction

classification phase.

We then ensemble the predictions from base models to be the

new train set for the final classifier in the second level prediction

phase, tested for XGBoost, LGBM and Random Forest, as shown in

Algorithm 2 steps.

5. Results

Compared to using a single model, ensemble learning enhances

model results by combining the knowledge and approach of

multiple models. For ensemble models to function, several weak

learners must be combined into one strong learner, which helps

by lowering bias, reducing variation, or increasing prediction

accuracy.

5.1. XGBoost hyperparameters tuning

A wide variety of hyperparameters are available with the

XGBoost algorithm (Sommer et al., 2019). For the XGBoost model

to work better and to its full potential, we need to be able

to adjust these hyperparameters. Optimizing a machine learning

model’s hyperparameters is essential for enhancing its general

behavior and performance. It’s a parameter chosen before the

learning process and takes place independently of the model.

Table 2 shows the results after adjusting the parameters to

have optimal results from the XGBoost classifier at second-level

prediction after implementing the ensemble technique at first-

level prediction. The best model learning rate was 0.085, with

an accuracy of 0.9677. An accuracy of 0.9643 was achieved

at a model n_estimator of 250. The model_colsample_bytree

at 0.9 achieved better accuracy of 0.9686 than the default

model_colsample_bytree of 1. The model subsample was best at 0.8

with an accuracy of 0.984. Model gamma at 4.5 was the best, with

0.989 accuracy.

If the loss function is not minimized, findings without proper

hyperparameter adjustment may be unreliable. We want as few

errors as possible to be produced by our model. Hyperparameter

tuning aims to find ideal hyperparameter values that maximize

model performance, minimize loss, and create superior outputs

(Putatunda and Rama, 2018).
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FIGURE 3

(A) Normal image of the pancreas, (C) Unenhanced phase, (E) Arterial phase, and (G) Portal phase. (B) in green shows the position of the normal
pancreas, while (D, F, H) in green circulation show the spread of pdac. Source of images: Roth et al. (2016).
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Input: Input: train_images.

Input: Input: test_labels.

Input: M(p): Model_parameters.

1 /* Read training and testing data. */

2 le = preprocessing.LabelEncoder(). /* Encode

labels from text to integers. */

3 Split data into test and train datasets

/* already split but assigning to the

meaningful convention. */

4 Normalize images. /* Do not normalize masks,

rescale to 0 to 1. */

5 Normalize pixel values to between 0 and 1

6 Sanity check, view few mages /* . */

7 encoder = OneHotEncoder. /* One hot encode y

values for the neural network. */

8 for M(p) → set do

9 // Parameters for model.

10 IMG_HEIGHT = X_train.shape(Wang, 2016)

11 IMG_WIDTH = X_train.shape(Litjens et al., 2017)

12 IMG_CHANNELS = X_train.shape(Fourcade and

Khonsari, 2019)

13 num_labels = 1 // Binary.

14 input_shape = (IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS)

15 batch_size = 32

16 end for

17 MAKE NEW MODEL // combining both feature

extractor and x.

18 Train various models: VGG16, ResNet34, and

Inception V3

19 Convert the history.history dict to a pandas

DataFrame and save as csv. // For future

plotting.

20 for M(p) → Check_History do

21 // Check history plots, one model at a

time. history = VGG16_history

22 history = ResNet34_history

23 history = InceptionV3_history

24 /* plot the training and validation

accuracy and loss at each epoch. */

25 acc = history.history[′jacard_coef ′]

26 val_acc = history.history[′val_jacard_coef ′]

27 end for

28 Load one model at a time for testing.

29 Calculate the Accuracy Score for all test images

and the average.

30 return Classification_Report

Algorithm 1. Model algorithm: The model performs an ensemble

classification using three models, that is, VGG16, ResNet34 and

InceptionV3. These steps are followed to train eachmodel on the same

dataset. A confusion matrix and accuracy score are produced for each

model.

5.2. Averaging and weighted average

When averaging, multiple forecasts are made for each data

point, similar to the max voting method. In this approach,

1 Import libraries. /* testing of different

models, XGBoost, Random Forest and LGBM. So

the respective libraries are imported. */

2 Send test data through the same feature

extractor process.

3 Model average/sum Ensemble. /* Simple sum of

all outputs/predictions and argmax across

all classes. */

4 argmax across classes.

5 Inverse le transform. /* to get the original

label back. */

6 Print overall accuracy.

7 Weighted average ensemble.

8 weighted_preds = np.tensordot (preds, weights,

axes = ((0),(0))) /* Use tensordot to sum

the products of all elements over specified

axes. */

9 Explore metrics for the ideal weighted ensemble

model.

10 ideal_weighted_preds = np.tensordot (preds,

ideal_weights, axes = ((0),(0))) /* Use

tensordot to sum the products of all

elements over specified axes. */

11 Print confusion matrix.

Algorithm 2. XGBoost classifier: Steps followed to implement

XGBoost, LGBM, or Random Forest as an image classifier at the

second level prediction phase.

the final prediction is made by averaging the results of all the

models. Probabilities can be computed for classification issues

using averaging.

Weighted Average is an extension of the averaging method.

Different weights are assigned to each model, indicating the

significance of each model for prediction. For instance, the

responses from these two models will be given greater weight than

those from the other model if two of the models are critics and one

has no prior expertise in this subject. Table 3 shows the averaging

and weighted average for the three models tested as classifiers at the

final stage. XGBoost had the best ensemble average and ensemble

weighted average at 0.987 and 0.981, respectively. The averaging

for the ensemble shows a better improvement of results than when

using individual models at first-level prediction when implemented

at the second-level prediction.

5.3. Confusion matrix

The confusion matrix is made up of five target classes. A 5x5

matrix is used to evaluate how well a proposed SEDL classification

model performs at second-level prediction, as shown in Figure 4

using different models. XGBoost showed less misclassification

than the other models. The deep learning model’s predictions

are compared to the target values in the matrix, providing
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TABLE 2 XGBoost parameter tuning at a second level prediction: XGBoost as the classifier had to be tested using di�erent parameters to obtain optimal

accuracy.

Constant parameter Changing
parameter

Parameter value Accuracy Macro avg Weighted avg

mcb = 0.8,mmd = 5,
mmw = 1,ms = 0.8

mlr 0.01
0.05
0.085
0.1
0.15

0.9345
0.9442
0.9677
0.9475
0.8876

0.9345
0.9542
0.9695
0.9434
0.8844

0.9298
0.9542
0.9676
0.9428
0.8830

mne 800
550
250
100

0.9468
0.9547
0.9643
0.9475

0.9453
0.9567
0.9665
0.9444

0.9332
0.9579
0.9629
0.9430

mlr = 0.085,mmd = 5,
mmw = 1,mne = 250

mcb 0.6
0.8
0.9
1

0.9553
0.9574
0.9686
0.9578

0.9555
0.9574
0.9678
0.9572

0.9552
0.9574
0.9678
0.9575

ms 0.6
0.8
0.9
1

0.9276
0.9840
0.9733
0.9693

0.9243
0.9840
0.9641
0.9679

0.9231
0.9822
0.9624
0.9661

mcb = 0.9,mlr = 0.01,
mmd = 5,mmw = 1,
mne = 250,ms = 0.8

mg 0
1
3
4.5
5

0.9445
0.9442
0.9713
0.9895
0.9856

0.9445
0.9432
0.9671
0.9889
0.9836

0.9398
0.9428
0.9660
0.9880
0.9839

This table shows, mlr (model_learning_rate), mcb (model_colsample_bytree), mg (model_gamma), mmd (model_max_depth), mmw (model_min_child_weight), mne (model_n_estimators),

ms (model_subsample), Accuracy, Macro Avg (Macro Average), and Weighted Avg (Weighted Average).

TABLE 3 Average score table showing the averaging of using a classifier at second level prediction after implementing individual models without

ensemble at first level prediction.

Classifier Inception V3
averaging

VGG16 averaging ResNet-34
averaging

Avg
ensemble

W avg
ensemble

XGBoost 0.942 0.979 0.964 0.987 0.981

LGBM 0.905 0.953 0.948 0.955 0.951

RF 0.940 0.942 0.939 0.952 0.949

Avg Ensemble (Average Ensemble) and W Avg Ensemble (Weighted Average Ensemble) for different model classifiers at second level prediction are also shown after implementing ensemble at

first leave prediction.

FIGURE 4

Confusion matrix for Random Forest, LGBM, and XGBoost as the classifiers.
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a comprehensive understanding of our classification model’s

effectiveness and the types of errors it makes.

The confusion matrix for XGBoost shows two negative images,

while two hundred and twenty images are positive, out of two

hundred and twenty images. Each column in the confusion matrix

represents the instances of that projected class. Each row of the

confusion matrix displays an instance of the real class. It provides

insight into errors that are being made and errors made by a

classifier.

5.4. Classification report

The primary classification metrics at second-level prediction

are provided for each class in the classification report as in Table 4.

The classification report (Luque et al., 2019) visualizer shows the

model’s precision, recall, F1 and support scores for the threemodels

tested at second-level prediction after the ensemble is implemented

at first-level prediction. In contrast to overall accuracy, which can

hide functional deficiencies in one class of a multi-class problem,

this provides a deeper insight into the classifier behavior.

Precision can be thought of as a measure of a classifier’s

accuracy. Recall is a measure of a classifier’s completeness; it is the

classifier’s ability to identify all positive instances correctly. The F1

score is a weighted harmonic mean of precision and recall, where

1.0 represents the best, and 0.0 represents the worst. The precision,

recall, and f1-score are all greater than 0.98, implying that the SEDL

model with XGBoost is a powerful classification tool. Support is the

number of actual class occurrences in the specified dataset.

5.5. Training and validation loss

The training loss metric assesses how well a deep learning

model fits the training data. In other words, it assesses the model’s

error on the training set. It should be noted that the training set

is a subset of the dataset that was initially used to train the model.

The training loss (Deepak and Ameer, 2019) is calculated by adding

the sum of errors for each example in the training set. It is also

important to note that the training loss is calculated after each

batch, typically represented by plotting a training loss curve.

Validation loss (Dhillon et al., 2019), on the other hand, is a

metric used to assess the performance of a deep learning model

on the validation set. The validation set is a subset of the dataset

set aside to test the model’s performance. The validation loss is

calculated similarly to the training loss by adding the errors for each

example in the validation set. Furthermore, the validation loss is

calculated after each epoch, indicating whether the model requires

additional tuning or adjustments. For the validation loss, we created

a learning curve.

The second level classification by XGBoost displays good fit

learning curves, which is the learning algorithm’s goal, and exists

between an overfit and underfit model. Figure 5 shows training

and validation loss for different models at second-level prediction.

A training and validation loss identifies a good fit that decreases

stability with a minimal gap between the two final loss values, as

shown by the XGBoost graph.

The model’s loss is almost always lower on the training dataset

than on the validation dataset, which implies that there will be

some disparity between the train and validation loss learning curves

known as the “generalization gap.” The plot of learning curves for

XGBoost shows a good fit, indicated by:

• The training loss plot decreases to the point of stability.

• The validation loss plot approaches stability and has a small

gap with the training loss.

5.6. ROC

A graph depicting the effectiveness of a classification model

at all classification thresholds is called a ROC curve (receiver

operating characteristic curve). Figure 6 shows the ROC curve

for the three models tested at second-level prediction. The True

Positive and False Positive rates are plotted on this curve. The chart

demonstrates the connection between the true and false positive

rates. It was decided to compare each class to every other using the

One-vs-Rest methodology. XGBoost had an AUC (Area under the

ROC Curve) of 0.98, which is best than the other models.

5.7. Discussion

The idea of stacked ensemble deep learning is used in our

proposal of a unique deep learning framework for identifying

pdac. AUC was 98.6%, F1 was 99.6%, and accuracy was 98.8%

obtained from the studies. Using several neural network models

trained on ImageNet (Chouhan et al., 2020), features from

images are extracted in this method and fed into a classifier

for prediction. They suggested an ensemble model incorporating

all pre-trained models’ outputs to achieve the best pneumonia

recognition performance. This model surpassed individual models.

On uncovered data from the Guangzhou Women and Children’s

Medical Centre dataset, their ensemble model achieved an accuracy

of 96.4% and a recall of 99.62%. Our model SEDL performs end-

to-end classification in two tiers by utilizing each model’s ability to

anticipate any hidden features in the pdac CT images.

According to Rajaraman and Antani (2020), a stacked ensemble

of the top three retrained models shows promising performance

(accuracy: 0.941; 95% Confidence Interval (CI): [0.899, 0.985],

Area Under the Curve (AUC): 0.995; 95% CI: [0.945, 1.00]). The

ensemble approaches’ accuracy (P = 0.759) and AUC (P = 0.831) do

not differ statistically, according to one-way ANOVA analysis. The

classification of our SEDL model was enhanced by the knowledge

conveyed through modality-specific learning of pertinent features.

The SEDL model decreased the prediction variance and sensitivity

to changes in training data. The outcomes of combining them

outperform current technology.

Using chest x-ray and Canny edge detected images, Hijazi et al.

(2019), demonstrate a deep ensemble learning for TB identification.

This strategy increases the base classifiers’ diversity of mistakes by

adding a new feature to the TB detection classifiers. The initial X-

ray images were used to extract the first set of features, and the

edge-detected image was used to extract the second. Two publicly
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TABLE 4 Classfication report for ensemble model showing Avg Ensemble (Average Ensemble), W Avg Ensemble (Weighted Average Ensemble), Accuracy,

Macro avg (Macro average), and Weighted avg (Weighted average) for di�erent models.

Classifier Class Precision Recall F1 score Support

XGBoost T0
T1
T2
T3
T4

0.98
1.00
1.00
1.00
0.95

0.98
0.98
0.98
1.00
1.00

0.98
0.99
0.99
1.00
0.98

61
41
42
37
41

Metrics

Metric Precision Recall F1 score Support

Accuracy
Macro avg

Weighted Avg

-
0.99
0.99

-
0.99
0.99

0.99
0.99
0.99

222
222
222

LGBM T0
T1
T2
T3
T4

0.78
1.00
1.00
1.00
0.95

0.97
0.83
0.95
0.78
1.00

0.86
0.91
0.98
0.88
0.98

61
41
42
37
41

Metrics

Metric Precision Recall F1 score Support

Accuracy
Macro avg

Weighted Avg

-
0.95
0.93

-
0.91
0.91

0.91
0.92
0.92

222
222
222

RF T0
T1
T2
T3
T4

0.71
1.00
1.00
1.00
1.00

1.00
0.59
0.95
0.84
1.00

0.83
0.74
0.98
0.91
1.00

61
41
42
37
41

Metrics

Metric Precision Recall F1 score Support

Accuracy
Macro avg

Weighted Avg

-
0.94
0.92

-
0.88
0.89

0.89
0.89
0.89

222
222
222

FIGURE 5

The graphs show the validation and testing loss graphs for the three models used as learners at the first level of prediction.

accessible datasets were utilized to assess the suggested method.

The findings demonstrate that the suggested ensemble technique

achieved the best accuracy, sensitivity, and specificity values of

89.77, 90.91, and 88.64%. This suggests that the detection rate for

SEDL can be increased by utilizing various characteristics retrieved

from various images.

While the solution presented by Hooda et al. (2019) combines

elements from AlexNet, GoogleNet, and ResNet. The study’s main

contribution is creating an ensemble capable of performing TB

classification by training these structures from scratch. On a

combined dataset created using openly accessible standard datasets,

the suggested approach is trained and evaluated. The ensemble

outperforms most of the known approaches, with an accuracy of

88.24% and an area under the curve of 0.93.

The classification of shoulder images uses information

from X-ray images from computer tomography and magnetic

resonance imaging. Ensemble deep learning models are employed.

The project aims to categorize the images with the help of
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FIGURE 6

ROC curves for the Random Forest, LGBM, and XGBoost implementation at second level prediction. AUC is the Area under the ROC Curve.

artificial intelligence to determine their condition. The work

uses information from musculoskeletal radiographs to identify

shoulder fractures and analyse results using an ensemble and 26

deep-learning models. The overall accuracy of the twenty-eight

classification was calculated using Cohen’s kappa. The best result,

0.6942, was attained using an ensemble of ResNet34, DenseNet169,

DenseNet201, and a sub-ensemble of various convolution networks

(Uysal et al., 2021). Ensemble of deep learning models is the idea

behind the SEDL model.

As tuberculosis (TB) is a serious health issue with a history of

high mortality, early diagnosis is crucial for early disease control.

As a result, an investigation was conducted in 2021 to detect TB in

X-ray images of the chest using the Ensemble Learning method in

conjunction with hybrid feature descriptors. Using convolutional

neural networks and ensemble learning, the author suggested a

novel method for TB diagnosis that mixes hand-crafted features

with deep features. The dataset was collected from Montgomery

and Shenzhen for the system’s critical assessment. The operational

characteristics curve from the Shenzhen and Montgomery models

reaches 0.99 and 0.97, respectively, showing the distinction of the

Ensemble machine learning approach over the other classifier as a

single unit in classifications (Ayaz et al., 2021). The SEDL model

achieved an accuracy of 98.8%, which is less than that of 0.99%,

which the authors achieved; this could have been attributed to using

a mixture of handcrafted and deep learning features. SEDL only

used deep learning features.

Chest X-Rays are used in the ensemble learning for COVID-19

detection. The use of the Ensemble technique in the establishment

of the X-ray classification to detect COVID-19’s pulmonary

manifestation is established. The approach uses a customized

convolutional neural network and ImageNet pre-trained models,

and the dataset comes from publically accessible databases. The

best forecasts from the most accurate models are blended using

various Ensemble techniques for a more accurate performance

evaluation. The outcome demonstrates a significant improvement

in COVID-19 detection on dataset sets, with an accuracy rate of

99.01% and an area under the curve of 0.9972. Prediction accuracy

has significantly improved due to the combination of iterative,

Ensemble, and modality basis knowledge transfer which we have

to look at to increase the rate of accuracy of the SEDL (Rajaraman

et al., 2020).

Here, are some published papers that use stacked ensemble

deep learning:

“A multichannel EfficientNet deep learning-based stacking

ensemble approach for lung disease detection using chest X-ray

images” by Ravi et al. (2023). This paper proposes a multichannel

deep-learning approach for lung disease detection using chest X-

rays. The proposed method uses a stacked ensemble of three

EfficientNet models, each trained on a different channel of the chest

X-ray image. The ensemble model achieves an accuracy of 98% for

the detection of pneumonia, 99% for the detection of tuberculosis,

and 98% for the detection of COVID-19.

“Stacking Ensemble and ECA-EfficientNetV2 Convolutional

Neural Networks on Classification of Multiple Chest Diseases

Including COVID-19” by Huang and Liao (2022), Stacking-

ensemble model, which combines six pre-trained models:

EfficientNetV2-B0, EfficientNetV2-B1, EfficientNetV2-B2,

EfficientNetV2-B3, EfficientNetV2-S, and EfficientNetV2-M.

Based on ECA-Net and EfficientNetV2, the second model is

a self-designed model called ECA-EfficientNetV2. On chest

X-ray and CT images, each model underwent ten-fold cross-

validation. A second dataset, the COVID-CT dataset, was used

to assess the efficacy of the suggested Stacking-ensemble and

ECA-EfficientNetV2 models. The proposed ECA-EfficientNetV2

model performs the best on both the chest X-ray dataset and the

chest CT dataset, with the highest Accuracy of 99.21%, Precision

of 99.23%, Recall of 99.25%, F1-score of 99.20%, and (area under

the curve) AUC of 99.51%. The Stacking-ensemble and ECA-

EfficientNetV2 models show no appreciable differences for any of

the five criteria.

“CT Image Classification Based on Stacked Ensemble Of

Convolutional Neural Networks” by Shomanov et al. (2022). First,

looked at the model performance of the newest deep learning

architectures, such as Inception, VGGNet, MobileNet, Xception,

and ResNet50. Then, we chose seven cutting-edge models to apply

to the various open CT datasets (SARS-CoV-2 CT-Scan, USCD CT,

and COVID-X dataset). A set of medical image sets was used to

fine-tune themodel parameters after they were transferred from the

other domain. The final convolutional layers were stacked using a

fully connected neural network to identify the generalized feature

space. InceptionV3, VGG16, VGG19, MobileNetV2, Xception,

ResNet, and DenseNet201 had the highest peak accuracy among

the single CNN models that were fine-tuned: 0.96, 0.94, and 0.94,

respectively. The suggested ensemble model outperforms every

other model, achieving the highest performance across all three

open CT datasets with a peak accuracy of 0.99%.
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Predictive models are less successful due to physicians’

frequent failure to order tests or record results. This problem

is addressed by a novel XGBoost method (Zhang et al., 2020),

which imputes missing laboratory values using an unsupervised

prefilling procedure and supervised machine learning. The results

demonstrate that the novel model outperforms baseline and

cutting-edge models on 13 frequently collected laboratory test

variables, improving imputation by over 20% on average.

According to recent findings (Zivkovic et al., 2022), the

classification accuracy of COVID-19 chest X-ray images can

be improved using a CNN model with an XGBoost classifier.

Performance is improved by tuning XGBoost hyperparameters

with a hybrid AOA. With a classification accuracy of roughly

99.39% and weighted average precision, recall, and F1-score of

0.993889, 0.993887, and 0.993887, respectively, the suggested

method performs better than existing cutting-edge methods.

The research (Ramaneswaran et al., 2021) proposes

categorizing acute lymphoblastic leukemia (ALL) from

microscopic white blood cell images using a hybrid Inception v3

XGBoost model. The model employs the XGBoost model as the

classification head and Inception v3 as the image feature extractor.

According to experiments, an XGBoost classification head

performs better than a softmax classification head at classifying

data. The proposed hybrid model achieves a weighted F1

score of 0.986.

The Italian Federation of General Practitioners dataset is used

in this study (Romeo and Frontoni, 2022) to present a machine

learning approach called Hierarchical Priority categorization

eXtreme Gradient Boosting for the priority categorization of

COVID-19 vaccination delivery. The suggested approach enhances

the effectiveness of classification. It is integrated into a clinical

decision support system, now assisting General Practitioners in

allocating vaccine administration priorities to their assistants.

Stacking can aid in the reduction of overfitting, which

happens when a model performs well on the training data but

fails to generalize to new, untried data. Stacked ensembles can

lessen overfitting and enhance generalization performance by

mixing many models with distinct biases, which is the idea

behind implementing the SEDL model (Akinbo and Daramola,

2021). Another issue that frequently arises in machine learning

models is the bias-variance trade-off, partly addressed by stacked

ensemble learning, the SEDLmodel. Stacked ensembles can balance

underfitting and overfitting by merging models with various biases,

improving classification performance (Aboneh et al., 2022).

Reasons that could have contributed to high accuracy, besides

the advantages of combined power in ensemble techniques,

include:

• We maintained very little correlation between the base

classifiers utilized. This will ensure that those classifiers’ faults

are also diversified. The base classifiers are anticipated to work

in tandem to get superior classification results. Only classifiers

trained on similar features were combined in most studies

analyzed. The base classifiers’ correlation error is high as a

result of this.

• We maintained the original image size, as most researchers

lowered the original image’s size during training to save on

computing costs. Even with the most potent GPU hardware,

training a highly complicated model requires significant

processing power compared to the original image size.

• For training, hundreds of thousands of images from each class

must be collected. In doing so, a classifier will be more precise.

The amount of training data that is readily available, however,

is frequently subpar due to the small number of datasets.

Because of this, scientists are looking for several solutions to

create a reliable classifier.

To improve on the Blending Methods: Blending methods, as

mentioned in one of the research results (Chen et al., 2020),

can improve the interpretability of stacked ensembles. Blending

involves combining different ensemble learning models to allow for

better interpretability. By summarizing the predictions of multiple

models, blending methods can provide a clearer understanding of

the underlying patterns and relationships in the data.

Feature Selection: The ensemble can be simplified by selecting

a subset of the most informative features, and the resulting

predictions can be easier to interpret. Feature selection techniques

aim to identify the most relevant columns in a dataset.

Using Simpler Models: Simpler models can be employed

instead of using complex models in the ensemble. This can make

the predictions more interpretable and easier to explain. For

example, using linear models or decision trees as base estimators

in the ensemble can help overcome issues like high variance and

low accuracy.

In general, the decision between complicated and interpretable

models is based on the particular specifications of the issue. Simpler

models can give better interpretability and ease of explanation,

while complex models may offer higher predicted accuracy. To

attain accuracy and interpretability in machine learning, striking

the correct balance between simplicity and complexity is essential.

Interpretability refers to understanding how a neural network

makes its predictions. Inception v3, VGG16, and ResNet34 are

all convolutional neural network architectures used for image

classification tasks. Here are some advantages of each network used

in the SEDL in terms of interpretability:

Inception v3 Factorized convolutions: This helps to reduce

computational efficiency as it reduces the number of parameters

involved in a network, which makes it easier to understand the

network’s behavior. Progressive architecture: The architecture of

an Inception v3 network is progressively built, step-by-step, which

makes it easier to understand how the network is processing the

input (Kurama, 2020).

VGG16 Simple architecture: VGG16 has a simple architecture

with only 16 layers, making it easier to understand how the network

processes the input (Rao et al., 2021).

ResNet34 Residual connections: ResNet34 uses residual

connections, which allow the network to learn the residual

mapping between layers. This makes it easier to understand how

the network processes the input (Yang et al., 2021b).

Overall, all three networks used as weak learners have

advantages in terms of interpretability. Inception v3 has a

progressive architecture that makes it easy to understand how

the network processes the input. In contrast, VGG16 has a

simple architecture that makes it easy to understand the network’s
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behavior. ResNet34 uses residual connections, making it easier to

understand how the network processes the input.

Challenges in using stacked ensemblemodels formedical image

analysis include:

1. The need for many base models: Stacked ensemble models

require many base models to achieve their full potential.

This can be a challenge, as it can be time-consuming and

computationally expensive to train many deep-learning models.

2. The need for a diverse set of base models: The base models in

a stacked ensemble should be diverse to improve the ensemble’s

performance. This can be a challenge, as finding a diverse set of

deep learningmodels relevant to the task at hand can be difficult.

6. Conclusion

Ensemble techniques show great potential. Ensemble methods

often improve detection accuracy. An ensemble of several

features might provide better detection results. An ensemble

of different deep-learning techniques could also be considered

because ensembles perform better if the errors of the base

classifiers have a low correlation. Ensemble learning has proven

effective and functional in many problem domains and with

significant applications in medical imaging. Deep ensemble

learning builds several classifiers or a set of basic learners

and merges their output to lessen overall variance. Compared

to using a single classifier or base learner, the accuracy is

greatly increased when combined with a group of classifiers or

base learners. A potent deep learning approach known as deep

ensemble learning has demonstrated clear benefits in numerous

applications. The generalization capacity of an ensemble can be

significantly higher than that of a single learner by utilizing

numerous learners.

The ensemble models, which apply pooling functions on top of

various deep convolutional neural network architectures, work by

minimizing bias and variance to improve the accuracy of models.

Modern medical image classification pipelines frequently combine

unique architectures or models that have undergone varied training

to maximize performance. Utilizing the prediction data from

several methodologies leads to greater inference quality and bias or

error reduction.

The fact that the user cannot understand the knowledge

acquired by ensembles is a fundamental flaw in existing

ensemble methods. The direction of increasing the

comprehensibility of ensembles is significant yet poorly

unexplored. Another significant problem is that, even though

diversity is known to be crucial in ensembles, there are

currently no satisfactory diversity measurements. In our

upcoming work, we attempt to overcome these challenges

to increase ensemble learning’s ability to contribute to more

applications.
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