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Motivation: Tensor decomposition (TD)-based unsupervised feature extraction

(FE) has proven e�ective for a wide range of bioinformatics applications ranging

from biomarker identification to the identification of disease-causing genes and

drug repositioning. However, TD-based unsupervised FE failed to gain widespread

acceptance due to the lack of user-friendly tools for non-experts.

Results: We developed two bioconductor packages—TDbasedUFE and

TDbasedUFEadv—that enable researchers unfamiliar with TD to utilize TD-based

unsupervised FE. The packages facilitate the identification of di�erentially

expressed genes and multiomics analysis. TDbasedUFE was found to outperform

two state-of-the-art methods, such as DESeq2 and DIABLO.

Availability and implementation: TDbasedUFE and TDbasedUFEadv are

freely available as R/Bioconductor packages, which can be accessed at

https://bioconductor.org/packages/TDbasedUFE and https://bioconductor.

org/packages/TDbasedUFEadv, respectively.

KEYWORDS

tensor decomposition, feature selection, unsupervised learning, gene expression,

multiomics

1. Introduction

Tensor decomposition (TD)-based unsupervised feature extraction (FE) has been

successfully applied to a wide range of problems (Taguchi, 2020) since it was introduced

several years ago (Taguchi, 2017). Despite its success, the method failed to gain widespread

acceptance, possibly due to the lack of practical tools to perform TD. To address this end,

we have developed two bioconductor packages, TDbasedUFE and TDbasedUFEadv, which

allow researchers to perform TD-based unsupervised FE easily without the need of detailed

knowledge of TD. The purpose of this manuscript is not to demonstrate the superiority

over the other methods, since the superiority over the other methods has already been

demonstrated in numerous studies cited below. The purpose of this manuscript is to simply

inform about the implementation of the established method into easy-to-use environment.
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2. Methods

TD-based unsupervised FE (Taguchi, 2017) was derived

from principal component analysis (PCA)-based unsupervised

FE (Taguchi and Murakami, 2013), which was introduced 10

years ago. As datasets grew in complexity and began to include

multiple measurement conditions, such as comparisons of multiple

tissues from human subjects rather than just those from human

patients restricted to a single tissue, tensors were employed instead

of matrices. Tensors, which can have multiple indices, each of

which can have multiple comparison criteria, better accomodate

complex data structures. For example, a three mode tensor xijk can

naturally store the expression of ith gene at kth tissue of jth human

subjects. In contrast, matrices with only two indices corresponding

to rows and columns require combining the tissue index and the

human index into a single column, rendering data interpretation

challenging.

TDbasedUFE and TDbasedUFEadv are user-friendly packages

that allow individuals who are unfamiliar with tensors to perform

unsupervised feature extraction. Since a matrix can be considered

as a two-mode tensor, these packages can also be used to apply

PCA-based unsupervised FE to the dataset. TDbasedUFE focuses

on two popular functions developed for TD-based unsupervised

FE, including the identification of differentially expressed genes

(DEGs) and multiomics analyses. For the DEG identification, the

basic algorithm is based on a recent study (Taguchi and Turki,

2022b) that established a new standard deviation (SD) optimization

approach. For multiomics analysis, the basic algorithm is based on

the same study (Taguchi and Turki, 2022c). However, TDbasedUFE

also incorporates SD optimization, which was not available when

the study was published. Although the algorithm is not specifically

designed for DNAmethylation profiles, we found that the approach

described in the study (Taguchi and Turki, 2022b) is also applicable

to DNA methylation profiles (Taguchi and Turki, 2023). In this

regard, any type of differential analysis on single omics data can be

performed by functions implemented in TDbasedUFE. In fact, we

have shown (Turki et al., 2023) that histone modification profiles

can be analyzed using the algorithm described in the study (Taguchi

and Turki, 2022b).

TDbasedUFE and TDbasedUFEadv accept a multiple omics

profile dataset formatted as a tensor. TD is applied on this dataset

using Tucker decomposition based on higher order singular value

decomposition (HOSVD) (Taguchi, 2020) algorithm. For instance,

if xijk ∈ R
N×M×K represents the gene expression of ith gene of jth

human subject’s kth tissue (Figure 1 left), TD is applied to xijk, and

the following equation is obtained:

xijk =

N
∑

ℓ1=1

M
∑

ℓ2=1

K
∑

ℓ3=1

G(ℓ1ℓ2ℓ3)uℓ1iuℓ2juℓ3k (1)

where G ∈ R
N×M×K is a core tensor that represents the weight of

the product uℓ1iuℓ2juℓ3k to xijk, and uℓ1i ∈ R
N×N , uℓ2j ∈ R

M×M ,

and uℓ3k ∈ R
K×K are singular value matrices and orthogonal

matrices. Initially, singular value vectors attributed to samples,

uℓ2j and uℓ3k, are investigated to identify those of interest. For

instance, uℓ2j represents the distinction between healthy controls

and patients, and uℓ3k represents tissue specificity (e.g., expressed

only in the heart). Then, the singular value vectors attributed

to genes (i.e., features) uℓ1i that share G of the largest absolute

value with the identified uℓ2j and uℓ3k are selected. Features (is)

with larger absolute values of uℓ1i are identified based on P-values

computed by assuming that uℓ1i obeys a Gaussian distribution (null

hypothesis) as follows:

Pi = Pχ2

[

>

(

uℓ1i

σℓ1

)2
]

(2)

where Pχ2 [> x] is the cumulative χ2 distribution where the

argument is larger than x, and σℓ1 is the optimized standard

deviation such that uℓ1i obeys Gaussian distribution as much as

possible (see Taguchi and Turki, 2022b for more details about how

to optimize σℓ1 ). Then Pis are, then, adjusted using the Benjamini–

Hochberg criterion to consider multiple comparison correction.

Finally, is with adjusted Pi less than threshold value (typically, 0.01)

are selected.

When TDbasedUFE is applied to multiomics datasets (Figure 1

right), the multiomics profiles are formatted as xikj ∈ R
Nk×M (i.e.,

kth omics datasets are associated with as many as Nk features).

The xikjs are multiplied with each other to obtain the following

equation:

xjj′k =

Nk
∑

ik=1

xikjxikj′ ∈ R
M×M×K (3)

HOSVD is, then, applied to xjj′k as follows:

xjj′k =

M
∑

ℓ1=1

M
∑

ℓ2=1

K
∑

ℓ3=1

G(ℓ1ℓ2ℓ3)uℓ1juℓ2j′uℓ3k. (4)

After identifying uℓ2j coincident with labels (e.g., patients and

healthy control), singular value vectors attributed to individual

features associated with kth omics are computed as follows:

uℓ1ik =

M
∑

j=1

uℓ1jxikj ∈ R
Nk (5)

Moreover, Pik is, then, computed as follows:

Pik = Pχ2

[

>

(

uℓ1ik

σℓ1

)2
]

(6)

and iks associated with adjusted Pik less than 0.01 are selected.

In contrast to TDbasedUFE, which can perform only two

tasks, TDbasedUFEadv can perform more complicated tasks. For

example, TDbasedUFEadv can perform (Ng and Taguchi, 2020)

integrated analysis of two omics profiles that share samples and

reduce the memory required by summing up the sample index.

TDbasedUFEadv can also perform integrated analysis of two

omics profiles that share features (Taguchi and Turki, 2019).

TDbasedUFEadv can also perform integrated analysis of multiple

(more than two) omics profiles that shared features (Taguchi and

Turki, 2022a) or samples (Taguchi and Turki, 2021).
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FIGURE 1

Schematic diagram that explains TD-based unsupervised FE. Left: DEG identification, (1) uℓ2 j associated with the distinction between patients and

healthy controls is selected. (2) uℓ3k associated with tissue specificity is selected. (3) G(ℓ1ℓ2ℓ3) is investigated with fixed ℓ2 and ℓ3. (4) uℓ1 i with G of the

largest absolute value is selected. (5) is (indicated in red) whose absolute values are significantly larger than expected are selected. Right: Multiomics

analysis, (1) uℓ1 j associated with the distinction between patients and healthy controls is selected. (2) uℓ1 i is computed from uℓ1 j. (3) is (indicated in

red) whose absolute values are significantly larger than expected are selected.

3. Results

The full list of identified features, as well as the results

of the enrichment analysis in this section, is presented in

Supplementary material. For further details, please also refer to the

Supplementary Document.

Numerous applications of TD-based FE were proposed since

the publication of our book (Taguchi, 2020). Here, we present a few

examples to demonstrate the usefulness of TDbasedUFE based on

the ACC.rnaseq data fromRTCGA.rneseq (Kosinski, 2023) package

in Bioconductor. The labels used to select singular value vectors

attributed to samples were patient.stage_event.pathologic_stage

composed of four classes (“stage i” to “stage iv”). A tensor xijk ∈

R
N×9×4 represents the expression of ith gene of jth replicates of kth

stage. HOSVD was applied to xijk, and we obtained TD, as shown

in Equation (1) (please refer to the Supplementary Document for

the R code to perform DEG identification using TDbasedUFE).

Since uℓ2j is attributed to replicates, uℓ2j is expected to have

constant values, regardless of how j and ℓ2 = 1 turned out to

satisfy this requirement (Supplementary Figure S1 left). On the

other hand, uℓ3k is expected to have monotonic dependence on k

(Supplementary Figure S1 right); and we found that ℓ3 = 3 was

most coincident with monotonic dependence on k. Once ℓ2 and ℓ3

are selected by the user with the interactive interface, TDbasedUFE

automatically selects uℓ1i with which is are selected. As a result,

1,692 genes were selected with the threshold-adjusted P-value of

0.01.

To evaluate the ability of TDbasedUFE to select genes, we

applied DESeq2 (Love et al., 2014), a state-of-the-art method, on

xijk. DESeq2 is not applied to xijk but to the unfolded matrix

xi(jk) ∈ R
N×36 where j and k are merged into a column index

(see the Supplementary Document for the R code to perform DEG

identification using DESeq2). We identified as few as 138 genes

associated with adjusted P-values less than 0.01 using DESeq2.

Thus, from the perspective of the number of identified DEGs,

TDbasedUFE is clearly superior to DESeq2.

However, identifying a higher number of DEGs does not

necessarily mean that all of the identified DEGs are biologically

relevant. To evaluate the biological relevance of the DEGs selected

by TDbasedUFE, we used the enrichR (Jawaid, 2023) package

in CRAN, as demonstrated in the vignette “Enrichment” in the

TDbasedUFEadv package considering the “KEGG 2021 HUMAN,”

“GO Molecular Function 2015,” “GO Cellular Component 2015,”

and “GO Biological Process 2015” categories. When 1,692 genes

selected by TDbasedUFE are considered, 129, 151, 143, and 923

terms were found to be associated with adjusted P-values less than

0.05 for the “KEGG 2021 HUMAN,” “GO Molecular Function

2015,” “GO Cellular Component 2015,” and “GO Biological Process

2015” categories, respectively. On the other hand, when 138 genes

selected by DESeq2 are considered, 0, 0, 3, and 12 terms are

associated with adjusted P < 0.05 for the same categories. Thus,

in terms of the number of biologically relevant terms identified,

TDbasedUFE outperforms DESeq2.

To demonstrate the capabilities of TDbasedUFE on a

multiomics dataset, we used the curatedTCGA (Ramos

et al., 2020) package to retrieve profiles other than the gene

expression of the ACC dataset in TCGA (please refer to the

Supplementary Document for the R code to perform DEG

identification using TDbasedUFE). We have collected miRNA

(xi1j ∈ R
1046×79), gene expression (xi2j ∈ R

120501×79), and

methylation data(xi3j ∈ R
48577×79) from curatedTCGA and

applied TDbasedUFE on these data. After applying HOSVD

to the generated tensor xjj′k ∈ R
79×79×3, we found that u7j

(Supplementary Figure S2 upper) is associated with the distinction

between four stages, and u1k (Supplementary Figure S2 lower)

is constant regardless of k (i.e., omics). Pik is attributed to ik by

Equation (6) using u7ik generated from u7j by Equation (5). After

correcting Pik , we found that 23 out of 1,046 miRNAs, 1,016 out
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of 20,501 mRNAs, and 7,295 out of 485,577 methylation probes

are associated with adjusted Pik less than 0.01 (these features are

expected to be distinct between the four stages as well).

To compare the performence of TDbasedUFE with those of

SOTA methods, we employed DIABLO, which is implemented in

the mixomics package (Rohart et al., 2017) in Bioconductor (please

refer to the Supplementary Document for the R code to perform

mulitiomics analysis using DIABLO). Even we used the minimum

setup (folds=2, nrepeat=1), DIABLO failed to converge to a

solution within 3 h. When the recommended setup in the vignette

(folds=10, nrepeat=10) was employed, DIABLO did not converge

to the solution with few enough errors up to 10 components

(ncomp=10) and showed no tendency for errors to decrease as

the number of components increased (Supplementary Figure S3).

As a result, we were unable to select features using DIABLO and

had to conclude that TDbasedUFE outperformed DIABLO for this

multiomics dataset.

To evaluate the biological relevance of miRNAs, mRNAs, and

methylation probes identified by TDbasedUFE, we have uploaded

these to various databases. First, we uploaded the identified

miRNAs to DIANA-mirpath v3.0 (Vlachos et al., 2015) and found

that many cancer-related KEGG pathways are enriched (please

refer to the Supplementary Document for URL to DIANA-mirpath

using these miRNAs). Next, we uploaded the identified mRNAs

to Enrichr (Xie et al., 2021) and found many cancer-related

pathways in the “KEGG 2021 Human” categories and various

cancer cell lines. Finally, we uploaded 2,668 unique gene symbols

associated with the identified 7,295 probes to Enrichr and found

several cancer-related pathways in “KEGG 2021 Human” and

various cancer cell lines. In conclusion, the miRNAs, mRNAs,

and methylation probes identified by TDbasedUFE are biologically

relevant.

4. Discussion

Here, we have introduced TDbasedUFE and TDbasedUFEadv,

two packages that can perform TD-based unsupervised

FE without requiring extensive knowledge of tensor

decompositions. Our results demonstrated that these packages

outperform two SOTA methods, DESeq2 and DIABLO, when

applied for DEG identification and multiomics analysis,

respectively. With TDbasedUFE and TDbasedUFEadv,

users can perform TD-based unsupervised FE easily and

effectively.

In this implementation, TDbasedUFE/TDbasedUFEadv can

accept variety of datasets generated from high throughput

sequencing and/or old-fashioned microarray seamlessly.

TDbasedUFE/TDbasedUFEadv can also accept the various

combinations of these profiles as inputs (multiomics analysis).

TDbasedUFE/TDbasedUFEadv can output the list of features

associated with (adjusted) P-values. The possible output features

are dependent on the input features. When genes are input, the

output features are also genes. When genomic regions are input,

the output features are also genomic regions. The list of features

can be analyzed with enrichment analysis to understand biological

meanings within the downstream analyses.

Current implementation does not have specific limitation

since the implemented methods have already been tested

over various topics in the numerous previous publications

cited in this study. There are no future directions since

it is a report to inform the implementation of established

method.

As for other unsupervised gene selection methods, readers

might check the review article Ang et al. (2016), although it listed

as small as fifteen studies ranging from 2006 to 2012, which is

relatively small comparedwith the number of our publications cited

in this paper.
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