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The paper explores and comments on the theoretical concept of

human-machine-teaming in intelligent manufacturing. Industrial production

is an important area of work applications and should be developed toward a

more anthropocentric Industry 4.0/5.0. Teaming is used a design metaphor for

human-centered integration of workers and complex cyber-physical-production

systems using artificial intelligence. Concrete algorithmic solutions for technical

processes should be based on theoretical concepts. A combination of literature

scoping review and commentary was used to identify key characteristics

for teaming applicable to the work environment addressed. From the

body of literature, five criteria were selected and commented on. Two

characteristics seemed particularly promising to guide the development of

human-centered artificial intelligence and create tangible benefits in the mid-

term: complementarity and shared knowledge/goals. These criteria are outlined

with two industrial examples: human-robot-collaboration in assembly and

intelligent decision support in thermal spraying. The main objective of the

paper is to contribute to the discourse on human-centered artificial intelligence

by exploring the theoretical concept of human-machine-teaming from a

human-oriented perspective. Future research should focus on the empirical

implementation and evaluation of teaming characteristics from di�erent

transdisciplinary viewpoints.

KEYWORDS

human-machine-teaming, human-centered artificial intelligence, cognitive engineering,

complementarity, shared knowledge and goals, human-centered industry 4.0/5.0

1. Introduction

1.1. Paper objectives

The technological evolution toward anthropocentric digitalization at work is rendered

possible by new information and communication technologies as well as Artificial

Intelligence (AI). It raises the questions: why and where is human-centered AI (HCAI)

needed at work? Which recent theoretical concepts and methods can be applied to guide

this complex, transdisciplinary endeavor in a responsible way? One good starting point is

to clarify what “human-centeredness” means. As this is a very important but also general

question, we use it as orientation to identify key characteristics and factors related to the

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2023.1247755
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2023.1247755&domain=pdf&date_stamp=2023-11-03
mailto:franziska.bocklisch@mb.tu-chemnitz.de
https://doi.org/10.3389/frai.2023.1247755
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2023.1247755/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Bocklisch and Huchler 10.3389/frai.2023.1247755

more focused concept of human-machine-teaming (HMT) and

apply it to the working field of intelligent manufacturing. HMT

can be defined as (1) a form of teamwork between humans

and technical systems characterized by “real” interdependency

between teammates such as joint activities toward a common goal

(Johnson and Bradshaw, 2021). From another – more technical

point of view – HMT may be characterized as (2) “the dynamic

arrangement of humans and cyber-physical elements into a team

structure that capitalizes on the respective strengths of each

while circumventing their respective limitations in pursuit of

shared goals” (Madni and Madni, 2018; p. 5). As these different

transdisciplinary viewpoints on HMT may not be harmonized

within one definition, we aim to capture key characteristics and

criteria of HMT instead, using a literature review based on scoping

method. The identified HMT criteria candidates are discussed and

shortly illustrated by two example technologies from the working

field of industrial manufacturing (human-robot-collaboration in

assembly and intelligent decision support in thermal spraying).

Our main objective is to contribute to the discourse on HCAI

at work and to advance the development of the transdisciplinary,

theoretical concept of HMT. Our comments come from a human-

oriented perspective building on the research backgrounds from

cognitive and engineering psychology as well as sociology of work

and technology.

1.2. Human-centered artificial intelligence
in industry

Generally, HCAI can be of interest in all areas of work in

which complex problems have to be solved and a high level of

security, speed, quality or efficiency of human-machine interactions

is required. Among the fields are, for instance, military, medicine,

mobility, finance, management and administrative knowledge work

as well as intelligent manufacturing. The manufacturing industry is

one of the most important economic sectors in the industrialized

nations with a very high number of employees in various fields

of work. The necessity of an anthropocentric perspective within

Industry 4.0 is clearly recognized (see Rauch et al., 2020; Eich

et al., 2023) and Xu et al. (2021) characterize the next step toward

Industry 5.0 with its core values sustainability, resilience and true

human-centeredness. Upcoming concepts such as human-cyber-

physical systems (HCPS) show, how human-centeredness can be

implemented concretely (Lamnabhi-Lagarrigue et al., 2017; Madni

and Madni, 2018; Zhou et al., 2019; Bocklisch et al., 2022). HCPS

combine three very different system parts: The human (H) in

its two roles as user and developer of the technical system. The

technical systems consists of (1) the physical subpart (P) controlled

by (2) a cyber-system (C). Due to the complexity of manufacturing

technologies and production processes, the C-part may implement

AI algorithms. They represent effective means for machine control

and should be developed toward HCAI (Shneiderman, 2022)

and explainable AI (Hagras, 2018; Samek and Müller, 2019) to

enable more joint working with humans and suitable support for

cognitively demanding working tasks. Keep the human in the loop,

is not primarily only a normative demand, but it is argued why this

is functional (Huchler, 2022). Thus, humans have a special role in

managing complexity in CPS (Böhle and Huchler, 2016). To that

end HCPS offers a systemic and transdisciplinary perspective on

automation allowing for flexibility and the development of semi-

autonomous systems (Madni and Madni, 2018; Bocklisch et al.,

2022). As a variety of industrial applications does not comply

with the requirements for full automation and, furthermore, agility

as well as (social) sustainability became increasingly important

facets of modern work, the traditional, linear conceptualization of

automation is not expedient. Hence, theoretical concepts for HCAI

need to be derived from systemic and maybe even circular socio-

technical concepts because (1) the technical developments effect

use (and usefulness) of technical systems and the use (or misuse

and disuse) has consequences for further developments and (2)

automated systems are embedded again in social circumstances

such as communication interfaces and work processes (Huchler,

2022). Circular concepts explicitly take into account the emergence

of new forms of work or working tasks, being constantly created

by automation of processes, systems and system components

in various stages of technical development and use. In order

to keep the human operator in the loop and combine human

strengths with CP-systems capabilities in a complementary way,

technical parts and AI algorithms should be developed in close

accordance with human objectives and needs. Interests, discourses

and narratives of the future drive technological innovations. They

are subject to social dynamics between technology promises and

disappointments, technological path dependencies, and changing

images of man and technology. Recently, “human-centeredness”

started to guide AI developments. Depending on the definition of

AI used by the developers, the “similarity principle” may address

cognitive aspects (e.g., models approximate human thinking

or decision-making processes) or behavioral aspects (e.g., the

final decision and intelligent machine behavior). Furthermore,

the “difference principle” can mean that AI is “more rational

than human cognition and behavior” (rational thought/action; cf.

Russell, 2010, p. 2). If these different viewpoints in AI definitions

are not payed attention to, one may easily misinterpret human-

centeredness only as “similar” to the way, humans think, feel or

act. However, true human-centeredness arises in the field of tension

between the developmental opposites similarity (e.g., constituted

by shared knowledge and shared goals; see application example

2.3.2 below) and difference/diversity (e.g., complementarity, non-

redundant functions; see 2.3.1). Furthermore, human-centeredness

may take different design metaphors as basis for AI and

technological developments (cf. Figure 1, inner rectangle). For

instance, AI may act as “supertool” or “tele-bot” vs. “intelligent

agent” or “teammate” (Shneiderman, 2022). With regard to the

chosen work application, we focus here on HMT because this

concept may create tangible advantages and foster responsible

solutions for industry in the mid-future. Compared to classical

automation HMT is a rather transdisciplinary research field,

that aims at integrating human-centered aspects into technology

development more explicitly. This is done not only on a user-

centered design level, but also more deeply, for instance, in the

support or automation of cognitive processes (cf. example in

Section 2.3.2; Bocklisch et al., 2022). This leads to a shift in

goals: the goal of classical automation is to replace the human

worker if possible. HMT aims at forming a joint work system

with human and cyber-physical parts based on HCAI. It integrates
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the potentials of both in new productive ways (Huchler, 2022)

and may include a high degree of technical automation and

human control (cf. Shneiderman, 2022). In the following, we

review the concept of HMT with emphasis on finding key

characteristics. Thereafter, we discuss the potential of two HMT

criteria candidates for two industrial applications: human-robot-

collaboration and intelligent decision-support. Other criteria are

also reported and commented on. Then, we summarize which

ones are (not yet) applicable and ready to be transferred from

human-human-teams to human-cyber-physical-teams. Finally, we

conclude and summarize future prospects for the HMT discourse

and development.

2. Human-machine-teaming

HMT aims to transfer characteristics and principles of

successful human-human-teams to human-cyber-physical-teams.

This raises the question which features (= key characteristics) are

ready and worth being implemented by HCAI in HCPS in the

working field of production. Based on this, research can be planned

into suitable methods and AI algorithms able to implement the

identified features in the C-part.

2.1. Method

A structured literature review was performed starting with a

scoping procedure (e.g., Arksey and O’Malley, 2005) to identify

the breadth of contributions in HMT followed by a focused in-

depth evaluation of records that present key characteristics of HMT

for intelligent manufacturing. We understand key properties to be

fundamental features of the theoretical HMT concept that may

be addressed or implemented in some way in HCAI technology

development in industrial applications in the near or mid-term

future. The single keyword was “human-machine-teaming” and

research results were limited to English documents between

January 1 2016 and 31 May 2023 (no entries before 2016). For

identification, the following databases revealed numerous records:

scopus (N = 102) and Google scholar (N = 956). Exclusion

and eligibility criteria were deliberately chosen rigorous in the

second review phase. It was not the objective of this mini review

to exhaustively review the research field of HMT or of related

concepts (for this see Damacharla et al., 2018; O’Neill et al.,

2022; Greenberg and Marble, 2023). Instead, we aimed to find key

characteristics of HMT with sufficient conceptual strengths and

high applicability to manufacturing that have already been taken

up to a certain extend by the scientific community, to discuss

them in-depth in terms of content (see 2.2) and illustrate them

with the help of technological examples (see 2.3). After exclusion

of redundant records, for 948 documents titles/abstracts were

screened to identify eligibility (criterion was HMT definition by key

characteristics) for full-text review (remaining N= 16 documents).

After full text review, the remaining results were selected because

they represent groundwork papers (N = 3: Brill et al., 2018;

Madni and Madni, 2018; Johnson and Bradshaw, 2021). The HMT

characteristics mentioned therein are discussed subsequently in

the light of HCAI and industrial work context mainly from a

cognitive psychology/human factors and work sociological point

of view.

2.2. Selected key characteristics of
human-machine-teaming

According to Madni and Madni (2018), HMT is the dynamic

arrangement of humans and CPS into a team structure in pursuit

of shared goals. Johnson and Bradshaw (2021) emphasize the

interdependence relationship between teammates and point out

that a team partner’s behavior should be observable, predictable

and directable. Brill et al. (2018) summarize the following facets

for HMT: (1) complementarity, (2) shared knowledge and shared

goals, (3) bounded autonomy, (4)mutual trust and (5) benevolence.

Complementarity and shared knowledge/goals are related to

how people make sense of situations in the field of tension

between difference and similarity (Kelly, 1955). Therefore, these

fundamental drivers also influence technical developments (e.g.,

difference: non-redundant complementary functions of technology

compared to human capabilities vs. similarity: representation of

human knowledge and goals in technical systems; see Figure 1,

left). A meaningful sequence of development of HMT starts

with these two criteria. Thereafter, the degree of automation

or bounded autonomy of the cyber-part can be increased (see

Figure 1, right; third criterion). Human trust in automation

results from the transparent and successful implementation of

these three characteristics. “Mutual trust” and “benevolence”

are not applicable for manufacturing working applications (see

Discussion). In the following, we focus on complementarity and

shared knowledge/goals (see below) as those facets are already

subject of HCAI-oriented research and at least – partly –

studied in the context of manufacturing applications. Furthermore,

they are prerequisites for bounded/semi-autonomy (Madni and

Madni, 2018) and, hence, especially promising to establish a

teaming relation.

2.3. Relevant aspects of
human-machine-teaming in industrial
working applications

Two aspects of HMT seem to be of special interest for

industrial working applications: complementarity and shared

knowledge/shared goals. With the help of two examples – one

embodied and one un-embodied, cognitive technology – we outline

the potential of these criteria in more detail.

2.3.1. Complementarity in human-robot-
interaction

It is quite simple: two people who are able to accomplish

the same working task may nevertheless share work and form a

team. When a robot can do the same thing as a human team

partner this usually results in full automation. Even better, in terms

of flexibility and robustness of teamwork, is the combination of

partners’ abilities that complement each other (Huchler, 2020)
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FIGURE 1

Human-centeredness as resulting balance between di�erent technical design metaphors (left; vertical axis) and developmental drivers for

Human-Centered Artificial Intelligence (HCAI; horizontal axis). Sequence of Human-Machine-Teaming (HMT) key characteristics development

(right). The first three characteristics are especially promising for industrial applications and should be integrated using HCAI in

Human-Cyber-Physical-Production-Systems (HCPPS).

and may as well combine non-redundant strengths (Madni and

Madni, 2018). Nevertheless, it is favorable if workers and robots

have overlaps in their skills in a “mixed skill zone.” This allows

for adaptive interaction and may be organized in an AI-based

human-centered way (Albu-Schäffer et al., 2023). The more

humans and robots complement each other, the more productive

interaction works (Huchler, 2022) affecting individual motivation

at work in a positive way, for example, toward more effectiveness,

empowerment, pride of production (“Produzentenstolz”) and

technology appropriation. Consequently, this increases trust in and

social attachment to work tools in the second step. Similar to

how construction workers feel enabled by an excavator in such

a way that they “name” and maybe even “pet” it, collaborative

robots can empower their human teammates as well. This feeling

of support is based on complementarity and just not on similarity.

Building on an extensive research line in industrial sociology on

the particular relevance of work action and experiential knowledge

in technologized work environments (e.g., Böhle and Milkau,

1988; Pfeiffer, 2007), Huchler et al. (2021) reported results of an

extensive study in which the development and deployment process

of an innovative robotic system for automated wiring of control

cabinets was accompanied over 3 years (Huchler et al., 2021).

The technical design approach initially chosen was mimicking

the way humans work. It systematically narrowed developmental

paths guiding directly toward the objective of full automation. The

resulting technical solution was ineffective due to overwhelming

complexity and automation limitations. A major problem was that

there was no idea for productive worker involvement. As a result,

the workers had to wait and repeatedly step in when the robot

made mistakes. Furthermore, skill degradation, lack of integration

of existing competencies as well as problems with allocation of

functions and deployment were observed. The fallback solution

after several attempts of correction was the complementary

consideration of workers’ cognitive and manual competencies

resulting in the idea of a “supertool” workplace. The promise of

cost savings through robotization was no longer linked to the

simple idea of saving labor costs (substituting automation), but to

increasing the productivity of existing employees (complementary

automation). As a prerequisite for successful support in complex

socio-technical contexts and HCPS, the places where people with

their specific competencies are needed must be identified. Then

socially sustainable and complementary HMT can be established.

In this context, it is important to design the interaction as

well as the permanent technological transformation in a “co-

evolutionary” way so that people and technology can further

develop along their different potentials in order to permanently

create new complementarity relationships andmaintain innovation

capabilities (Huchler, 2022). These findings are supported by

further qualitative and quantitative research on the relationship

between human work capacities and collaborative lightweight

robots (e.g., Pfeiffer, 2016, 2018).

2.3.2. Shared knowledge and goals in intelligent
decision support for manufacturing

In manufacturing technologies needed for production of

daily life goods, humans operate highly complex machines and

technical processes such as in forming, welding or coating.

Many technologies rely heavily on human expert knowledge and

skills and, hence, can and will not be automated completely in

the next future. Physical interactions have been improved by

safety standards, worker protection and external means such

as exoskeletons or use of robots (see above). However, due to

technological and AI developments, system complexity increased

rapidly shifting loads toward cognitive aspects (Darnstaedt

et al., 2022). Hence, operators would benefit from cognitive

augmentation and intelligent support for decision-making,
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problem solving or fault diagnosis. A prerequisite for establishing

a connection between a CPS and a human that resembles a

human-human team relationship is that the team partners have

a common understanding about the shared work task and goals.

To achieve this, the knowledge representation in the CPS must

be closely aligned with human expert knowledge (cf. Figure 1:

similarity principle) to enable transparent understanding and good

interactions. Otherwise, there is a risk that the CPS will represent

something (e.g., from sensor data) that has no substantive meaning

for humans. If this is the case, then there is no good basis for

human-centered and joint teamwork, for example, joint decision-

making in complex situations. This research gap is recognized and

partly addressed with AI for different manufacturing technologies

such as coating (Bobzin et al., 2022; Mahendru et al., 2023). These

solid domain-oriented research approaches should be enriched

by focusing more explicitly on the human perspective. For

instance, by considering action-guiding rules for optimization of

technical parameters (Venkatachalapathy et al., 2023) or elicitation

of domain knowledge and expert mental models (Hoffman,

2008; Andrews et al., 2023). Sharing knowledge and goals in the

sense of how a human “shares” ideas with another human is

challenging. First, relevant knowledge needs to be elicited. This is

possible but only within the boundaries of what can be brought

to consciousness (expert-driven approach; Hoffman et al., 2021)

or what can be measured and interpreted semantically without

doubt (data-driven approach). Nevertheless, it will never be

“complete” compared to the human treasure trove of experience,

which is continuously growing and can only be described and

formalized in parts (Huchler, 2017). Second, the elicited knowledge

requires transparent and strictly HCAI to form an interdependence

relationship that is mutually explain- and understandable. In order

to do so, a combination of different AI algorithms – knowledge-

and data-based methods – are needed to ensure compatibility

with different human performance levels such as skill-, rule- or

knowledge-based behavior (Rasmussen, 1983). Pure sensory- and

data-based procedures will not form a sufficient basis for HMT the

intelligent manufacturing because they can only grasp a limited

area of what is actually necessary (Rasmussen, 1983; Bocklisch and

Lampke, 2023; mainly skill-based behavior).

3. Discussion

3.1. Key characteristics of
human-machine-teaming in industrial
working applications

HMT is an innovative concept with potential for real-world

working domains such as manufacturing. It may guide HCAI

developments toward more anthropocentric designs, new forms

of work and human-machine interaction. Based on a review of

recent literature as well as own preliminary work, we consider the

systematization of Brill et al. (2018) as one good starting point for

in-depth discussion of potential teaming characteristics for HCAI

in industrial manufacturing. In Figure 1, the criteria have been

systematized and placed in a meaningful order of development

and implementation in HCPPS. Criteria “complementarity” and

“shared knowledge/goals” have been illustrated with concrete

examples (see above), because (a) they have already been researched

to a certain extent in the work context of intelligent manufacturing

and (b) they represent essential foundations for criteria “bounded

autonomy” and “trust.” In the following, the criteria are discussed

in detail, placed in an overall context, and illuminated with regard

to future research needs.

(1) Complementarity: yes, in our opinion this criterion is

central for HMT because the dissimilarity/diversity facet and

may be used to augment humans by powerful complementary

functionalities that are provided by the cyber-physical-production-

system (CPPS). However, this is not a static concept but

characterized as ongoing innovation process – including

permanent search for new potentials for complementarity

and (re)adjustment of education and further training. Hence, there

is need for a better understanding of the differences of human and

technology/AI as well as of automation dynamics and changes in

the human-technology relationship.

(2) Shared knowledge/goals: These criteria refer to the opposite

of complementarity and use similarity principle to constitute

a common working basis between humans and CP-systems.

A successful and reliable working relation as well as efficient

function allocations need shared knowledge and goals. Both,

implicit and explicit forms of human knowledge are needed

in working contexts. Hence, cognitive engineering methods for

knowledge elicitation, structured systematization and transparent

AI-implementation need to be developed further. Joint goals can

potentially be defined on various levels of abstraction. High-

level experts, for instance, persons controlling complex plants,

are able to use their rich knowledge hierarchies and related

procedures to tackle concrete situations in a very flexible way

(Rasmussen, 1983). Changes in the situation are managed by goal

or sub goal adaptation. These human strategies to control real-

world complexity and act under uncertainty need to be mirrored

– at least partly – in the cyber-teammate as well. If this can

be achieved successfully will depend on the development of AI

regarding adaptivity and learning (e.g., evolving intelligent systems:

Angelov et al., 2010; Bocklisch et al., 2017) as well as cognitive

transparency and understandability of AI algorithms (e.g., Weller,

2019).

(3) Bounded autonomy: autonomy is always limited and

negotiated in social contexts. For HMT, different kinds of

autonomies have to be integrated similar to the different

“intelligences” (human vs. artificial). The simple technical levels

of autonomy (e.g., functionality within a limited context) do

not correspond to the complexity of the socially negotiated

understanding of autonomy of individuals. As with intelligence, the

complexity of the social counterpart is completely underestimated

or taken too simplistically. Hence, profound conceptual research

should relate theoretical concepts to concrete application examples.

This is also necessary because autonomy is a “provocative”

criterion that may easily lead to conflicting viewpoints (Brill

et al., 2018) as well as fears from the human user side.

Technology assessments that evaluate dangers (see “The janus face

of autonomy” in Brill et al., 2018) as well as possibilities and derive

regulatory principles (Shneiderman, 2020) are therefore needed

as well.

(4) Mutual trust and (5) benevolence: Trust is central to

establish a successful and harmonic relationship in human-human

work teams. One classic definition originates from Lee and See

(2004; p. 54): trust is “. . . the attitude that an agent will help achieve
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an individual’s goals in a situation characterized by uncertainty

and vulnerability.” In this respect, it is a good candidate criterion

worth being thought of concerning its transferability to HM-

teams and closely related to “shared goals” – a part of the

definition and thus a necessary condition for trust. Trust in

automation is extensively studied (e.g., Lee and Moray, 1992;

Hoff and Bashir, 2015; Schaefer et al., 2016; Kohn et al., 2021)

and a highly important factor for user-centered design to avoid

misuse, disuse or abuse of technology (Parasuraman and Riley,

1997; Lee and See, 2004). Nevertheless, “trust is a complex and

nebulous concept” (Hoffman et al., 2013, p. 84) and should not be

understood in a too simplistic way as a “lack of information” but

rather as a complex process of (reciprocally effective!) establishing

the ability to act even beyond (risk) calculations (Huchler and

Sauer, 2015). Furthermore, it seems only applicable from a human

point of view: a human trusts a robotic system or a suggestion

of a decision support system (more precisely: the people and

institutions behind). The relation cannot simply be reversed and

named “trust” because trust presupposes physical and/or mental

vulnerability, which applies to technology only to a very limited

extent. Sociological aspects are important to consider as well.

What is often perceived as “trustful relationship” to a technical

artifact (similar to a person) is in reality based on social processes

(Mayer et al., 1995) in a complex social-technical setting primarily

also related to trust in the institutions responsible for technology.

This explains some experimental results concerning “over trust”

in robots (Aroyo et al., 2021). The institutions and regularities

are important guarantors for safety. At least in work contexts,

it is evident that trust in and acceptance of technology can be

generated much more clearly through utility and empowerment

than through similarity which is only one of the polar development

drivers (cf. Figure 1). From the human user perspective, too close

similarity to human skills comes with a latent threat: substitutability

– the opposite of benevolence, which is in our opinion no primary

target criterion for HMT. “Mutual” trust and benevolence are no

purposeful facets for HMT because technology is not able to trust

or act benevolent. Here, the distinction between system trust and

personal trust is crucial (Luhmann, 1979). Nevertheless, suitable

objective criteria from the technical point of view have to be

developed instead.

3.2. Limitations and future prospects

Our main objective was to contribute to the discourse on HCAI

by having a closer look on the theoretical concept of HMT in the

context of industrial work applications. This is intended to be an

impulse from a human-oriented perspective on AI developments

for future transdisciplinary discourses. Of course, there are many

other perspectives on this topic that are equally interesting, relevant

and necessary. For example, concepts and empirical work from

research on human teamwork (e.g., concerning suitable definitions

of “team” and types of teams) and team performance as well

as from (software) engineering are crucial for complementing

and validating HMT criteria. Here, our focus was on theoretical

considerations but guides on the implementation of HMT aspects

already exist, highlighting the practical relevance of the topic

(e.g., McDermott et al., 2018). Industry 4.0/5.0 developers would

benefit from operationalizing various HMT criteria in industrial

examples. Not only on the general level of user-centered design

guides but more in-depth for specific technical applications

(Bocklisch et al., 2022). Another limitation was the narrow

scope of search terms: given the huge number of literature

and our specific goal to find applicable key characteristics for

manufacturing and comment them in the light of two short

application examples, we only selected “HMT” as keyword for

scoping review. Other words, such as “human-autonomy-teaming,”

“human-agent-teaming,” “human-machine-interaction,” “human-

machine-symbiosis,” and many thematically related terms in

various combinations would lead to a more comprehensive and

– concerning the vast body of empirical evidence – less biased

summary (cf. O’Neill et al., 2022). Furthermore, we did not discuss

all potential HMT-criteria as key features but reduced to five aspects

from which we selected two to outline their concrete potential for

industrial applications with the help of two technical examples.

On the one hand, this specific procedure and scope resulted from

the fact that some facets clearly need to be given ex ante to be of

interest for HCAI (such as observability; cf. 2.3.2 and boundaries

of human knowledge elicitation and data acquisition from human

sources). On the other hand, this was because some criteria are very

similar and somehow eclectic (e.g., bounded autonomy vs. semi-

autonomy or interdependency). Whether these slightly different

connotations of criteria, e.g., of the core characteristic ”bounded

autonomy,“ should be taken into account cannot be adequately

assessed at present. This will be shown by the operationalization of

the characteristics in the empirical work, the practical application

and the evaluation of these results.

In conclusion, HCAI has a large potential to promote new types

of human-machine-interaction at work, such as outlined here in

parts for HMT. The transfer of some characteristics of HH-teams

to HCP-teams are promising and feasible for real-world working

contexts such as intelligent manufacturing, others not – because

humans and technology are very different in nature (Madni and

Madni, 2018; p. 4f) – or not yet – because HCAI capabilities

still need to be developed further. If HMT capabilities are to be

integrated into technology development of HCPS as a concrete

form of HCAI, then the start could – in our opinion – be to

establish complementarity and shared knowledge/goals. Thereafter,

the effects of this development should be evaluated from different

viewpoints that are important in intelligent manufacturing such as

human-oriented criteria (e.g., user acceptance, mental workload),

technical or business oriented aspects (e.g., system performance,

product quality, resource efficiency and costs).
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