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classification using deep CNN
and StyleGAN2
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Mahdi Maktabdar Oghaz
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Introduction: Artificial intelligence (AI) in healthcare can enhance clinical

workflows and diagnoses, particularly in large-scale operations like COVID-19

mass testing. This study presents a deep Convolutional Neural Network (CNN)

model for automated COVID-19 RATD image classification.

Methods: To address the absence of a RATD image dataset, we crowdsourced

900 real-world images focusing on positive and negative cases. Rigorous data

augmentation and StyleGAN2-ADA generated simulated images to overcome

dataset limitations and class imbalances.

Results: The best CNN model achieved a 93% validation accuracy. Test

accuracies were 88% for simulated datasets and 82% for real datasets.

Augmenting simulated images during training did not significantly improve real-

world test image performance but enhanced simulated test image performance.

Discussion: The findings of this study highlight the potential of the developed

model in expediting COVID-19 testing processes and facilitating large-scale

testing and tracking systems. The study also underscores the challenges

in designing and developing such models, emphasizing the importance of

addressing dataset limitations and class imbalances.

Conclusion: This research contributes to the deployment of large-scale testing

and tracking systems, o�ering insights into the potential applications of AI in

mitigating outbreaks similar to COVID-19. Future work could focus on refining

the model and exploring its adaptability to other healthcare scenarios.

KEYWORDS

SARS-CoV-2, lateral flow test, convolutional neural network, StyleGAN2, deep learning,

transfer learning

1 Introduction

Throughout history, infectious diseases have regularly led to pandemics. In

the last four centuries, the deadliest pandemics, including COVID-19, declared

a pandemic in March 2020 by the World Health Organization, with a death

toll exceeding 6 million people as of 21 May 2022, have profoundly impacted

countries worldwide (Roychoudhury et al., 2020; World Health Organisation, 2022).

The pandemic has affected populations of all ages, prompting recommendations

for measures such as social distancing, face coverings, testing, mass screening,

and self-isolation (European Commission, 2020). Various studies such as Burki

(2020); Gill and Gray (2020); Lopes-Júnior et al. (2020) emphasize the need for
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a system to expedite large-scale testing and integrate with

contact tracing and healthcare platforms. However, these services

necessitate a substantial number of trained personnel, making

automation a challenge (Peto et al., 2021; World Health

Organization, 2021).

COVID-19 diagnosis primarily involves PCR or rapid

antigen/lateral flow tests using nasopharyngeal or oropharyngeal

swabs (WangW. et al., 2020). Reverse transcriptase (RT)-PCR is the

gold standard, offering 95% sensitivity and specificity (Cleveland

Clinic, 2021), yielding <5% false positives/negatives (Mayers

and Baker, 2020). However, it is time-consuming, costly, and

labor-intensive (Wang L. et al., 2020). Rapid antigen tests provide

results in 10–20 min and are effective in COVID-19 detection

(Dinnes et al., 2021). While interpretation and registration are

straightforward on a small scale, they become labor-intensive for

health workers when testing millions of patients daily (Ham, 2020).

In this regard, this research introduces an automated RATD

validation system using deep convolutional neural network (CNN)

for result interpretation in uncontrolled environments (Yamashita

et al., 2018). The system simplifies result registration through a

web interface and integrates with the national health test and trace

system. This automation accelerates result validation, reducing

diagnosis and test and trace bottlenecks, enabling more daily

tests. It also benefits the public by providing prompt test results,

facilitating immediate implementation of preventive measures.

This research’s novelty lies in creating a database of diverse

RATD images (published as open data) and an automated

validation system for faster patient identification. Deep neural

network and transfer learning (TL) techniques were employed to

classify COVID-19 test images into positive (COVID-19 detected)

and negative (COVID-19 not detected) categories. In real-world

scenarios, test images vary in quality, resolution, angle, and

environmental conditions. A limited availability of real-world

COVID-19 test images prompted the use of StyleGAN2-ADA for

data augmentation, generating simulated RATD images to enhance

the training dataset’s size and improve the deep learning model’s

performance in classifying real-world images.

The rest of the manuscript is organized as follows: Section 2

looks at the existing literature in this domain, Section 3

methodology explains different deep learning models and gives

an overview of the experimental setup. The performance of the

proposed models is discussed in Section 4, followed by conclusion

and future work in Section 5.

2 Background

Artificial intelligence (AI) algorithms have been very useful

in the field of health and medicine from the diagnosis of

cancer tumors to identifying customized treatment protocols for

individuals. Attempts have been made to use AI, particularly deep

learning techniques to automate the COVID-19 diagnosis and

testing workflow and expedite isolation, social distancing, and

other mandatory preventive measures (Alazab et al., 2020; Horry

et al., 2020; Jamshidi et al., 2020; Pathak et al., 2022; Reshi et al.,

2021). Most of this research revolves around the use of CNN’s

on X-rays and CT images. CNN models exhibit high accuracy

and may even surpass human output in most image classification

tasks (LeCun et al., 2015; Suzuki, 2017). CNN can contribute

toward the detection and prediction of COVID-19 (Alazab et al.,

2020), including diagnosis (Jamshidi et al., 2020), based on chest

X-ray or CT image classification (Horry et al., 2020; Pathak et al.,

2022; Reshi et al., 2021).

Dong et al. (2020) outlined the role of AI in the analysis

of medical images including CT, positron emission tomography-

CT (PET/CT), lung ultrasound, and magnetic resonance imaging

(MRI). The research also highlights the importance and relevancy

of AImethods in the analysis of chest X-ray images for the detection

of COVID-19. A study by Jamshidi et al. (2020) suggests CNN as a

suitable tool for the analysis and classification of medical images

and complex non-linear modeling. Since the COVID-19 pandemic,

researchers are working on various AI technologies to support

healthcare providers in the detection of COVID-19 from X-ray

or CT images of patients. Due to the lack of training data, some

of these studies used pre-trained models and TL techniques for

the detection and classification of COVID-19. A study by Kaheel

et al. (2021) used a number of off-the-shelf pre-trained deepmodels

paired with big data for the classification of COVID-19 CT chest

images. These models allow accurate identification of suspicious

regions in CT images with an accuracy of 95%. This study

collects multimodal data from various sources, aiming to enhance

access to quality care in low and middle-income countries facing

pandemics. The research also investigates different segmentation

techniques to improve results. In a similar attempt, Kong and

Cheng (2022) propose a COVID-19 chest X-ray image classification

model using DenseNet and VGG16 feature fusion in addition to

an attention mechanism for deep feature extraction. This study

also used ResNet to segment effective image information to achieve

accurate classification. The model achieves high average accuracy

(98.0% for binary and 97.3% for three-category classification).

A study by Zouch et al. (2022) offers a novel method for the

automatic detection of COVID-19 using CT and chest X-ray images

to assist health systems in diagnosing and managing COVID-

19. This study leverages two deep learning models including

VGG19 and ResNet50, for early detection of the virus, achieving

accuracies of 99.35 and 96.77%, respectively. Similarly, Appari

and Kanojia (2022) explore the use of pre-trained deep learning

models, including VGG16, for detecting COVID-19 in CT and

X-ray images. It emphasizes the appropriate dataset management

and investigates methods for the prevention of underfitting and

overfitting. They achieved an overall accuracy, precision, and F1-

score of 98%. A study by Wang et al. (2022) proposes a new CNN

model named MLES-Net, which features a multi-level enhanced

sensation module (MLES) for the detection of COVID-19 using X-

ray images. This model uses an attention mechanism to focus on

key points in information, improving model efficiency. The model

utilizes three top-layer structures including a simple FC module,

a GAP module, and a GAPFC module—to enhance classification

accuracy. The results show the MLES-Net56-GAPFC achieves the

highest overall accuracy (95.27%).

Wang L. et al. (2020) developed a COVID-19 diagnosis system

based on a deep CNNmodel, utilizing X-ray images of the patients.

The research compared different pre-trained model architectures

such as VGG-19 and ResNet-50 to examine the performance
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and computational efficiency. In a similar study, Reshi et al.

(2021) proposed a deep CNN architecture for the detection and

classification of COVID-19 based on the chest X-ray images which

showed an overall accuracy of 99.5%. This study demonstrated

the ability and potential of the CNN models in the classification

of COVID-19 chest X-ray images. Similarly, Narin et al. (2021)

proposed a model for the detection of COVID-19 using chest X-ray

images of infected and healthy individuals. They implemented and

assessed three CNN-based models including Inception-v3, ResNet-

50, and Inception-ResNet-v2. In total, five-fold cross-validation

was used to reduce overfitting. The results of this study show the

highest accuracy of 98% which was achieved using the ResNet-

50 deep model. A similar study proposed by Sethy and Behera

(2020) used the ResNet-50 to extract visual features for detecting

COVID-19 infection and then classifying the chest X-ray images

with the help of a support vector machine (SVM)-based model.

Experiments were performed to compare 13 different DL models

for feature extraction. Results show DenseNet201 and ResNet50

achieved the highest accuracy of 93.86 and 95.38%, respectively.

A study by Pathak et al. (2022) used transfer learning technique

to achieve better results in the classification of COVID-19 CT

images. The ResNet-50 network was utilized as the based model

to extract the possible features of the CT images, and the deep

TL model was trained. This model obtained 96.2 and 93.01% for

training and testing accuracy, respectively. A model proposed by

Tumuluru et al. (2022) also functioned in detecting the COVID-

19 infection from the CT scan images using CNNs. The infection

was detected by using the CT scan images with different filters

which attained an accuracy of 85.34%, 88.15%, and 87.46%. Several

DL models including GAN, extreme learning machine (ELM), and

long short-term memory (LSTM) were investigated by Jamshidi

et al. (2020), combining the unstructured imaging data with the

structured clinical data. These techniques were used to develop

a COVID-19 diagnostic system that can analyse mass data in

relation to COVID-19 patients. Another study conducted by

Shamsi et al. (2021) further looked at the epistemic uncertainty of

classification results from different machine learning and statistical

models using deep features extracted with different pre-trained

models. Ezzat et al. (2020) proposed another similar approach

where the GSA-DenseNet121 CNNmodel paired with gravitational

search algorithm (GSA) optimizer to analyse and detect COVID-

19 using chest X-ray images. GSA was considered to optimize

hyperparameters values of the DenseNet121 architecture for the

highest accuracy in diagnosis. The model showed 98% of accuracy

in classification. Similarly, Jaiswal et al. (2021) used DenseNet201

for the categorization of the COVID-19 patients based on the chest

CT images.

Many other studies including Sahlol et al. (2020), Thuseethan

et al. (2021), Alhaj et al. (2022), and Aggarwal et al. (2022)

attempted to detect the presence of COVID-19 infection in chest

CT and X-ray images. However, the drawbacks of using these

imaging techniques are unnecessary exposure to radiation, lack of

CT and X-ray machines in resource-poor regions, the need for

highly skilled medics for interpretation, and unnecessary travel

which increases the risk of transmission and exposure. Lastly, chest

CT and X-ray images can only detect the infection at a certain

stage when the lung damage has already occurred, making them

less effective for early detection. This is where faster diagnosis

techniques like rapid antigen testing for disease (RATD) come

into play. RATD can expedite COVID-19 detection, mitigating

drawbacks of imaging techniques like radiation exposure, resource

scarcity, interpretation complexity, and disease transmission risks.

Moreover, RATD’s ability to detect early-stage infections provides

an advantage over late-detection methods like CTs and X-rays.

A study by Wong et al. (2022) presents an automated

lateral flow analysis (ALFA) model using CNN and computer

vision to analyse images from home-administered COVID-19

lateral flow immunoassays (LFIAs). The system claimed to be

more accurate and consistent compared to human interpretation,

especially for weak positive results. Such automated reading can

enhance the accuracy of mass testing and antibody prevalence

studies, reducing false results, and supporting better community

surveillance. Similarly, Beggs et al. (2022) present a deep learning

approach with a convolutional and multi-scale network to improve

the interpretation of rapid antigen tests for COVID-19 delivered

via lateral flow devices (LFDs). The algorithm classifies tests into

three categories: positive, negative, and void. The model trained

on hybridized LFDs and associated PCR results and demonstrates

superior performance compared to human interpretation. A study

by Vashistha (2022) used computer vision and deep learning

models to automate the interpretation of SARS-CoV-2 tests

conducted via LFDs. The research involves processing images

of the LFD test results to extract a region of interest. Various

classification models such as Mask R-CNN were trained on this

data to automatically categorize the results as positive, negative,

or inconclusive. Similar to the previous study, this method reduces

the need for human interpretation, mitigating perception bias. In a

similar attempt, Soltan et al. (2021) offered two AI-driven screening

tests for COVID-19 including the CURIAL-Lab and CURIAL-

Rapide. They utilize clinical data available at patient admission to

reduce turnaround times for COVID-19 results and mitigate issues

caused by patient status uncertainty. Both models demonstrated

consistent performance with CURIAL-Rapide offering results

26.3% faster than LFDs. The combined clinical approach improved

the test sensitivity up to 88.2% compared to 56.9% with LFDs only

method. The proposed model claimed to potentially decrease the

number of negative patients assigned to “COVID-19-suspected"

areas. A study by Arumugam et al. (2021) proposed a software

approach that utilizes few-shot learning for accurate interpretation

of LFAs used in diagnosing diseases. This method only requires a

small number of validated images for training, unlike the majority

of the deep learning-based methods. This method includes three

components: image extraction, a self-supervised encoder, and a

few-shot adaptation for generalization to new kits. The study

demonstrated high accuracy (99%–100%) in interpreting results

from five new COVID-19 LFA kits with just 10–20 images per kit.

A study by Mendels et al. (2021) attempted to automate the

interpretation of COVID-19 RATD. This study cropped the test

images using planar homography and used a CNN model to detect

the bands (either positive or negative). In the real-world scenario,

the image captured by the users will not be at a desirable angle

making the cropping inaccurate which leads to unreliable model

accuracy. These gaps are addressed in the suggested model where

the COVID-19 result detection is performed with the images of
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FIGURE 1

Healgen rapid antigen test device.

FIGURE 2

Examples of negative image (up) and positive image samples (down).

TABLE 1 Breakdown of data samples for the two classes.

Dataset Training
images (real)

Test
images (real)

Training
images (fake)

Test
images (fake)

Negative 550 50 100 50

Positive 250 50 100 50
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FIGURE 3

CNN architecture.

any background and at varied angles. Pre-trained CNN models

are used to diagnose and validate the RATDs along with the

implementation of StyleGAN2 for creating fake images to improve

the generalization ability of the model with examples of more

realistic conditions. StyleGAN2 architecture is a state-of-the-art

network for creating naturalistic images. This architecture offers

quality, as well as a rapid sampling rate (Viazovetskyi et al., 2020).

Researchers from Nvidia introduced SytleGAN2 and proposed

two models which are automated and suitable for any generator

architecture (Karras et al., 2019). This model could generate new

datasets of human faces such as FlickrFaces-HQ and FFHQ which

were favorably diverse and of good quality. This architecture has the

potential for image generation beyond scale-specific modifications

to different styles. Altering the specific style subset will only

affect the image in particular aspects. Hence, it is clear from the

outcomes of the model proposed by Karras et al. (2019) along

with the parallel study by Chen et al. (2018) that StyleGAN2 is

much superior to the classic GAN architecture. Similar research

conducted by Hermosilla et al. (2021) for face image synthesis used

StyleGAN2 by integrating a new modified version of the model

that functions with ADA has further helped to identify the state-of-

the-art models in image synthesis. Our proposed research benefits

the health service system in meeting the COVID-19 testing for

a large population using state-of-the-art deep learning techniques

for RATD image classification. Similar to other studies presented

above that use AI for medical imaging, this proposed research will

explore multiple CNN models including vanilla and pre-trained

models. The novelty in the approach is to be able to automate this

highly time-sensitive task alongside generating a realistic RATD

image dataset and achieving good classification performance. As

mentioned earlier, the state of the art in synthesizing images using a

GANmodel correlates with StyleGAN2 as well as StyleGAN2-ADA

(Karras et al., 2020) by generating high-quality and high-resolution

images. This research will perform a quantitative analysis on the

RATD images generated with StyleGAN2-ADA which is expected

to provide the best results. The detailed methodology is presented

in the next section.

TABLE 2 Range of hyperparameters tuned for Vanilla CNN.

Hyperparameter Range/values

Number of CNN layers 3

CNN filter sizes 16, 32, 64

Dropout_rate 0.2

Learning_rate 0.1–0.0001

Beta_1 0.5–0.9

Beta_2 0.7–0.999

Epsilon 1e-08

Numerous studies, such as Mendels et al. (2021), Peto

et al. (2021), and Shiaelis et al. (2022), have attempted to

expedite and enhance the accuracy of interpreting COVID-19 LFA.

Although these studies have achieved a degree of success, they all

share common limitations, including resolution constraints, the

necessity for extensive training data, and issues with accessibility

and usability. This suggests that there is still ample room

for improvement.

3 Methodology

Mass antigen testing is considered to be the primary preventive

measure to suppress the spread of the COVID-19 infection (Peto

et al., 2021). Tests were/are still advised to be taken regularly

by the NHS personnel, school staff and students, key and front-

line workers, and others who are flagged by the Test and Trace

system (Government UK, 2021). The shortage of trained staff and

practitioners at test centers was the major challenge and bottleneck

in meeting the demand for mass testing, validating the test results,

updating the Test and Trace system, and informing individuals

to take the required precautions. To address this problem, this

study proposes an automated RATD validation system capable of
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automatic interpretation of test results using deep CNN models,

monitoring the test results using a web application, and integrating

these results with the Test and Trace system.

The proposed system utilizes deep CNN models to classify

RATD images as either negative or positive cases. Experiments

are performed with various CNN models using different

hyperparameters in order to identify the best model for RATD

classification. Apart from custom vanilla CNN models, the

performance of commonly used pre-trained deep CNN models

such as NASNetMobile, DenseNet121, and ResNet50 has also been

investigated. Following the CNN-based RATD classifier, this study

also offers a web application interface that allows operators use the

CNN model to validate the RATD results via user interface. This

validates the ability of the model to be deployed online and to be

integrated into the healthcare provider system workflow. A web

API will also be available for the same purpose.

3.1 RATD image data set

It can be challenging to build deep learning models if there are

no appropriate datasets with public accessibility. Especially if these

images are concerned with data protection or privacy or piracy and

copyright protection. The datasets required for this research were

not available from any online sources or health services as they

were concerned with the data privacy of the patients. In such a

scenario, the easiest resolution was to manually build a dataset that

does not contradict any of the privacy concerns of the public or the

test providers.

Healgen COVID-19 IgG/IgM (Immunoglobulin

G/Immunoglobulin M) RATD was utilized which has an

accuracy of 88.9% in detecting the SARS-CoV-2 antibody (Corman

et al., 2021). Healgen test cassettes are authorized by FDA under

EUA for emergency use by individuals or certified laboratories.

Their mechanism is to detect both anti-SARS-CoV-2 IgG and

IgM antibodies with qualitative or differential detection using

the scientific feature of RATD. Antibodies can be diagnosed in 1

to 3 weeks after being infected, as declared by the manufacturer.

Healgen RATDs are being used as they were convenient to handle

and had the desired performance. In addition, Healgen was the

reasonably accessible device on the basis of periodic COVID-19

diagnostic tests. The diagrammatic representation of Healgen

RATD is given in Figure 1.

Tests with the RATD were performed referring to the brochure

provided by the manufacturer at room temperature following a

high standard of stringent biosecurity measures and adequate

microbiological techniques. Images of all the tested cassettes were

captured on an Android mobile device (Redmi Note 9 Pro and

Redmi Note 9 Pro Max) in different backgrounds and in daylight.

They were captured at a distance of 20–25 cm away from the

reference plane such that the device along with the bands and

the background patterns are included in the image with good

resolution. Each image has a different resolution according to

the angles to enhance the performance of the model which

ranges approximately from 1,024 × 768 pixels (3 MB) to 1,600

× 1,200 pixels (5 MB). Images with different resolutions could

also aid the training to improve the learning weights as well as

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2023.1235204
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Pannipulath Venugopal et al. 10.3389/frai.2023.1235204

FIGURE 4

Model A experiment results for 224X224 resolution (top), 200 × 200 resolution (middle), and 128 × 128 resolution (bottom).

the generalization of the deep learning model. The process of

testing and image collection lasted nearly 2 months. There were

no personally identifying factors on the test device and no conflicts

marked by the Organization fromwhere the test kits were collected.

A total of 900 images were captured for two classes,

Positive (COVID-19 detected/True/1) and Negative (COVID-19

not detected/False/0). After the antigen tests, the results were

finalized by human reading and labeled as either positive or

negative classes. Six-hundred images belong to the Negative class

and 300 belong to the Positive class. The images had RATD

kits with different backgrounds. In a real-life scenario, once

an individual had performed the rapid antigen tests, they can

take the picture of the device using a smartphone or any other

electronic device. This is followed by uploading the picture to the

proposed web application to validate the test results without any

human interaction. These images which are uploaded can have

different background patterns. For building an efficient system, the

train and test images were captured using different backgrounds.

Figure 2 shows samples used for training. The StyleGAN2-ADA

network was used to generate a fake image dataset for rigorously

training and testing the models (explained in Section 3.4.1). The

proposed dataset has beenmade available to the public and research

community here. Table 1 shows the breakdown of datasets created.

3.2 Data preparation

Several data preprocessing approaches such as outlier detection,

data scaling, and data transformation are utilized for this research.
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FIGURE 5

Model B experiment results for 224 × 224 resolution (top), 200 × 200 resolution (middle), and 128 × 128 resolution (bottom).

Experiments were performed involving different dimensions

of the images to analyse the most accurate model. The

three different dimensions used in these experiments include

224 × 224 × 3, 200 × 200 × 3, and 128 × 128 × 3

for the first, second, and third experiments, respectively. All

the images have undergone a two-step verification process

to confirm the class to which it is added. Figure 2 show

samples from the two classes after labeling the dataset. The

images were scaled and normalized before training the models.

The image pixel values are normalized between 0 and 1,

and the image sizes scaled to different standard sizes as

mentioned above.

3.3 Experiments

This section summarizes the different deep learning models

trained with this dataset. This includes Vanilla CNN, pre-trained

standard model architectures fine-tuned using transfer learning

with parameter optimisation.

3.3.1 Vanilla CNN models
This research experimented with several configurations of

vanilla CNN models. All parameters were optimized using

empirical tests. The final architecture is shown in Figure 3.
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FIGURE 6

Model C experiment results comparing accuracy and loss of training and validation data for model C.

The models have the network architecture comprising three

convolutional layers using filters such as 16, 32, and 64 followed

by two dense layers of size 256 and 2. The first block of the

convolutional layers utilized a kernel size of 3 × 3. These kernel

layers deliver a 2D activation map. Each convolutional layer was

followed by a max-pooling layer with a pool size of 2 × 2. All

the layers were set with a dropout rate of 0.2. The output from

convolution layers is flattened andmade compatible with the Dense

layers. All the convolutional layers utilized the Rectified Linear Unit

RELU as the activation function, and the softmax function was used

in the final classification layer.

Experiments were performed using two different optimisation

algorithms—Adam and SGD optimisation algorithms. Adam helps

to minimize the network parameters, consumes less memory, and

is highly efficient in computation (Jais et al., 2019). A range of

hyperparameters were optimized for the model as summarized in

Table 2.

The network using Stochastic Gradient Descent as an

optimisation algorithm further used a momentum parameter value

of 0.9 after initial empirical tests.

3.3.2 Transfer learning
Transfer learning is a machine learning method that uses a

pre-trained model mainly as the feature extraction layer. Using

the weights of the convolutional layers belonging to the pre-

trained model can reduce the number of network parameters to

be trained (Kaur and Gandhi, 2020). When this technique is used,

only the final dense layers are (re)trained with the input data. In

this study, three distinct pre-trained models have been adopted

to find the best-performing model in comparison with the default

Vanilla CNN models. They are NASNetMobile, DenseNet121, and

ResNet50. These models are basically CNNs pre-trained with the

ImageNet database that contains more than a million images

(Deng et al., 2009). The principal advantages of using transfer

learning are resource conservation, along with enhanced efficiency

while training the new models with fewer training samples. Each

pre-trained network was appended with custom dense layers to

redesign the output layer according to the dataset. The dense layer

contains a batch normalization technique to reduce the overfitting

of the model. Similar to the Vanilla CNN model, ReLU was used as

the activation function and Softmax as the output layer activation

function. All the pre-trainedmodels used Adam as the optimisation

algorithm and same hyperparameters (as shown in the Table 2)

for Vanilla CNN is also tuned for these models. Ultimately, the

most accurate learning model was chosen depending on the best

validation accuracy and loss. The train and validation data split was

80%–20% with a training dataset of 640 images and a validation

dataset of 160 images.

3.4 Model training

This research experimented with five distinct models: Model A,

Model B, Model C, Model D, and Model E. The first two models

(Model A and Model B) were implemented using vanilla CNN,

and the other three models (Model C, Model D, and Model E)

adopted pre-trained CNN models. Experiments were performed

with different input image resolutions to find the model with the

best accuracy and loss. Various resolutions used were 224 × 224,

200 × 200, and 128 × 128 with RGB channel; however, Model

C (NASNetMobile) was only compatible with 224x224 resolution.

Hence, there is only a single model trained with this particular

resolution. Table 3 demonstrates the training accuracy, training

loss, validation accuracy, validation loss, precision, recall, and F1-

score for all five models using the training and validation data.

Empirical exhaustive parameter and hyperparameter tuning is

performed in each of these experiments explained below.

Figure 4 demonstrate the three experiments with Model A

comparing accuracy as well as the loss for training and validation.

Among the three experiments, model trained with image resolution

224× 224 shows better performance with training accuracy of 88%

and loss of 0.31, validation accuracy of 76%, and loss of 0.46.

The network architecture of Model B is same as Model A

architecture but with SGD as the optimisation algorithm. The

model with 224 × 224 RGB image dataset produced the training

accuracy of 70% and loss of 0.58, and validation accuracy of 73%

with loss of 0.55. Figure 5 demonstrate the loss and accuracy of

Model B. The performance difference between different resolutions

is not explicitly clear.
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FIGURE 7

Model D experiment results for 224 × 224 resolution (top), 200 × 200 resolution (middle), and 128 × 128 resolution (bottom).

Model C is one of the pre-trained models—NASNetMobile

was used to implement the model with a total parameter count

of 4,818,198. NASNetMobile is already pre-trained with CIFAR-

10 and ImageNet datasets. The model produced training accuracy

of 89%, training loss of 0.29, and validation accuracy of 85% with

loss of 0.38, which seems to be better compared to performance of

Vanilla CNN models (Model A and Model B). Figure 6 shows the

loss and accuracy for Model C.

Model D uses another pre-trained model called DenseNet121.

This model contains a total parameter count of 8,619,074 which is

greater than Model C (4,818,198). Figure 7 demonstrates the three

experiments with Model D comparing accuracy as well as the loss

of training and validation data. The RGB image size of 224 × 224

generates a training accuracy of 89.85% with loss of 0.29 and higher

validation accuracy of 93.53% with a validation loss of 0.20. This

model delivers the best performance when compared to all the

CNN models and NASNetMobile.

Model E is a transfer learning model with one of the pre-

trained models called ResNet50. The total number of parameters

of this model was 26,221,954, which is very large compared to

other models. Figure 8 demonstrates the three experiments on

Model E comparing accuracy as well as the loss for training and

validation.When this model is trained with 200× 200 sized dataset,

it produces a training accuracy of 76% with a loss of 0.59 and a

validation accuracy of 76% with a loss of 0.52.

As observed from the above experiments, Model D shows

the best performance with 224 × 224 image resolution. However,

the amount of training dataset was not very large, and perhaps
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FIGURE 8

Model E experiment results for 224 × 224 resolution (top), 200 × 200 resolution (middle), and 128 × 128 resolution (bottom).

more data could further improve the performance. Hence, data

augmentation using StyleGAN2 is performed to generate more

images to further train and test the models.

3.4.1 GAN architecture
As mentioned earlier, GAN models could be used to generate

images for data augmentation. There are different popular

architectures for the GAN topology. A deficient dataset caused

the overfitting of the DCGAN where the discriminator learns the

training dataset promptly while the dataset is small. StyleGAN2

enhanced with ADA, known as StyleGAN2-ADA can be used to

address the problem of overfitting by assessing the discriminator

only using magnified images (Karras et al., 2020). Non-invertible

data augmentation is transferred to invertible transformations

with the help of StyleGAN2-ADA using augmentation probability.

Hermosilla et al. (2021) depicted that even though the training

dataset is lesser in number, StyleGAN2 functions in generating

high-quality and stable images.

Pre-trained StyleGAN2 with ADA has been used in these

experiments to train and generate images for this research. The

training dataset was converted to 512 × 512 RGB images. The

suitably transformed images were used to fit the model with the

input size parameter of 512 in the training phase. The total number

of kimgs (training iterations) required for this training is ∼2,500,

but due to the limitation of resources and infrastructure, training

has been stopped at 640 which itself takes 12.5 h with ∼60 Frechet

Inception Distance (FID). FID is the metric employed to estimate
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FIGURE 9

Fake images generated by StyleGAN2-ADA at kimg 161 (top) and StyleGAN2-ADA at kimg 640 (bottom).

FIGURE 10

Model DR experiment results comparing accuracy and loss of training and validation data for model DR.

the grade of the generated images. The snapshot created at the

kimg 640 is used to generate the fake images for testing in this

research with an image size of 256 × 256. Figure 9 shows the fake

images generated at 161 kimg, and kimg-640 configuration. It can

be observed that the images look more natural as if taken from

different angles and perspectives.

The best-performing model, Model D, was further trained

(Model DR) in a transfer learning setup with a fake image dataset

generated using StyleGAN2 with a resolution of 224 × 224. The

same preprocessing, scaling, and normalization steps as mentioned

earlier are followed to retrain the parameters of the model along

with empirical hyperparameter optimisation. Figure 9 displays the
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fake images used. A total of 200 (100 negatives and 100 positives)

fake images were used resulting in a more satisfactory performance

with a training accuracy of 92% and loss of 0.26, validation

accuracy of 93%, and loss of 0.16. Table 4 describes the results

of the experiments with Model DR, and Figure 10 demonstrates

the accuracy as well as the loss of training and validation datasets

for this model. The code associated with the aforementioned deep

models is available to the research community here.

4 Results and discussions

The models are further tested using unseen test datasets to

estimate the final performance. Three different datasets were used

for testing—Real, Fake, and Complex datasets. The real image

dataset is similar to the training data, but the image contains

different backgrounds and objects alongside the RATD. The fake

image dataset was generated using StyleGAN2. Complex image

dataset comprise of images that are more challenging with different

backgrounds, or with multiple RATD devices placed in various

positions in a single image. The training and testing image

environments are very different in terms of background colors and

objects. The real and fake testing dataset has 100 images each (50

positive and 50 negative class images), whereas the complex dataset

has 12 images which add up to 215 images. Six models (Model

A, Model B, Model C, Model D, Model DR, and Model E) were

tested with real and fake images. Model DR showcased the best

performance while training; hence, it was subject to test with a

complex image dataset with an input size of 224x224.

4.1 Testing with real image dataset

The results of testing the models: Model A, Model B, Model C,

Model D, Model E, and Model DR with different image resolutions

on the real test images are presented in Table 5. The table presents

accuracy, precision, recall, and f1-score for each model. The results

indicate that the pre-trained model that was further retrained

with simulated data (model DR) shows the best performance

across almost all metrics. However, the model is not able to

improve mis-detections.

4.2 Testing with fake image dataset

The results of testing the models: Model A, Model B, Model C,

Model D, Model E, andModel DR, with different image resolutions

on the fake test images are presented in Table 6. The table presents

accuracy, precision, recall, and f1-score for each model. The

confusion matrices for all six models are presented in Figures 1–12

in the Supplementary file. The results indicate that the pre-trained

model further retrained with simulated data, Model DR shows the

best performance with almost all metrics. Further as seen in the

confusion matrix, Figure 6 of the Supplementary file, the model

is able to improve performance across both positive and negative

classes for fake images. Finally, after testing the six models (Model

A, Model B, Model C, Model D, Model E, and Model DR) with real

and fake images,Model DR has delivered outstanding performance.

TABLE 4 Result of retrained Model D (Model DR).

Image size 224 × 224

Epochs 33

Training Acc. (%) 92%

Training loss 0.26

Validation Acc. (%) 93%

Validation loss 0.16

Precision 0.92

Recall 0.96

F1-score 0.94

Hence, this model was tested again using real and complex RATD

images shown in Figure 3 of the Supplementary file. The paired t-

test result presented in Table 7 shows there is a significant accuracy

improvement in model DR when compared to other models tested

in this study. p-value of 0.05 and degree of freedom of 10 − 1 = 9

(10-fold cross-validation) have been used in these experiments.

To validate the real-time RATD images, an application has been

implemented. Model DR was integrated with this application to

validate the input images. A web UI is provided with an API that

provides this service to other applications. The application has been

implemented using one of python’s web frameworks called Flask

which helps to foster further development. For the web view, an

HTML template is used along with a python script. The complex

image dataset was tested using the implemented UI. Figure 11

shows the complete UI of this web application with validation of

a positive RATD image.

The complex image dataset was tested using the implemented

UI which showed the results as in Figure 12. The images with

headings marked in green color are those with accurate predictions

and those with red are inaccurate. The model in general seems to

be able to cope with different angles and some of the challenging

backgrounds. Some of these images are really challenging like

the ones with the RATD package with the device picture in

the background depicting a conflicting result. Some images in

the dataset had multiple devices; however, training images only

consisted of single devices, and still 60% of this challenging dataset

was accurately classified. Furthermore, few of these images had

both classes (Positive and Negative) in a single image which

is challenging even for a human annotator. verall Model DR

seems to perform decently and could be further improved in

the future.

4.3 Comparison

A number of other studies including Arumugam et al.

(2021), Beggs et al. (2022), Vashistha (2022) have attempted to

utilize AI, machine learning, and computer vision techniques to

accelerate the interpretation of RATD images, as well as enhance

diagnostic accuracy and sensitivity. Due to the variations in

the dataset used and experimental setup, these studies cannot

be directly and objectively compared with the proposed work.
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TABLE 5 Testing models with real-image dataset.

Exp Image size Accuracy Precision Recall F1-score AUC Sensitivity Specificity

Model A

1 224× 224 61 % 0.57 0.86 0.69 0.61 0.36 0.86

2 200× 200 59 % 0.56 0.84 0.67 0.58 0.34 0.84

3 128× 128 67 % 0.64 0.78 0.70 0.66 0.56 0.78

Model B

1 224× 224 51 % 0.51 0.86 0.64 0.51 0.16 0.86

2 200× 200 52 % 0.51 0.90 0.65 0.52 0.14 0.90

3 128× 128 50 % 0.51 0.95 0.67 0.66 0.64 0.68

Model C 1 224× 224 51 % 0.51 0.86 0.64 0.51 0.16 0.86

Model D

1 224× 224 79 % 0.78 0.80 0.79 0.79 0.78 0.80

2 200× 200 74 % 0.71 0.80 0.75 0.73 0.68 0.80

3 128× 128 71 % 0.67 0.82 0.74 0.72 0.60 0.82

Model E

1 224× 224 59 % 0.57 0.78 0.66 0.60 0.40 0.78

2 200× 200 57 % 0.56 0.70 0.62 0.57 0.44 0.70

3 128× 128 57 % 0.55 0.84 0.66 0.58 0.30 0.84

Model DR 1 224× 224 82 % 0.74 0.98 0.84 0.82 0.66 0.98

Significant results are in bold.
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TABLE 6 Testing models with fake-image dataset.

Exp Image size Accuracy Precision Recall F1-score AUC Sensitivity Specificity

Model A

1 224× 224 70 % 0.67 0.78 0.72 0.71 0.62 0.78

2 200× 200 73 % 0.71 0.78 0.74 0.74 0.68 0.78

3 128× 128 72 % 0.74 0.68 0.71 0.73 0.76 0.68

Model B

1 224× 224 63 % 0.58 0.96 0.72 0.63 0.30 0.96

2 200× 200 61 % 0.56 0.98 0.72 0.61 0.24 0.98

3 128× 128 50 % 0.50 0.95 0.67 0.62 0.76 0.46

Model C 1 224× 224 64 % 0.63 0.66 0.65 0.65 0.62 0.66

Model D

1 224× 224 77 % 0.81 0.70 0.75 0.78 0.84 0.70

2 200× 200 76 % 0.80 0.70 0.74 0.76 0.82 0.70

3 128× 128 74 % 0.76 0.70 0.73 0.74 0.78 0.70

Model E

1 224× 224 61 % 0.64 0.50 0.56 0.61 0.72 0.50

2 200× 200 66 % 0.62 0.84 0.71 0.67 0.48 0.84

3 128× 128 61 % 0.57 0.88 0.69 0.62 0.34 0.88

Model DR 1 224× 224 88 % 0.88 0.98 0.88 0.89 0.88 0.88

Significant results are in bold.
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TABLE 7 Paired t-test results against DR model using fake-image dataset.

Paired t-test DoF p-value t-value Significance

Model (A, DR) 9 0.05 14.35 Yes

Model (B, DR) 9 0.05 19.12 Yes

Model (C, DR) 9 0.05 19.07 Yes

Model (D, DR) 9 0.05 11.63 Yes

Model (E, DR) 9 0.05 20.18 Yes

FIGURE 11

Accurately validated positive RATD image using Web App.

Nevertheless, the following section offers insight into these studies

and describes how they stack up against the proposed work

in this study. Arumugam et al. (2021) utilize few-shot learning

technique for accurate interpretation and diagnosis of COVID-

19 LFAs. Unlike the majority of deep learning-based methods,

few-shot learning only requires a small number of validated and

training images. The proposed method in this study consists of

three components: image extraction, a self-supervised encoder,

and a few-shot adaptation for better generalization. The training

set in this study consists of 383 images, while the testing set

includes 254 images. Additionally, this study used variational

autoencoder to generate synthetic images and further evaluate

the model performance. The study demonstrated high accuracy

of 99.6 in interpreting COVID-19 LFA kits. While this study

achieved exceptional results in terms of accuracy, it relies on

highly supervised and time-consuming preprocessing operations

to extract the LFA membrane region which contrasts with the

approach we propose in this study. The proposed approach in our

study requires no manual image enhancement or preprocessing

which significantly reduces the time and labor costs, streamlines

the process, and ultimately allows for a more efficient and

scalable solution.
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FIGURE 12

Model DR output with complex images.

Beggs et al. (2022) also offer a platform named MagnifEye for

automated interpretation of COVID-19 LFA results. This study

uses a combination of CNN and a multi-scale network to identify

and classify the LFA read area into three classes including Positive,

Negative, and Void. This study employed t Assisted Testing Sites

(ATS) dataset which consists of 59,164 LFA kit images, however,

from which only 126 (<0.2%) samples were COVID-19 positive.

Although this research attempted to mitigate the negative impact of

the heavily imbalanced dataset using techniques like bootstrapping

and confidence intervals, these methods may not be sufficient to

fully address the issue, potentially leading to biased results or

overfitting. The proposed approach in our study countered the data

imbalance issue by generating fake test images using generative

models like StyleGAN2-ADA which is proven to be more effective

compared to classic statistical methods. Vashistha (2022) is also

another closely related study that attempted to use computer

vision and deep learning models to automate the interpretation of

COVID-19 LFA tests. This study employed a pre-trained (COCO)

Mask R-CNN model fine-tuned on a relatively small dataset of 439

LFA test images. Similar to Arumugam et al. (2021), this study relies

on heavy annotation, human interpretation, and preprocessing

operations to extract the LFA membrane region which contrasts

with the fully automated approach we propose in this study.

Unlike the aforementioned studies, our proposed method

harnesses the capabilities of potent CNN generative models,

specifically StyleGAN2-ADA. This approach serves to augment the

pool of training sample images, ultimately enhancing the model’s

capacity for generalization and improving its overall accuracy. This

studymakes a significant impact on public healthcare by expediting

large-scale trace and testing processes. A typical rapid antigen test

typically requires 15–20 min to yield results, a delay that often

results in substantial backlogs and lengthy waiting lists, adding to

the workload at testing centers. The proposed system, however, has

the potential to alleviate this burden significantly. It operates by

autonomously analyzing and classifying the test results from the

test device images and then promptly relaying this information

to patients via a mobile app. Unlike other studies, the proposed

system eliminates the need for human intervention. Even in the

case of RATD tests, human analysts is required to visually inspect

the images of RATD devices to determine whether the results were

positive or negative and update the system. We have not only

eliminated the necessity for human labor but also expedited the

process of identifying patient needs and controlling the spread

of disease, thereby reducing associated costs. Furthermore, it has

the capacity to streamline the incorporation of contact tracing

and tracking, enhancing the overall efficiency and effectiveness of

the testing process. By expediting result delivery and bolstering

public health efforts through contact tracing, this innovative system

promises to play a pivotal role in the battle against contagious

diseases. Table 8 provides a brief summary of the comparison

between state-of-the-art COVID-19 LFA classification studies and

the work proposed in this study.

5 Conclusion and future work

COVID-19 is the pandemic of the 21st century which is still

ongoing in most countries with new variants rapidly spreading and

iterating through society. Mass testing, as well as vaccination, seems

to be the only way to prevent the spread and death rate for this

pandemic. Being a highly infectious disease that is still spreading

through the entire global population, healthcare workers are still

struggling to identify positive cases. The RATD, lateral flow devise

seems to be an affordable, rapid-action, and scalable technique to

perform the testing of this viral infection. Due to the infectious

nature of the disease and the lack of manpower in the healthcare

sector, it is important to automate the diagnosis and isolation

of patients. This research introduces a system for the automatic

validation of RATD images with the help of deep learning and

transfer learning techniques. The study was also successful in

developing a web application integrating with the best-performing
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TABLE 8 Comparison of the state-of-the-art COVID-19 LFA classification studies and the proposed work.

References Dataset Method Accuracy Cons

Arumugam et al.

(2021)

637 Few-shot learning

CNN

Variational autoencoder

99.6 Highly supervised and time-consuming

preprocessing operations

unscalable

Beggs et al. (2022) 59,164 CNN

Multi-scale network

98.60 Heavily imbalance

High class bias

Vashistha (2022) 439 Pre-trained Mask R-CNN

Fine-tuned

92.6 Highly supervised

Manual preprocessing

Proposed work 900 CNN

StyleGAN2-ADA

88 Could be enhanced for multi-label

output to detect multiple devices in an image

model (Model DR) with a validation accuracy of 93% and test

accuracy of 82 and 88% for real and simulated unseen datasets.

This study performed extensive experiments with different

categories of deep learning models including Vanilla CNN and

several pre-trained CNN models (that can avoid overfitting) using

different parameters and different input image resolutions. As

expected, the pre-trained models exhibited better performance

in classifying the unseen data (Yamashita et al., 2018), and

particularly pre-trained model with DenseNet121 could deliver the

best performance compared to all other models.

One of the main challenges encountered during this research

was the inadequate amount of data for training and testing as the

datasets were not publicly available due to the sensitive nature of the

data. This motivated the authors to generate a custom dataset using

live testing and images taken through mobile devices. However, the

availability of the positive class (COVID-19 detected) was another

challenge to deal with as there was limited access to patients.

Research also looked at simulating images using state-of-the-art

GANmodels. Initially, DCGANwas used, but it led to noisy images

due to overfitting as the training images were fewer in number.

Hence, leveraging the StyleGAN2-ADA network helped in creating

the fake realistic images for better training and exhaustive testing.

These experiments also discovered the necessity of accurate

images for these tasks. Not all images in the dataset were

captured with adequate clarity (Blurred images) which affected the

prediction of test images leading to incorrect predictions. Model

DR, a pre-trained model further retrained with real and simulated

images emerged to be the most accurate model when tested with

real, fake, and complex test images. The fake image confusion

matrix of Model DR (Figure 12 of the Supplementary file) exhibited

more true predictions for both classes compared to the original

pretrained model, Model D (Figure 10 of the Supplementary file).

However while comparing the real image confusion matrices of

Model DR (Figure 6 of the Supplementary file) with Model D

(Figure 4 of the Supplementary file), the Negative class improved,

but the Positive class shows only comparable performance. Hence,

it could be concluded that training models with simulated image

datasets may not considerably improve the performance for

real test images, perhaps only for the simulated test images.

Tests were also performed with challenging real-world images

with multiple RATD and other distracting pictures in the

background. Incorporating an object detection algorithm could

help to improve the validation of multiple RATDs in a single

image, thus covering these complex scenarios. Furthermore, the

research can be further extended by experimenting with other

pre-trained models for transfer learning and further optimizing

the parameters for better generalization. The proposed model

leverages powerful CNN generative models like StyleGAN2-ADA,

expanding the training image pool, enhancing generalization, and

improving accuracy. This study significantly accelerates large-

scale tracing and testing in public healthcare. Rapid antigen

tests typically take 15–20 min, causing backlogs and delays

at testing centers. Our system autonomously analyses and

categorizes test results from device images, relaying information

to patients via a mobile app, eliminating the need for human

intervention. This not only reduces labor costs but also speeds

up disease identification and control. It also streamlines contact

tracing, boosting testing efficiency and public health efforts. This

innovative system plays a pivotal role in fighting contagious

diseases by expediting result delivery and enhancing contact

tracing.

This study is subject to several limitations that could be

addressed in future research endeavors. During the course of

this study, our research was hampered by a relatively limited

number of training samples, which had a substantial impact on

our findings. To enhance the accuracy of the proposed model

and reduce its dependence on artificial intelligence-generated

images, it is crucial to include a more extensive dataset in

subsequent study. Furthermore, a notable limitation lies in the

model’s sensitivity to lighting conditions. This sensitivity stems

from the primary training of our models on images captured in

well-lit conditions, predominantly during daylight. Consequently,

the model exhibits a bias toward well-illuminated scenarios,

resulting in subpar performance when analyzing images taken in

low-light environments. This limitation can be ameliorated by

diversifying the training dataset to encompass a broader range

of lighting conditions. Additionally, the current model falls short

in detecting multiple instances of RATD in a single image.

Addressing this limitation should be a priority in future research

to make the model more versatile and comprehensive. Moreover,

the integration of localization alongside classification is another

vital aspect that warrants attention in forthcoming study. This

enhancement can enhance the model’s ability to pinpoint and

classify RATD effectively.
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