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Features of lexical complexity:
insights from L1 and L2 speakers

Kai North* and Marcos Zampieri

School of Computing, George Mason University, Fairfax, VA, United States

We discover sizable di�erences between the lexical complexity assignments of

first language (L1) and second language (L2) English speakers. The complexity

assignments of 940 shared tokens without context were extracted and compared

from three lexical complexity prediction (LCP) datasets: the CompLex dataset,

the Word Complexity Lexicon, and the CERF-J wordlist. It was found that word

frequency, length, syllable count, familiarity, and prevalence as well as a number

of derivations had a greater e�ect on perceived lexical complexity for L2 English

speakers than they did for L1 English speakers. We explain these findings in

connection to several theories from applied linguistics and then use these findings

to inform a binary classifier that is trained to distinguish between spelling errors

made by L1 and L2 English speakers. Our results indicate that several of our findings

are generalizable. Di�erences in perceived lexical complexity are shown to be

useful in the automatic identification of problematic words for these di�ering

target populations. This gives support to the development of personalized lexical

complexity prediction and text simplification systems.

KEYWORDS

readability, text simplification, language acquisition, educational technology, complex

word identification (CWI)

1 Introduction

A growing body of research has focused on the detection of complex words for automatic
text simplification (TS) (Paetzold and Specia, 2016; Yimam et al., 2018; Shardlow et al.,
2021a). Complex words within TS frameworks are those words that are difficult to recognize,
understand, or articulate and can significantly reduce reading comprehension (Kyle et al.,
2018; Shardlow et al., 2021a). Perceived lexical complexity is therefore the level of difficulty
associated with any given word form by a particular individual or group.

First language (L1) English speakers find certain words to be more or less complex than
second language (L2) English speakers. This may be due to differing degrees of familiarity
(Shardlow et al., 2021b), L1 influence on L2 production (Lee and Yeung, 2018b; Maddela
and Xu, 2018), greater cognitive load in L2 processing (McDonald, 2006; Hopp, 2014),
differences between L1 and L2 lexical and syntactic encoding and activation (Clahsen and
Felser, 2006a,b, 2018), and various other phenomena (Crossley and McNamara, 2009).

With distance learning becoming ever more popular (Morris et al., 2020), research
has been focusing on identifying barriers and improving approaches to online education
(McCarthy et al., 2022). This includes an increase in the demand for AI/NLP technologies
such as TS that can be utilized within computer-assisted language learning (CALL)
applications (Tseng and Yeh, 2019; Rets and Rogaten, 2020). However, little research has
been conducted on the similarities or differences between L1 and L2 English speakers’
perception of lexical complexity in the field of automatic lexical complexity prediction.
Demographic differences between annotators hinder the automatic detection of complex
words, and in turn reduce the performance of generalized TS technologies (Zeng et al.,
2005; Lee and Yeung, 2018b; Maddela and Xu, 2018). As far as the authors are aware, this
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correlation has not been fully explored within complexity
prediction literature, especially in consideration with theoretical
explanations from applied linguistics (Zeng et al., 2005; Tack et al.,
2016; Lee and Yeung, 2018b; Shardlow et al., 2021a,b; Tack, 2021).

To aid complexity prediction research along with its
downstream TS and CALL applications, this study asks the
following research questions:

• RQ 1: Are there sizable differences between L1 and L2 English
speakers perception of lexical complexity reflected in the
annotation of existing complexity prediction corpora?

• RQ 2: If these differences exist, are they represented by the
features commonly used in systems developed for complexity
prediction?

Section 2 introduces the reader to complexity prediction
research. Section 2.2 details several datasets used for complexity
prediction. Section 2.3 provides features related to lexical
complexity. Section 4 draws several conclusions regarding the
strength of the correlations between these features and the
complexity assignments of L1 and L2 English speakers. Section
5 gives several brief possible explanations taken from applied
linguistics. Section 6 lastly shows the application of our findings for
automatically classifying spelling errors made by L1 and L2 English
speakers. This was done to test the validity of our findings and to
provide a potential use case within TS and CALL technologies.

2 A survey of existing datasets and
features

2.1 Complexity prediction research

Automatic complexity prediction is primarily split into (1)
complex word identification, and (2) lexical complexity prediction.
Complex word identification (CWI) entails the development
of binary classifiers that can automatically distinguish between
complex and non-complex words. They achieve this by assigning
target words with binary complexity values of either 0 (non-
complex) or 1 (complex) (Table 1) (Paetzold and Specia, 2016;
Yimam et al., 2018). Lexical complexity prediction (LCP) is
essentially a regression based task. It relies on multi-labeled data
to model lexical complexity on a continuum. This continuum has
varying thresholds, whichmay range from very easy (0), easy (0.25),
neutral (0.5), difficult (0.75), to very difficult (1). These thresholds
are used to label a target word with a continuous complexity
value between 0 and 1 (Table 1). LCP, therefore, provides more
fine-grained complexity values than in comparison to the binary
annotated data provided by CWI, as it is able to recognize
those words with a neutral level of complexity (Shardlow et al.,
2020, 2021a). This study has subsequently focused on LCP, hence
continuous complexity assignments made by L1 and L2 English
speakers.

Researchers interested in both CWI and LCP have brought
into question the generalizability of automated lexical complexity
assignments. They argue that prior CWI and LCP systems are
unable to account for “variations in vocabulary knowledge among
their users” (Lee and Yeung, 2018b). In other words, they are unable

TABLE 1 Example of a sentence annotated with both binary and

continuous complexity values from CWI and LCP systems, respectively,

taken from the CompLex dataset (Shardlow et al., 2020).

Extract: Folly is set in great dignity

Binary Complexity: 1 is 0 in 0

Continuous Complexity: 0.57 is 0.18 in 0.15

1 is complex and 0 is non-complex. Target words are in bold.

to account for differing perceptions of lexical complexity. Studies,
such as Zeng et al. (2005), Tack et al. (2016), Lee and Yeung (2018b),
and Tack (2021), introduced personalized CWI to account for such
variation among differing target populations. Personalized CWI
caters for the individual by taking into consideration their specific
demographic and by relying on features that correlate with that
demographic’s assignment of lexical complexity.

Traditionally, research has indicated statistical and
psycholinguistic features as being reliable indicators of a word’s
complexity (Shardlow et al., 2021b), such as word frequency,
length, familiarity and concreteness. Nevertheless, since lexical
complexity assignments differ from one demographic to the next,
the question remains whether these features are truly universal
in their ability to predict lexical complexity across multiple target
populations. These features include word frequency, word length,
syllable count, familiarity, prevalence, and concreteness (Paetzold
and Specia, 2016; Monteiro et al., 2023). Thus, to answer research
questions 1 and 2, numerous LCP datasets have been selected
to represent the lexical complexity assignments of both L1 and
L2 English speakers (Section 2.2). The above features were then
applied to these datasets to uncover whether sizable differences
exist between each set of annotators’ complexity assignments, as
well as these features ability to predict lexical complexity for each
target demographic (Section 4).

2.2 Existing datasets

Shared-tasks have increased the popularity of complexity
prediction research (Paetzold and Specia, 2016; Yimam et al.,
2018; Shardlow et al., 2021a). This has resulted in several datasets
that can be used for complexity prediction. These datasets have
been labeled by annotators from differing backgrounds. Some
datasets were created by annotators made up of purely L1 English
speakers or annotators from a specific country, such as China
(Lee and Yeung, 2018a; Yeung and Lee, 2018), Japan (Nishihara
and Kajiwara, 2020), or Sweden (Smolenska, 2018). Other datasets
contained a mixture of L1 and L2 English speakers from a variety
of international backgrounds (Yimam et al., 2018). However, few
of these datasets consist of multi-labeled continuous data used to
train state-of-the-art LCP systems. In fact, only several datasets
exist that contain English words annotated using a likert-scale and
labeled with continuous complexity values. Examples include the
CompLex dataset (Shardlow et al., 2020), the Word Complexity
Lexicon (Maddela and Xu, 2018), and the CERF-J project’s word list
(Tono, 2017). These datasets have been grouped in accordance to
their annotators and have been described throughout the following
sections.
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2.2.1 Dataset with L1 English speaking annotators
The CompLex dataset (Shardlow et al., 2020) is the most recent

dataset that has been used to develop LCP systems (Shardlow
et al., 2020, 2021a). Over 1500 L1 English speaking annotators were
responsible for labeling continuous complexity values to a range of
extracts taken from the Bible (Christodouloupoulos and Steedman,
2015), biomedical articles (Koehn, 2005) and Europarl (Bada et al.,
2012). These annotators were crowd-sourced from “the UK, USA,
and Australia” (Shardlow et al., 2020). Having been sourced from
English-speaking countries, it is likely that these annotators were
predominately L1 English speakers. The CompLex dataset is also
split into two sub-datasets. The first contains 9,000 instances of
single words. The second houses 1,800 instances of multi-word
expressions (MWEs). Both sub-datasets were created using a 5-
point likert scale and therefore provide continuous complexity
values ranging between 0 (very easy) and 1 (very difficult). Assigned
complexity values were averaged. The returned averaged values
were then used as the corresponding target words’, or MWEs’,
overall level of complexity.

2.2.2 Datasets with L2 English speaking
annotators

The Word Complexity Lexicon (WCL) (Maddela and Xu,
2018) consists of “15,000 English words with word complexity
values assessed by human annotators” (Maddela and Xu,
2018). These annotators were 11 non-native yet fluent L2
English speakers from varying international backgrounds.
These annotators also had varying first languages. The WCL
contained the most frequent 15,000 words provided by the
Google 1T Ngram Corpus (Brants and Franz, 2006). Its
complexity values were continuous and were gained through
the use of a 6-point likert scale. Each annotator was asked
whether they believed the target word was either very simple,
moderately simple, simple, complex, moderately complex, or
very complex.

The Common European Reference Framework for Languages
(CERF) is a recognized criteria for assessing language ability. It
contains multiple levels. These levels range from: “A1 (elementary),
A2, B1, B2, C1, to C2 (advanced)” (Uchida et al., 2018).
A1 is used to refer to elementary proficiency, having the
ability to “recognise familiar L2 words and very basic phrases”
(Council of Europe, 2020). C2 denotes advanced proficiency,
“having no difficulty in understanding any kind of L2 [spoken
or written] language” (Council of Europe, 2020). The CERF-
J project is the utilization of the CERF for English foreign-
language teaching in Japan. The project contains a CERF-J
wordlist with 7800 English words, with each word having been
assigned a CERF level marking their complexity. These assigned
CERF levels were calculated in accordance to a word’s frequency
within CERF rated foreign-language English textbooks. These
textbooks were taken from Chinese, Taiwanese, and Korean
schools (Markel, 2018; Tono, 2017). As such, the complexity
assignments contained within the CERF-J wordlist may reflect
those made by Chinese, Taiwanese, or Korean L2 English
speaking annotators.

2.2.3 Datasets with L1 and L2 English speaking
annotators

The Personalized LS Dataset was created by Lee and Yeung
(2018b) to reflect the individual complexity assignments of 15
Japanese learners of English. These L2 English speakers were tasked
with rating the complexity of 12,000 English words. To do so, they
used a 5-point likert scale that depicted how well they knew the
word. They chose from 5 labels that ranged from (1) “never seen the
word before”, to (5) “absolutely know the word’s meaning” (Lee and
Yeung, 2018b). The dataset classified those words labeled between
1 and 4 as being complex, whereas those labeled 5 were believed
to be non-complex. Regardless of this binary classification, the use
of a 5-point likert scale means that such data can easily be adapted
for continuous LCP rather than for binary CWI. The annotators
of the Personalized LS Dataset were also sub-divided in regards to
their English proficiency (Lee and Yeung, 2018b). The first sub-
group contained the four least proficient annotators whom knew
less than 41% of the 12,000 English words. The second sub-group
consisted of the four most proficient annotators whom knew more
than 75% of the 12,000 English words. Unfortunately, however, the
Personalized LS Dataset is not publicly available and was therefore
not used within this study.

The CWI–2018 shared-task (Yimam et al., 2018), introduced
several participating teams to a set of CWI datasets annotated
by a variety of L1 and L2 English speaking annotators. These
datasets were of differing genres containing extracts taken from
news articles, Wikinews and Wikipedia. These datasets were also
of differing languages, being English, German, Spanish and French.
Its annotators were collected using the Amazon Mechanical Turk
(MTurk) and were tasked with identifying complex words from
a given number of extracts (Yimam et al., 2018). In total, 134
L1 and 49 L2 English speakers labeled the English datasets with
34,789 binary complexity values. Due to CWI–2018’s use of
annotators from a variety of backgrounds, as well as its datasets
being constructed from multiple sources, the CWI–2018 datasets
acted as a good control during our initial analysis by indicating
which of our selected features (Section 2.3) were salient across
both sets of annotators. However, due to the CWI–2018 datasets
containing binary instead of continuous complexity assignments,
these datasets were later dropped. This is since a direct comparison
between binary complexity values and continuous complexity
values is less informative and is subsequently less helpful in
the development of state-of-the-art LCP systems that rely on
continuous data.

2.3 Features

Many CWI and LCP classifiers use statistical, phonological,
morphological, and psycholinguistic features to predict lexical
complexity (Shardlow et al., 2021b). Among these features, word
frequency, word length, syllable count, and familiarity are the
most common (Paetzold and Specia, 2016; Yimam et al., 2018;
Shardlow et al., 2021b). Despite current state-of-the-art LCP
systems preferring the adoption of unsupervised deep learning
transformer-based models (Pan et al., 2021; Rao et al., 2021;
Yaseen et al., 2021), those LCP systems that rely on feature
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engineering still perform well. During the LCP–2021 shared-task
(Shardlow et al., 2021a), the third best performing system adopted a
feature engineering approach (Mosquera, 2021). AmongMosquera
(2021)’s extensive set of features, word frequency, length, syllable
count, and familiarity were found to be among the best features
in predicting lexical complexity. This is further supported by the
findings of Desai et al. (2021) and Shardlow et al. (2021b). As
such, this study has used these features as a means of analyzing
the differences in complexity assignment between L1 and L2
English speakers.

2.3.1 Statistical features
Zipf ’s Law states that few words are rare, few words are very

frequent, and the rest are more or less evenly distributed. Those
words which are rare and that appear less frequently within a
text are likely to be longer than compared to those words that
are more common (Quijada and Medero, 2016; Zampieri et al.,
2016). Therefore, it is often believed that since infrequent words
are longer, they are less likely to be familiar and as a consequence,
are more complex than compared to more frequent words that are
shorter (Zampieri et al., 2016).

Zipfian frequency is used to predict the frequency of a target
word within a natural language, such as English, given a provided
dataset. It is calculated per the following equation:

ZipfFreq(word) =
1

ksHn,s
=

1

kword
(1)

where k is the frequency rank of the target word ordered from
the most to least frequent, s is the exponent that defines the
distribution, n is the vocabulary, and size Hn,s is the generalized
harmonic number; “being the sum of the reciprocals of the size of
the vocabulary” (Zampieri et al., 2016).

True frequency represents the frequency of a target word
within a given dataset rather than its predicted frequency within
its respective language. True frequency is generated through the
following equation:

TrueFreq(word) =
count(word)

N
(2)

with the numerator being the number of times the target word
appeared in a dataset, and where N is the number of tokens within
that dataset. We calculated frequency using the Brown Corpus
(Francis and Kucera, 1979) and the British National Corpus (BNC)
(BNC Consortium, 2015).

A percentage of the BNC was used to generate document
frequencies, being howmany documents the target word was found
in. The BNC consists of 4049 texts, including both written and
spoken texts (BNC Consortium, 2015). We selected a percentage
of written texts, with an average of 10% of our selected texts
coming from each text genre, spanning literary works to news and
scientific articles. We believed document frequency would help
verify or disprove any potential correlation drawn between lexical
complexity and word frequency.

Word length is associated with lexical complexity (Paetzold
and Specia, 2016; Yimam et al., 2018; Desai et al., 2021; Shardlow

et al., 2021a,b). It is calculated by simply counting the number
of characters that form a target word. Zampieri et al. (2016)
along with others (Paetzold and Specia, 2016; Yimam et al., 2018;
Desai et al., 2021; Shardlow et al., 2021a,b), have discovered
that statistical features, such as word frequency, be it either
Zipfian frequency or True frequency, along with word length, are
good baseline indicators of lexical complexity. A strong negative
correlation should be seen between word frequency, word length
and complexity, regardless of whether the annotator is a L1 or
L2 speaker.

2.3.2 Phonological features
Syllable count is also used for predicting lexical complexity

(Paetzold and Specia, 2016; Yimam et al., 2018; Desai et al., 2021;
Shardlow et al., 2021a,b). This is since words with a high number of
syllables can be hard to pronounce for some individuals (Mukherjee
et al., 2016). L2 English speakers who are not yet familiar with
the phonology of the target language, may subsequently find such
words to be difficult to read and articulate (Mukherjee et al., 2016;
Desai et al., 2021). Learners of English may perceive these words to
bemore complex than words with less syllables in comparison to L1
English speakers. Syllable count is normally obtained by counting
the number of vowels within a target word (Desai et al., 2021).

2.3.3 Character N-grams
Many languages do not share the same writing system or the

same alphabet. This may lead to some L2 English speakers being
unfamiliar with certain character combinations found in English.
Thus, words made up of these unfamiliar character combinations
are also likely to be considered more complex for a L2 English
speaker than those words which have a similar appearance to words
within their L1, i.e., cognate words. Certain character combinations
may subsequently impact reading and understanding either as a
consequence of being part of an acquired alphabet or simply being
unfamiliar to the reader.

Character N-grams are often used to recognize those character
combinations which may pose difficulty to a given reader (Desai
et al., 2021; Shardlow et al., 2021b). We suspect that these differing
character combinations may be identifiable when analyzing the
bigrams and trigrams of the complex words annotated by L1 and
L2 English speakers.

2.3.4 Psycholinguistic features
Familiarity is among the most popular psycholinguistic feature

for LCP (Paetzold and Specia, 2016; Yimam et al., 2018; Desai
et al., 2021; Shardlow et al., 2021b). Obtained from the MRC
Psycholinguistic Database (Wilson, 1988), familiarity is a measure
of how well-known a target word is to an individual and was
obtained through self-report from a group of 36 L1 English
speaking university students (Gilhooly and Logie, 1980; Desai
et al., 2021). Familiarity is related to another feature referred to as
prevalence.

Prevalence is the percentage of annotators who know a
target word (Brysbaert et al., 2019). It is produced by the
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following equation:

Prev(word) =
Annotators(word)

N
(3)

with the numerator being the number of annotators familiar with
the word, and N being the total number of annotators. Brysbaert
et al. (2019) has provided a dataset containing 62,000 English words
and their respective prevalence ratings annotated by 221,268 L1
English speakers from the USA and UK.

Concreteness is another popular feature for LCP (Paetzold and
Specia, 2016; Yimam et al., 2018; Desai et al., 2021; Shardlow
et al., 2021b). It is defined as “the degree to which the concept
denoted by a target word refers to a perceptible entity” (Brysbaert
et al., 2013). Concreteness is also normally obtained through self-
report. Brysbaert et al. (2013) have provided a dataset containing
the concreteness ratings of 40,000 English words provided by 4,000
L1 English speakers located in the USA.

2.3.5 Summary and hypotheses
In the preceding sections, we compare the above features’

correlations with lexical complexity acrossmultiple datasets created
by differing sets of annotators: L1 and L2 English speakers. Zipfian,
True, and document frequency, word length, syllable count, and
character n-grams were computed manually, whereas familiarity,
prevalence, and concreteness scores were extracted from the MRC
Psycholinguistic Database (Wilson, 1988; Brysbaert et al., 2019,
2013), respectively, and then applied to each of the three datasets.
We put forward several hypotheses.

Hypothesis 1: We suspect that strong correlations will exist
between lexical complexity and word frequency, word length,
syllable count, familiarity, prevalence, and concreteness,
regardless of the type of annotator.
Hypothesis 2: We do, however, hypothesize that the strength
of these strong correlations shall vary between datasets and
their respective annotators.
Hypothesis 3: We predict that there shall be differences
between the most complex bigrams and trigrams belonging to
either set of annotators.

3 Data extraction and normalization

This study has extracted the English tokens without context
and their corresponding continuous complexity values provided
by the L1 English speaking annotators of the CompLex dataset
(Shardlow et al., 2020), and the L2 English speaking annotators of
the WCL dataset (Maddela and Xu, 2018), and the CERF-J wordlist
(Tono, 2017). In total, 940 tokens were found to be shared among
these datasets. However, 1 and 18 tokens were not matched with
either prevalence or concreteness scores, respectively. These tokens
were not considered within our final analysis of prevalence or
concreteness and lexical complexity.

To compare L1 and L2 English speakers’ complexity
assignments, each dataset complexity values were normalized
to a range between 0 and 1. Normalization was achieved through
the following equation:

TABLE 2 Example of 10 target words shared between the three datasets:

CompLex, WCL, and CERF-J.

Target word CompLex WCL CERF-J

Flour 0.17 0.17 0.20

Bulb 0.18 0.20 0.20

Kindness 0.19 0.26 0.40

Curse 0.19 0.20 0.20

Biology 0.30 0.37 0.40

Elite 0.34 0.31 0.60

Modification 0.31 0.54 0.60

Ideology 0.35 0.63 0.60

Equity 0.36 0.63 0.60

Infringement 0.40 0.70 0.60

Ranked from least to most complex per the L1 English speakers of the CompLex dataset.

zi =
xi −min(x)

max(x)−min(x)
(4)

where xi is the current complexity value, andmin(x) andmax(x) are
the respective minimum and maximum values of the given likert
scale range. Table 2 provides a snapshot of the 940 shared tokens
along with their normalized complexity values.

4 Results

The following sections compare the relationships between the
chosen features and the normalized continuous complexity values
made by either set of annotators. Figures 1–8 depict each features
correlation to lexical complexity per dataset. The average lexical
complexity values of L1 English speakers are shown in blue and
have no symbol (CompLex), whereas those provided by L2 English
speakers are represented by a purple square (WCL) and a red
triangle (CERF-J).

4.1 Zipfian and true frequency

Figures 1, 2 display each datasets’ average complexity values per
token frequency within the Brown Corpus and BNC, respectively
(Francis and Kucera, 1979). We predicted that in accordance
to Zipf ’s Law, a negative correlation would exist between word
frequency and complexity, with words of a higher frequency having
been assigned lower complexity values. This would appear to be
true for all datasets, particularly for theWCL dataset and the CERF-
J wordlist. The 100 tokens with the lowest Zipfian frequencies,
including such words as “valentine”, “genetics”, and “functionality”,
were on average +0.20 and +0.27 more complex than the 100
tokens with the highest Zipfian frequencies, including such words
as “may”, “first”, and “new”, within the WCL dataset and the
CERF-J wordlist, respectively. This negative correlation is also
supported by examining these 100 tokens’ True frequencies both
in regards to the Brown and BNC datasets. The 100 tokens with
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FIGURE 1

Avg. complexity per brown true freq.

FIGURE 2

Avg. complexity per BNC true freq.

the lowest True frequencies per the Brown corpus were on average
+0.13 and +0.19 more complex than those 100 tokens with the
highest True frequencies within the WCL dataset and the CERF-J
wordlist, respectively. Furthermore, an average decrease of−0.0012
per +10.00 increase in True Frequency was observed for those
complexity assignments belonging to theWCL dataset and−0.0019
for those belonging to the CERF-J wordlist. An average decrease of
−0.0065 and −0.0099 per +10.00 increase in True Frequency was
likewise observed per the BNC for theWCL dataset and the CERF-J
wordlist, respectively.

FIGURE 3

Avg. complexity per relative document frequency within the BNC.

The CompLex dataset alternatively depicted a less strong
negative correlation between word frequency and complexity. For
most instances, the frequency of a given token did not appear to
have a great influence on its assigned complexity. The 100 least
frequent tokens were found to be on average only +0.06 more
complex in regards to their Zipfian frequencies and on average
only +0.04 more complex per the Brown corpus and +0.05 more
complex per the BNC in regards to their True frequencies. The
100 most frequent tokens were on average rated to be −0.15 less
complex by the CompLex dataset’s L1 annotators than they were by
theWCL dataset’s L2 annotators and the CERF-J wordlist in regards
to their True frequency. P-values of 0.0004 and 0.0035 suggest
that there is a significant difference between the complexities of
the 100 most and least frequent tokens of either set of annotators,
respectively. In addition, a less impressive average decrease of
−0.00008 in complexity using the Brown corpus and a decrease of
−0.0013 using the BNC per +10.00 increase in True Frequency was
also observed for the CompLex dataset.

4.2 Document frequency

Figure 3 shows a snapshot of the relative document frequency
of target words found within the BNC. It was discovered that those
target words with a relative document frequency >0.140 exhibited
a similar complexity. However, a decrease in assigned complexity
can be seen between relative document frequencies of 0 to 0.140.
This is in parallel with the negative correlation shown between
assigned complexity and word frequency for CompLex, WCL, and
the CERF-J wordlist within Section 4.1. An average decrease of
−0.0017 for CompLex, −0.0054 for WCL, and −0.0075 for the
CERF-J wordlist was seen per +0.006 increase in relative document
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FIGURE 4

Avg. complexity per word length. within the BNC.

FIGURE 5

Average complexity per syllable.

frequency. As such, the L2 annotators of the WCL and CERF-
J wordlist seem to be more affected by the frequency of a word
compared to the L1 annotators of the CompLex dataset.

4.3 Word length

Figure 4 depicts each dataset average complexity values per
word length. We predicted that longer words would be less familiar
and more difficult to learn for set of annotators and consequently
would be rated with higher complexity values. This was seen to

FIGURE 6

Avg. complexity per familiarity from the psycholinguistic datasbase

(Wilson, 1988).

FIGURE 7

Avg. complexity per prevalence from Brysbaert et al. (2019).

be true across all datasets. Each dataset demonstrated a positive
correlation between word length and complexity. Tokens with 3–
7 characters, including such words as “day”, “men”, and “may”,
were rated to be on average −0.15 less complex than tokens with
10–14 characters, examples being “management”, “international”,
and “relationship”. On average, a +0.03 increase in complexity was
observed per every additional character across all datasets.

The CompLex dataset appears to show a less strong positive
correlation between word length and complexity compared with
the WCL dataset and the CERF-J wordlist. Words with 4–7
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FIGURE 8

Average complexity per concreteness rating taken from Brysbaert

et al. (2013).

characters were assigned with an average complexity of 0.22.Words
with 10–14 characters were rated as having an average complexity
of 0.25. Therefore, on average, words with 10–14 characters were
perceived to be +0.03 more complex than those with 4–7 characters
for the CompLex dataset’s L1 English speaking annotators. In
comparison, the L2 English speaking annotators of the WCL
dataset and the CERF-J wordlist, respectively, assigned words with
10–14 characters with complexity values that were on average +0.25
and +0.18 greater than those with 4–7 characters. The L1 English
speaking annotators of the CompLex dataset have subsequently
interpreted long words of 10–14 characters to be on average −0.19
less complex than compared with the L2 speaking annotators of
the WCL dataset and the CERF-J wordlist. A p-value of 0.0002
between the complexities assignments of 10–14 character words
belonging to either set of annotators, confirms that this difference
is significant.

4.4 Syllable count

Figure 5 displays each datasets average complexity values per
number of syllables within a given token. The WCL dataset
and the CERF-J wordlist showed a positive correlation between
assigned complexity and a target word’s number of syllables.
The CompLex dataset, however, demonstrated no such positive
correlation. Instead, the CompLex dataset showed little to no
fluctuation in complexity between 1 and 5 syllable words. For
every additional syllable in this range, the CompLex dataset shows
an extremely small increase in complexity of +0.004. Thus, no
real change in complexity was observed. The WCL dataset and
the CERF-J wordlist, on the other hand, showed incremental
increases in complexity between 1 and 5 syllables by +0.06 and
+0.04, respectively. This further proves that the number of syllables

contained within a target word are less important for L1 English
speakers when it comes to rating that word’s complexity, whereas
for L2 English speakers, an increased number of syllables may
result in greater word difficulty. This is especially true if that word
contains 5 or more syllables. However, a p-value of 0.077 indicates
that the complexity assignments given to 1 to 5 syllable words are
not significantly different between the two sets of annotators. As
such, these observations should/must be verified on a larger sample
of L1 and L2 English speakers.

4.5 Character N-grams

The 10 most complex bigrams and trigrams with a frequency
greater than 10 found among the 940 shared tokens are
presented within Table 3. Several observations suggest that certain
derivations, character combinations, or morphemes, increase the
perceived complexity of target words for L2 English speakers, yet
have no affect on complexity assignment for L1 English speakers.

The trigram “nes” within the WCL dataset and the CERF-
J wordlist was found to be in more complex words than
it was within the CompLex dataset. This trigram was found
among 10 of the 940 shared words, and was part of such
words as “awareness”, “thickness”, “kindness”, “weakness”, and
“righteousness”. Its associated words were on average assigned a
complexity value (a difficulty rating) of 0.34 for the WCL dataset
and a complexity value of 0.45 for the CERF-J wordlist by the
original annotators of the datasets. Within the CompLex dataset,
however, these words were rated with an average complexity value
of 0.22 and thus were on average rated as being−0.18 less complex.
This may indicate that for L2 English speakers, target words with
the derivational suffix “-ness", are considered to be more complex
than they are for L1 English speakers.On the other hand, the
trigram “nes” was also found in words, such as “Chinese” or
“honest”, and given the small sample size, further investigation was
needed to verify this finding. As such, we calculated the average
complexity assignment for all of the words with the derivation
“-ness” found within each dataset, including those words which
were not shared. In total, the CompLex dataset was found to
contain 82 words with the “-ness” derivation with an average
complexity of 0.26, whereas the WCL dataset and the CERF-J
wordlist contained 39 and 52 words with the “-ness” derivation with
average complexity ratings of 0.34 and 0.48, respectively.

The bigrams “io” and “ti”, and the trigram “ati” belonged
to words with noticeably higher complexity values within the
WCL dataset and the CERF-J wordlist than they did within
the CompLex dataset. The bigrams “io” and “ti”, were part of
118 and 111 words, respectively, and the trigram “ati” was part
of 54 words of the shared 940 words. Many of these words
had all three n-grams as they contained the suffix “-tion”, for
example: “isolation”, “separation”, “discrimination”, “classification”,
and “communication”. Those words that contained the bigrams “io”
and “ti” had an average complexity value of 0.37 for the WCL
dataset and an average complexity value of 0.4 for the CERF-
J wordlist. The trigram “ati” was part of words with an average
complexity of 0.4 for theWCL dataset and an average complexity of
0.41 for the CERF-J wordlist. In comparison, the bigrams “io” and
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TABLE 3 Average complexities and frequency of the top 10 most complex bigrams and trigrams across the three datasets.

Bigram CompLex CWI CERF-J Frequency Trigram CompLex CWI CERF-J Frequency

io 0.25 0.37 0.40 118 ati 0.25 0.40 0.42 54

ti 0.24 0.37 0.40 111 nce 0.25 0.39 0.41 31

co 0.25 0.35 0.40 60 men 0.24 0.48 0.42 29

ic 0.25 0.35 0.38 37 con 0.25 0.36 0.41 24

ns 0.25 0.37 0.45 24 ran 0.26 0.39 0.43 13

rs 0.22 0.3 0.40 15 tra 0.26 0.37 0.39 13

va 0.27 0.37 0.47 15 ica 0.27 0.44 0.5 11

ue 0.25 0.33 0.40 14 fic 0.27 0.42 0.44 11

mm 0.25 0.41 0.36 10 cat 0.25 0.38 0.47 11

ef 0.28 0.32 0.48 10 nes 0.22 0.34 0.45 10

Bigrams and trigrams of interest are in bold. Ordered most frequent to least.

“ti”, and the trigram “ati”, were found to have been associated with
average complexity values of 0.25, 0.24, and 0.25 for the Complex
dataset, respectively. The suffix “-tion” would, therefore, appear to
be present within words that are on average +0.15 more complex
for L2 English speakers than they are for L1 English speakers.

Words without derivation, hence root words (lemmas),
appeared to be less complex than those words with an derivational
prefix or suffix, regardless of the dataset or annotator. 741 of the 940
shared words were root words. On average, root words were found
to have complexity values of 0.23, 0.22, and 0.28 for the CompLex
dataset, the WCL dataset, and the CERF-J wordlist, respectively.
The 199 remaining derivational words, had average complexity
values of 0.24, 0.36, and 0.42 for the CompLex dataset, the WCL
dataset, and the CERF-J wordlist, respectively. As such, the 741
root words appeared to be on average -0.01, -0.1, and -0.13 less
complex across the three datasets when compared to those words
with derivation. Derivation therefore would appear to universally
increase the complexity of a target word.

L2 English speakers have also appeared to have found
derivational word forms more troublesome than L1 English
speakers. This is since L2 English speakers have assigned words
with the derivations: “-ness” or “-tion” with greater complexity
values than compared to the L1 English speakers of the CompLex
dataset, as detailed above. However, there were only a few instances
were both root and derivational word forms were shared across
the three datasets, such as “complex” and “complexity”, “effect”
and “effectiveness”, “portion” and “proportion”, “relation” and
“relationship”, “action” and “interaction”, and so forth. The average
differences between these root words and their derivational forms
were complexities values of +0.01, −0.17, and −0.16 for the
CompLex dataset, the WCL dataset, and the CERF-J wordlist,
respectively. This suggests that the prior assumption is correct.
For example, for the L2 English speaking annotators of the
WCL dataset and the CERF-J wordlist, these root words were on
average −0.16 to −0.17 less complex than compared to the L1
English speaking annotators of the CompLex dataset. Nevertheless,
without further root and derivational word pairs, this finding
is inconclusive.

4.6 Familiarity and prevalence

As expected, a negative correlation was observed between
familiarity and complexity (see Figure 6). However, this was only
seen within the WCL dataset and the CERF-J wordlist. For these
datasets, an average increase in perceived complexity was found
of +0.002 per every −10 decrease in familiarity. The complexity
assignments of the CompLex dataset did not demonstrate this
trend. Instead, familiarity appeared to have had no affect on
complexity assignment, with complex and non-complex words
depicting similar or varying degrees of familiarity. For example,
the 100 most familiar words found within the WCL dataset
and the CERF-J wordlist had an average complexity of 0.16
and 0.22, respectively, whereas their 100 least familiar words
had an average complexity of 0.27 and 0.31, respectively. This
resulted in a difference of +0.11 for the WCL dataset and a
difference of +0.09 for the CERF-J wordlist. In contrast, the
100 most and least familiar words found within the CompLex
dataset depicted average complexity values of 0.22 and 0.22,
respectively amounting to a range of −0.003. The difference
between the 100 least familiar words’ complexity assignments
between the two sets of annotators was also found to be
significant with a p-value less than 0.001. In turn, familiarity
has little to no impact on complexity within the CompLex
dataset than in comparison to the WCL dataset and the CERF-J
wordlist.

A less strong negative correlation was observed between
prevalence and complexity across all of the datasets than expected
(see Figure 7). However, for the CompLex dataset this correlation
was even less emphatic.Words with little to no prevalence appeared
to have been assigned with similar complexity values to those words
which were rated as being highly prevalent. The 100 most prevalent
tokens, including such words as “party”, “building”, and “morning”,
were assigned an average complexity of 0.22 and 0.27, whereas
the 100 least prevalent tokens, made up of such words as “honor”,
“economy”, and “market”, were rated an average complexity of 0.27
and 0.36 for theWCL dataset and the CERF-J wordlist, respectively.
The 100 most prevalent tokens were therefore−0.05 and−0.09 less
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complex in comparison to the 100 least prevalent tokens for these
datasets. For the CompLex dataset, however, the 100 most and least
prevalent tokens were assigned respective average complexities of
0.229 and 0.233. Therefore, this marks a less impressive decrease
in complexity by −0.004 for the 100 most prevalent tokens. A p-
value of 0.048 marks a slight significant difference between the
assigned average complexities of the 100 least prevalent tokens
between both sets of annotators. It would, therefore, appear that
both familiarity and prevalence are good indicators of complexity,
but only for complexity assignments made by L2 English speakers.
This is since L2 English speakers demonstrated a far stronger
positive correlation between these two features and complexity,
than in comparison to L1 English speakers.

4.7 Concreteness

A negative correlation was observed between concreteness and
complexity (see Figure 8). This negative correlation is again more
prominent within theWCL dataset and the CERF-J wordlist. Those
tokens which were assigned concreteness values of 5, marking them
as highly concrete, for example “tree”, “sand”, “house”, “chair”, and
“water”, were on average assigned complexity values of 0.19, 0.14,
and 0.22 in the CompLex dataset, theWCL dataset, and the CERF-J
wordlist, respectively. Those tokens which were given concreteness
values of 0, identifying them as highly abstract, for instance
“attitude”, “online”, “complex”, “righteousness”, and “impact”, were
on average assigned complexity values of 0.23, 0.27, and 0.31 across
the three datasets, respectively. As such, for every −1.00 decrease
in concreteness, theWCL dataset and the CERF-J wordlist depicted
an average increase in complexity by +0.02. The CompLex dataset,
on the other hand, showed a less impressive increase in complexity
by +0.006 per −1.00 decrease in concreteness. Furthermore, a p-
value of 0.03 marks that this difference is significant. As such,
concreteness appears to have more of an effect on perceived lexical
complexity for L2 English speakers, than it does for L1 English
speakers.

5 Discussion

5.1 Statistical features and complexity

A negative correlation was found between word and document
frequency and complexity for the CompLex dataset, the WCL
dataset, as well as the CERF-J wordlist. This was unsurprising given
that previous studies (Paetzold and Specia, 2016; Yimam et al., 2018;
Desai et al., 2021; Shardlow et al., 2021b) have demonstrated that
word frequency is a good baseline indicator of lexical complexity.
However, the strength of this negative correlation varied between
L1 and L2 English speakers. The WCL dataset and the CERF-
J wordlist, being annotated by L2 English speakers, depicted a
significantly stronger negative correlation than in comparison to
the CompLex dataset that was annotated by L1 English speakers.

The same finding was also observed in regards to word length.
The WCL dataset and the CERF-J wordlist both showed a strong
positive correlation between the number of characters in a word
and that word’s assigned complexity, with the CompLex dataset

again showing a significantly less strong correlation between the
two. Word length has also been proven to be a good baseline
indicator of lexical complexity (Paetzold and Specia, 2016; Yimam
et al., 2018; Desai et al., 2021; Shardlow et al., 2021b). Nevertheless,
since that both word frequency and word length vary in their
correlations with lexical complexity between L1 and L2 English
speakers, it can be assumed that uncommon words of a greater
length are far more complex for L2 English speakers than they are
for L1 English speakers.

A possible explanation is that L2 English speakers are far less
likely to be exposed to and thus be familiar with uncommon and
long English words and would subsequently rate these words as
being more complex than in comparison with L1 English speakers.
Furthermore, English words that are over 6 characters long, are
likely to contain a high number of syllables and would generally
be hard to pronounce and learn given their length. This would
likely increase the perceived complexity of such words, especially
for someone who is unacquainted with English vocabulary or
phonology. For instance, words such as “righteousness”, “vanity”,
“conscience”, “nucleus”, and “genetics” received greater complexity
values by L2 English speakers than compared to L1 English
speakers. These tokens are all jargon that is specific to the religious
or academic genre per the CompLex dataset (Shardlow et al., 2020).
They were also of considerable length compared with other less
complex tokens.

5.2 A phonological feature and complexity

A positive correlation was observed between syllable count and
complexity for both theWCL dataset as well as the CERF-J wordlist.
However, this was not the case for the CompLex dataset. This may
support the assumption that words with a high number of syllables
are especially hard for L2 English speakers. However, this cannot be
certain, since a p > 0.05 indicates no significant difference between
the complexity assignments of 1–5 syllable words belonging to
either set of annotators. In spite of this, if L2 English speakers were
to find an increase number of syllables difficult to articulate and/or
process, then this may again be due to a possible unfamiliarity with
English phonology, or, a more likely explanation is a phenomenon
known as cross-linguistic influence.

Cross-linguistic influence is where an individual’s L1 has an
active effect on their L2 production. This phenomenon results in
a variety of production errors. For instance, a L1 Chinese speaker
whom is unfamiliar with English pluralization may incorrectly use
the singular form of an English target word in a plural setting. This
is because Chinese does not use inflection to dictate pluralization
(Yang et al., 2017). Cross-linguistic influence can subsequently be
linked to differing perceptions of lexical complexity, with some
demographics finding specific English words, word forms, or
pronunciations, to be more or less complex than others, depending
on their L1.

Certain vowels, diphthongs, or phonological patterns are
specific to certain languages and are not present in English, or
are unique to English yet are not found in other languages. As
a consequence, those words with a high number of syllables are
more likely to contain troublesome phonemes which may be
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prone to cross-linguistic influence. An example of this, is the
English /i@/ diphthong, as found in beer, pier, and weary (Enli,
2014). For Chinese L2 English speakers, this particular diphthong
is hard to pronounce, since there is no equivalent sound in
Chinese Mandarin. Therefore, the lack of a similar sounding
Chinese phoneme causes those English words that contain the /i@/
diphthong to be hard for Chinese L2 English speakers to articulate
and potentially learn (Enli, 2014). As a result, Chinese annotators
may rate such words as being more complex than compared
with those English words that they find easier to articulate and
that have a less number of syllables. Thus, a greater number of
syllables increases the likelihood of troublesome phonemes prone
to cross-linguistic influence. This may explain the observed positive
correlation between number of syllables and L2 English speaker’s
perceived lexical complexity depicted in Figure 3.

5.3 Morphological features and complexity

5.3.1 “-ness” su�x
The “-ness” suffix is used to transform a noun, or a root word, to

a countable noun, such as changing “thick” to “thickness”, or “kind”
to “kindness”. It is also derivational in that it can be used to change
the meaning of a word to denote a related but separate concept,
such as “weak” to “weakness” as in “he was weak” to “his weakness
is”. Interestingly, words that contained the “-ness” suffix were rated
as being significantly more complex by the L2 English speakers of
the WCL dataset and the CERF-J wordlist, than in comparison to
the L1 English speakers of the CompLex dataset.

5.3.2 “-tion” su�x
The “-tion” suffix is used to transform verbs to abstract nouns,

such as transforming “isolate” to “isolation”, or “discriminate” to
“discrimination”. Words that contained the “-tion” suffix were also
found to be more complex for L2 English speakers than L1 English
speaker in the respective datasets.

5.3.3 Root words
Unlike words with the above derivations, those words without

derivation appeared to be universally less complex than in
comparison to those with derivation. This being across all
annotators and datasets.

Prior research has attempted to explain the neural processing
of L1 derivations (Kimppa et al., 2019). However, less research
has been conducted on how speakers process derivations within
their L2 (Kimppa et al., 2019). Several hypotheses have been put
forward that attempt to explain why production errors are caused
in connection to L2 derivation and in turn, why L2 English speakers
may perceive such words, such as those words with the suffix “-ness”
or “-tion”, to be more complex than root words without derivation
(Gor, 2010).

L2 processing is believed to be more cognitively demanding. It
is theorized to require more cognitive resources than L1 processing.
As result, it can lead to delayed response time and production
errors even among highly proficient L2 speakers (McDonald, 2006;
Clahsen and Felser, 2018). McDonald (2006), conducted several

experiments and found that L1 English speakers produced the
same grammatical errors as L2 English speakers when in a stressful
and high processing environment, such as dealing with noisy data
or given a short time to respond. McDonald (2006) concluded
that L2 speakers must therefore experience high cognitive demand
whenever they process their L2. Hopp (2014) goes on to explain
this further. He demonstrated that increased cognitive demand
during L2 processing results in there being insufficient resources
for syntactic processing. This may subsequently explain why such
forms as “-ness” and “-tion” as well as other derivations, are
perceived to be more complex for L2 than compared with L1
English speakers. Inadequate working memory may cause L2
English speakers to have difficulty with decoding these derivations,
whereas L1 English speakers having less cognitive load, can do so
with ease.

The shallow-structure hypothesis (Clahsen and Felser, 2006a,b,
2018), is unlike the above explanations. Alternatively, this
hypothesis infers that a difference in L2 processing is responsible
for differences in complexity assignment between L1 and L2 English
speakers, rather than an increased cognitive load and inadequate
cognitive resources. It suggests that L2 learners rely more on lexical
and semantic information than syntactic cues when attempting to
derive themeaning of a given sentence. In other words, the shallow-
structure hypothesis puts forward that an L2 learner’s syntactic
representations are often “shallower and less detailed” in their L2. It
hypothesizes that this is a result of direct form-function mapping,
memorizing a particular form of a given L2 word, rather than
ascertaining that form from learned L2 syntactic rules (Dowens
and Carreiras, 2006). As such, the shallow-structure hypothesis is
also different from cross-linguistic influence, since the former is
concerned with differences in L1 and L2 processing, whereas the
latter is entirely a consequence of L1 influence on L2; however,
some cross-over between the two does occur (Clahsen and Felser,
2018). If the shallow-structure hypothesis were to be true, then this
would explain why such “-ness” and “-tion” words were perceived to
be more complex for L2 in comparison to L1 English speakers. For
instance, L2 English speakers may only be able to recall those word
forms which they are familiar with, having memorized the word:
“awareness”, rather than learning the uses of the derivation “-ness”.
L1 English speakers, on the other hand,may be better equipt to infer
the meaning of an unseen word form, based on their prior syntactic
knowledge of that derivation: “-ness”. In turn, such words would
appear less complex for L1 than L2 English speakers.

5.4 Psycholinguistic features and
complexity

5.4.1 Familiarity and prevalence
It was expected that both familiarity and prevalence would

demonstrate a negative correlation with complexity, with higher
familiarity and prevalence ratings resulting in reduced perceived
lexical complexity. Results showed this to be true, but only
for the WCL dataset and the CERF-J wordlist. The CompLex
dataset showed no such trend between familiarity and complexity,
with only a small negative correlation between prevalence and
complexity being present.
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A possible explanation may be found in the annotation process
of the provided familiarity and prevalence ratings taken from
the MRC psycholinguistic database (Wilson, 1988) and Brysbaert
et al. (2019)’s dataset, respectively. Both of these datasets acquired
their familiarity and prevalence ratings from a set of L2 English
speaking annotators of mixed proficiency. It can, therefore, be
expected that a stronger correlation would exist between other
L2 English speakers’ complexity ratings and the familiarity and
prevalence ratings provided by these datasets than in comparison
to those complexity ratings provided by L1 English speakers.
Nevertheless, this does not diminish the importance of familiarity
and prevalence in regards to lexical complexity. Another potential
explanation is that L1 and L2 English speakers are more or less
familiar with differing words as previously mentioned in Section
5.1. L1 English speakers may be aware of regional varieties, dialects,
or vernacular. For instance, “wild” could be considered to have
vernacular connotations in British and American English. This may
explain why similar vernacular words were rated as having high
familiarity and low complexity by L1 English speakers, yet low
familiarity and high complexity by L2 English speakers. Various
studies (Desai et al., 2021; Shardlow et al., 2021b) have also proven
that there is correlation between familiarity, prevalence and lexical
complexity. As such, our finding that the CompLex dataset did
not reflect a negative correlation between these features and lexical
complexity, may be a direct result of the poor generalizability of the
MRC psycholinguistic database (Wilson, 1988) and Brysbaert et al.
(2019)’s dataset toward L1 English speakers, rather than there being
no such correlation.

5.4.2 Concreteness
Concreteness was found to negatively correlate greater with

the complexity assignments of L2 English speakers than compared
with those belonging to L1 English speakers. It is well-documented
that concrete nouns are learned before, processed faster, and
recalled more easily than abstract nouns (Altarriba and Basnight-
Brown, 2011; Vigliocco et al., 2018). The same can be said
for L2 English learners. Altarriba and Basnight-Brown (2011),
conducted a Stroop color-word test. They measured their L2
English speaking participants reaction time to various concrete
and abstract nouns. They discovered that concrete nouns were
responded to significantly faster than abstract nouns. Martin and
Tokowicz (2020) discovered a similar finding. They tested L1
English speakers ability at learning L2 concrete and abstract nouns.
It was recorded that concrete nouns “were responded to more
accurately than abstract nouns” (Martin and Tokowicz, 2020).
Mayer et al. (2017) conducted a vocabulary translation task during
fMRI scans on L2 English learners. They found that L2 concrete
and abstract nouns elicited the same responses as L1 concrete and
abstracts nouns and subsequently concluded that L2 nouns are
likely to be prone to the same concreteness effects as L1 nouns.

The above studies exemplify a phenomenon known as the
concreteness effect. This phenomenon refers to the negative
correlation between a noun’s level of concreteness and its overall
acquisition difficulty and processing time. It can subsequently be
used to describe the negative correlation found within this study
between concreteness and perceived lexical complexity. This is

since those words which are learned later and take longer to
process would likely be consideredmore complex. There are several
possible explanations for this phenomenon.

The context availability hypothesis (Martin and Tokowicz,
2020), states that differences in concrete and abstract noun
complexity is due to the differing contexts in which these words
are found. For instance, a concrete noun, such as “chair” is likely to
be more common and appear in more contexts than the abstract
noun “communism”. The dual-coding theory (Paivio, 2006) as
well as the different organizational frameworks theory (Crutch
et al., 2009), suggest that the human mind represents concrete and
abstract words differently. Concrete nouns, for instance “chair”,
are believed to be encoded with visual cues in accordance to their
real world manifestation, such as “cushion”, “chair leg”, or “arm
rest”. Abstract nouns, however, for example “communism”, are
represented as concepts, having less emphatic visual identifiers with
more symbolic associations, “red”, or “hammer and sickle”.

6 Spelling error classification

6.1 Use case

Spelling errors are symptomatic of lexical complexity. Complex
words are more likely to be misspelt than non-complex words.
An individual that is familiar with a word is more likely to know
that word’s orthography than in comparison to an unfamiliar
and unknown word (Paola et al., 2014). With this in mind,
we hypothesized that the above differences in perceived lexical
complexity between L1 and L2 English speakers could be used
to differentiate between spelling errors made by these two target
populations.

It is well-documented that L2 English speakers make different
types of spelling errors compared to L1 English speakers (Napoles
et al., 2019). However, the connection between spelling error and
lexical complexity as defined within the field of natural language
processing has been left fairly unexplored (North et al., 2022). A
doctoral thesis by Wu (2013) looked into the relationship between
self-reported word frequency, familiarity, and morphological
complexity with spelling error. A sample of 220 5th to 7th
grade L1 English speakers were taken from American schools.
Results indicated a strong negative correlation between word
frequency and spelling error for 7th grade students, a slight negative
correlation between familiarity and spelling error for all students,
and a positive correlation between morphological complexity and
spelling error that decreased with age.

It is plausible that words that are frequently misspelt may
exhibit the same features that mark words as being complex.
The previous analysis in Section 5 indicates that features such as
word frequency, length, syllable count, familiarity and prevalence,
and concreteness are more greatly correlated with L2 than L1
English speakers’ perception of lexical complexity. We, therefore,
used these features to train several binary machine learning (ML)
classifiers to distinguish between spelling errors made by L1 and L2
English speakers. This was done to test the validity of our previous
observations and to provide a use case for our findings within TS
and CALL technologies.

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2023.1236963
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


North and Zampieri 10.3389/frai.2023.1236963

TABLE 4 Macro f1-scores produced by each feature and feature set ordered from highest to lowest score on feature set C, being the best performing

feature set.

Features Feature sets

Model Frequency Word length Syllable count Prevalence Concreteness AoA A B C D

RF 0.577 0.489 0.422 0.552 0.572 0.570 0.509 0.562 0.611 0.559

SVC 0.430 0.513 0.498 0.503 0.478 0.453 0.510 0.506 0.530 0.531

NB 0.506 0.513 0.498 0.506 0.499 0.453 0.501 0.506 0.523 0.526

RC 0.521 0.487 0.499 0.496 0.483 0.529 0.488 0.510 0.495 0.514

MC 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367

Best performances are in bold. Dash lines separate baseline models: RC and MC, and feature set A, from non-baseline experiments.

FIGURE 9

Predictions of RF trained on frequency.

6.2 Dataset and models

Our original analysis was conducted on a sample of 940 shared-
tokens. To obtain the best possible performance, we included all
instances from the CompLex dataset (3,144) and a equal number
of instances from the WCL and CERF-J wordlist (3,144) for our
train set.

The test set was obtained from the dataset introduced by
Napoles et al. (2019), being a different dataset from those used
within the above analysis. This dataset was created for grammatical
error correction and provides spelling mistakes made by L1 and
L2 English speakers. It houses 1,984 and 1,936 sentences extracted
from formal Wikipedia articles written by L1 English speakers
and a collection of student essays written by L2 English speakers,
respectively. Napoles et al. (2019) asked a set of 4 trained annotators
to examine each sentence and identify grammatical and spelling
errors. We selected 396 of the spelling errors made by L1 and 287
of the spelling errors made by L2 English speakers. We used these

spelling errors as our test set having labeled each instance with a
corresponding L1 or L2 spelling error label (shortened to L1 or L2).

We trained a total of five binary ML classifiers. These included
a Random Forest (RF), Support Vector Classifier (SVC) and a
Naive Bayes (NB) model, as well as two baseline models in
the form of a majority classifier (MC), and a random classifier
(RC). These models were trained on the aforementioned features
described in Section 2.3 with the exception of character n-
grams. Given the size of our test set, models were unable
to draw meaningful correlations between character n-grams
and spelling error. Average age-of-acquisition (AoA) was also
included as an additional feature. AoA is defined as the age
at which a word’s meaning is first learned (Desai et al.,
2021). It was calculated by averaging the AoAs provided by
Brysbaert and Biemiller (2017). Each model was also trained
on four feature sets, as explained below. These feature sets
contained a combination of different features based on their
individual performances:
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FIGURE 10

Predictions of RF trained on set C.

A. Contained several of what are considered the baseline statistical
features of LCP (Shardlow et al., 2020), being word length,
syllable count, and frequency.

B. Consisted of the best individually performing features of
frequency, prevalence and concreteness.

C. Expanded feature set B to also include AoA.
D. Contained all features.

6.3 Performance

Models were assessed on their macro f1-scores since there
was an equal distribution of class labels within the train and test
sets. Marco f1-score being the average f1-score achieved per-class
label. Despite the RF, SVC, and NB models having achieved similar
performance to the RC and MC baseline models, increases in
performance were observed when certain features were taken into
consideration. Table 4 lists all model performances for each feature
and feature set.

Frequency was found to improve our RF model’s performance
to a macro f1-score of 0.577 surpassing the highest performance
achieved by our baseline models. Figure 9 depicts the class
predictions of our RF when trained on frequency. Our RF model
was able to use frequency to correctly predict a large number of
the L1 English speakers’ spelling errors, whilst simultaneously being
less successful with predicting spelling errors made by L2 English
speakers.

The psycholinguistic features of prevalence, concreteness and
AoA likewise improved our RF’s performance achieving macro f1-
scores of 0.552, 0.572, and 0.570, respectively. However, in contrast
to frequency, these features improved our RF’s ability to predict

L2 English speakers’ spelling errors. Figure 10 shows the class
prediction of our RF when trained on feature set C comprising
these psycholinguistic features plus frequency. After having been
trained on this feature set, our RF was able to correctly predict
a larger number of spelling errors made by L2 English speakers
alongside those instances already correctly predicted as belonging
to L1 English speakers by our previous frequency-based RF. Feature
set C resulted in our RF achieving it’s highest performance with a
macro f1-score of 0.611.

To determine whether our RF’s performance using feature set
C was statistically significant to that achieved by our RC baseline,
predictions using feature set C were generated ten times. A t-test
was then applied to the f1-scores achieved by our RF and RC
models. The p-value obtained is lower than 0.05 indicating that
the performance of our RF trained on feature set C is statistically
significant compared to our RC baseline.

Feature sets B and D surprisingly performed less well than
feature set C having produced slightly worse macro f1-scores of
0.562 and 0.559, respectively. We contribute this to feature set
C’s inclusion of AoA. Feature set B did not include this feature,
whereas feature set D included all features which likely convoluted
class boundaries.

6.4 Transferable features

Frequency, prevalence, concreteness, and AoA are features
that can be gained from LCP datasets and then used to train a
binary classifier for predicting spelling errors made by L1 or L2
English speakers. Contrary to our previous observation in Section
5, frequency was found to be indicative of L1 English speakers’
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spelling errors more so than spelling errors made by L2 English
speakers. This is likely a result of the strong correlation observed
between frequency and lexical complexity, regardless of the target
population (Wu, 2013). Prevalence, concreteness, and AoA, on the
other hand, were able to predict more spelling errors made by L2
English speakers. This supports our previous finding. It suggests
that words that are less prevalent, less concrete, and are learned at a
later age are prone to being misspelt by L2 English speaker’s, hence
are likely to be considered more complex by this demographic.

7 Conclusion and outlook

This study aimed to discover whether sizable differences exist
between the lexical complexity assignments of L1 and L2 English
speakers. The complexity assignments of 940 shared tokens were
extracted and compared from three LCP datasets: the CompLex
dataset (Shardlow et al., 2020), the WCL dataset (Maddela and Xu,
2018), and the CERF-J wordlist (Tono, 2017). It was found that
word frequency, length, and syllable count had a greater effect on
perceived lexical complexity for L2 English speakers than they did
for L1 English speakers. Various derivations: “-ness” and “-tion”
increased lexical complexity for L2 English speakers more so than
L1 English speakers. Root words were seen to be universally less
complex by comparison with their derivational forms. Familiarity
and prevalence influenced lexical complexity for L2 English
speakers, yet for L1 English speakers only prevalence had an effect.
Concreteness was found to predict lexical complexity mainly for
L2 English speakers. However, a less emphatic correlation was also
observed for L1 English speakers.

In an attempt to explain these findings, we have briefly
introduced the reader to a number of potential explanations
taken from applied linguistics. These range from familiarity
(Desai et al., 2021; Shardlow et al., 2021b), cross-linguistic
influence (Lee and Yeung, 2018b; Maddela and Xu, 2018),
greater cognitive load in L2 processing (McDonald, 2006; Hopp,
2014), the shallow-structure hypothesis (Clahsen and Felser,
2006b, 2018), the context availability hypothesis (Martin and
Tokowicz, 2020), the dual-coding theory (Paivio, 2006), and
the different organizational frameworks theory (Crutch et al.,
2009).

Our findings were lastly applied to the task of automatically
classifying spelling errors made by L1 and L2 English speakers.
It was found that frequency obtained from the CompLex dataset

was able to predict spelling errors made by L1 English speakers.
Familiarity, prevalence, and concreteness, on the other hand,
obtained from the WCL dataset and the CERF-J wordlist, were
able to predict more spelling errors made by L2 English speakers.
As such, we demonstrate that several features ascertained from
LCP datasets are transferable and that several of our findings are
generalizable. We aim to use the differences between L1 and L2
English speakers perception of lexical complexity to better develop
personalized LCP systems, in turn, aiding future TS and CALL
applications.
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