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During Basic screening, it is challenging, if not impossible to detect breast cancer

especially in the earliest stage of tumor development. However, measuring the

electrical impedance of biological tissue can detect abnormalities even before

being palpable. Thus, we used impedance characteristics data of various breast

tissue to develop a breast cancer screening tool guided and augmented by a

deep learning (DL). A DL algorithm was trained to ideally classify six classes of

breast cancer based on electrical impedance characteristics data of the breast

tissue. The tool correctly predicted breast cancer in data of patients whose breast

tissue impedance was reported to have been measured when other methods

detected no anomaly in the tissue. Furthermore, a DL-based approach using Long

Short-Term Memory (LSTM) e�ectively classified breast tissue with an accuracy of

96.67%. Thus, the DL algorithm and method we developed accurately augmented

breast tissue classification using electrical impedance and enhanced the ability to

detect and di�erentiate cancerous tissue in very early stages. However, more data

and pre-clinical is required to improve the accuracy of this early breast cancer

detection and di�erentiation tool.

KEYWORDS

malignant lesion, machine learning, artificial intelligence, mammography imaging,

electrical impedance spectroscopy, cancer di�erentiation

1. Introduction

Breast cancer is the second leading cause of mortality worldwide in women (and rarely

in men) after skin cancer. Unfortunately, new cases of breast cancer have been increasing for

the last few decades. For instance, From 2008 to 2017, the number of new cases increased by

half a year, reaching 11.7% in 2020 (Sung et al., 2021; American Cancer Society., 2022). As a

result, over 2.3 million women were diagnosed with breast cancer, and 685 000 died of the

disease globally in 2020. However, when diagnosed and treated during the early stages, breast

cancer has approximately a 90% survival rate (Kubicek et al., 1970; Heywang-Köbrunner

et al., 2011; Helwan et al., 2017).

Consequently, screening for early detection of breast tumors has been crucial in breast

cancer interventions and treatment. There is a correlation between tumor size, usually

related to early detection, and breast cancer deaths, decreasing the mortality rate by 1.3% per

millimeter size decrease (Sanchez et al., 2013). Hence, early detection of breast tumors during

basic screening is critical for achieving a good therapy for cancer, even before being palpable.

Generally, X-Ray Mammography Imaging is the primary detection tool for breast cancer,
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widely used in breast screening for decades, especially

in asymptomatic women (Malich et al., 2000). Although

mammography imaging has led to a significant reduction in

breast cancer deaths, the technique is sometimes inadequate for

assessing, especially for women presenting symptoms that need

complementary methods, such as additional imaging like Magnetic

Resonance Imaging (MRI), Endoscopy, whole-breast ultrasound

percutaneous, and breast biopsy may follow to confirm the findings

(Jossinet, 1996, 1998; Al Amin et al., 2014; Zubair et al., 2021).

The potential for misdiagnosing cancer due to poor evaluation

of abnormalities using imaging techniques is very common.

For instance, X-Ray mammography imaging is less efficient in

sensitivity and specificity (Perner and Imiya, 2011), notably in

women under 50 years of age (Budak et al., 2019; Cai et al., 2019).

Furthermore, the output images may contain many artifacts and

noise, making it difficult to identify small lumps, especially in dense

tissue. Invasive techniques, like biopsies, have also been attributed

to the acceleration of the invasiveness of tumor growth (Estrela

da Silva et al., 2000). Most of these techniques use high energy

during the screening procedure to provide high-quality images for

discrimination of abnormalities, which can be very painful to the

patient and harm the human body, resulting in most women shying

away, for example, from frequent or routine X-Ray mammography

screening. Thus, the need for a screening technique that fulfills the

demands of rapidity, earlier detection, lesion differentiation and

non-invasiveness is still themajor intention of researchers to reduce

the breast cancer mortality rate (Kumar et al., 2020).

There has been a significant advancement in using electrical

impedance in classifying various tissue types on a different but

related front. Thus, it is possible to differentiate between healthy

and cancerous tissue depending on electrical impedance behavior,

even before the tumor becomes apparent. Electrical impedance has

been used in Electrical Impedance Spectroscopy (EIS), an emerging

technique for diagnosing abnormalities and tumor detection, and

applied in several fields, including the classification of heart

disease (Alvi et al., 2021), the study of biological tissue (Hope

and Iles, 2003; Ng et al., 2008; Shorten and Khoshgoftaar, 2019),

identification of low quantities of breast cancer cells (Estrela da

Silva et al., 2000), blood volume changes during the heart cycle and

characterization of human lung tissue (Estrela da Silva et al., 2000;

Sanchez et al., 2013; Magar et al., 2021). Generally, cancerous tissue

displays specific dielectric properties compared to benign tumors,

identified by higher capacity (i.e., storage of electrical potential)

and conductivity (i.e., the reciprocal of resistance of an alternating

current) values (Cheng and Fu, 2018; Hussein et al., 2019).

Similarly, the electric impedance technique is gaining

prominence in breast screening, providing early detection of

tumors and discrimination of malignant from benign lesions.

The breast tissue can be categorized into six classes using electric

impedance measurements (Estrela da Silva et al., 2000). This

classification provides basic information about the healthy

mammary structure that helps distinguish between malignant,

premalignant and benign lesions. Substantial data on the electrical

impedance of breast tissue from patients have accumulated in a few

databases, capable of differentiating between carcinoma and begin

lesions with an accuracy of approximately 92% overall in the tissue

classes (Jossinet, 1996, 1998; Estrela da Silva et al., 2000; Hope

and Iles, 2003; Ng et al., 2008; Islam, 2013). Furthermore, using

the high-resolution mode of EIS, malignant lesions are correctly

classified with an accuracy of 93.1% and 65.5% for benign lesions

(Malich et al., 2000; Moqadam et al., 2018).

Therefore, the present paper reports our research to develop an

Artificial Intelligence (AI) system for early and non-invasive breast

cancer detection using data from electrical impedance measures.

AI is revolutionizing digital health care by using mathematical

algorithms to imitate the human brain to make decisions and

resolve problems. In general, an AI system works by ingesting large

amounts of labeled training data, analyzing the data for correlations

and patterns, and using these patterns to make predictions, or in

the case of diseases, autonomously diagnosing diseases, especially

cancer (van der Maaten and Hinton, 2008; Powers, 2011; Budak

et al., 2019).

Within AI, machine learning (ML) allows systems to learn and

improve from experience without being explicitly programmed

automatically. In machine learning, there is deep learning that

imitates the way humans gain certain types of knowledge.

While traditional machine learning algorithms are linear, deep

learning (DL) algorithms are stacked in increasing complexity

and abstraction hierarchy. Our research adopted deep learning to

develop a breast cancer differentiation, classification, and detection

system based on breast tissue impedance measurement data.

Biological tissue can conduct electrical current with the

association of impedance parameters. To better understand these

electrical properties, it is important to consider some basics of tissue

composition. Biological tissue comprises extracellular medium and

cells; the latter consists of the cell membrane and intracellular

medium composed of ionic solution and the extracellular medium.

These ions in the solution are responsible for the electrical

conductivity of cells (Malich et al., 2000; Hussein et al., 2019). A

cell membrane acts dependently over the frequency in a simple RC

circuit. Lower frequencies allow the cellular membrane to act like

an insulator while the impedance is more resistive. At a higher

frequency, the ability of the cell membrane to pass an electrical

current is more important while the impedance decreases. Thus,

biological tissues react dependently to the frequency after applying

electrical current. Therefore, choosing the frequency range is

important, especially for tumor detection.

2. Methods

2.1. Artificial intelligence: the
implored techniques

AI is a computer system that imitates human reasoning ability

to learn and solve issues. Due to AI techniques, the need for

human intervention will become progressively less important,

accompanied by the independent learning process that allows self-

correction/adaption to enhance the performance of the system

continuously. AI also has broad applications in the healthcare

sector (Kumar et al., 2020); this technology can outperform human

physicians by helping to prevent and treat diseases or disabilities,

offer improved clinical decisions, provide rapid and early detection

of ailments, diagnose illnesses including cancer, and hence predict

health status (Kumar et al., 2020). The AI learning concept in digital

healthcare has to fulfill the requirement of using large electronic
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health records to enable the system to follow characteristics and

patterns detected by the ML virtual components.

Machine learning is a subfield of AI (Figure 1) that develops

algorithms to analyze historical data, learn from this data

and predict status to make informed decisions without explicit

programming. ML can self-update its algorithm’s parameters and

change its internal programming in each iteration to better perform

certain tasks. ML has enabled data-driven decisions or predictions

of accurate future outcomes using various ML techniques such as

Support Vector Machine (SVM) and K-nearest neighbor (K-NN).

Support Vector Machine (SVM) is a supervised machine

learning technique for classification and regression issues. The

SVM algorithm needs to find a hyperplane to separate classes

through its support vectors with a maximized margin between

each class.

SVM is considered a robust prediction method due to

its ability to perform linear and non-linear classification with

its kernel function that allows it to map inputs into higher

dimensional feature space. Furthermore, the SVM algorithm is

formulated to classify binary categories. This machine learning

technique is adopted in this study to classify six different types

of breast tissue, which requires constructing a multiclass error-

correcting output codes (ECOC) model that combines multiple

SVM binary classifiers.

Deep learning is considered an evolutional subfield of machine

learning, and its algorithm is an intersection of advanced

mathematics, statistics, and computer science to learn from the

data and generate patterns to make informed decisions and predict

results. Unlikemachine learning, deep learning includes algorithms

in layers to build an artificial neural network that can change its

parameters during learning steps and compute features in each

layer to predict intelligent decisions.

Long-Short-Term Memory (LSTM) is a special type of RNN

suited to model a series of data points saved in time sequence due to

its robust structure composed of recurrent connections and special

memory blocks (Shorten and Khoshgoftaar, 2019). LSTM structure

is composed of memory cells and self-connections; each cell state

gets the flow of information from the input gate.

Unlike RNN, LSTM structure adds a second hidden state or cell

state and the concept of gates that control a memory cell activation

vector (Hope and Iles, 2003). The input gate decides which part of

the input xt is saved to the cell state ct, the forget gate can forget

or remember part of the accumulated memory of the cell state ct−1

at the previous time, and the current cell state ct, the output gate

decides which information should be available at the current output

value ht of LSTM unit as shown in Figure 2. LSTM unit has four

neural network layers of the forget gate, the input gate and the

output gate that perform with the following operations.

ft = σ1
(

wf
[

ht−1, xt
]

+ bf
)

(1)

it = σ2(wi
[

ht−1, xt
]

+ bi) (2)

ot = σ3(wo
[

ht−1, xt
]

+ bo) (3)

The cell state and the cell output are defined respectively

as follows:

ct = ft∗ct−1 + it ∗ tanh(wc[ht−1, xt]+ bc)
︸ ︷︷ ︸

c̃t

(4)

ht = ct∗tanh (5)

Where σ and tanh are the neural network layers, they represent

the neural sigmoid and hyperbolic tangent functions, respectively.

The weight w and bias b represent the matrix of each of the

three gates.

2.2. Data source

This study used a data set deduced from the application of

electrical impedance spectroscopy on 64 patients undergoing breast

surgery; measurements are taken in the first 30min after the

excision of breast tissue samples during the surgery. Figure 4A

represents the different steps of data collection. The database

includes six normal and pathological tissue classes, as shown in

Table 1.

During the data collection procedure, 12 impedance

measurements from each EIS plot are computed in a frequency

range from 488Hz to 1 MHz. which represent the alpha and beta

frequency range (f < 1000Hz) and (1000Hz < f < 100 MHz).

This particular region is useful for detecting tumors, according to

some researchers.

2.3. Development of AI system

In order to detect the cell changes in real-time, an electrical

current is applied to the aforementioned exciting tissues to create a

spectrum, which is made by measuring the impedance parameters

at different frequencies. One hundred twenty impedance spectra

were recorded from each sample, and 14 spectra were discarded due

to their erroneous features.

Due to the increasing interest in identifying the tissue’s

pathological properties, the complex impedance characteristics are

investigated to interpret the change in the functional properties

of the cell. Hence, Jossinet (1996, 1998) and Estrela da Silva et al.

(2000) have been chosen to extract complex impedance features

using the Agrand plane that helps to calculate the imaginary

impedance part and the real impedance component of the plots.

Table 2 shows the nine features extracted from the electrical

impedance spectrum. The extracted features are of the size (106

× 9) and are used as the input data for both adopted methods

(Figure 4A).

The entire data was divided randomly into training and testing

separate subsets. In particular, the training set, representing about

80% of the whole dataset, is used to build the predictive model by

taking advantage of the cross-validation (CV) approach. During the

training procedure, the data is introduced to a multiclass ECOC

model after creating the SVM template that requires the application

of one of two filter types to transform the data and the use of the

chosen kernel function among polynomial, linear or Radial Basic

Function (RBF) which provides the window to project the data into

a higher number of dimension spaces (Figure 4B).

The internal parameters of the model can highly affect the

model’s performance; therefore, to tune the model correctly,

it is recommended to adjust its internal parameters with an

optimization step that selects the values of the hyperparameters

automatically. Different combinations of hyperparameter values
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FIGURE 1

Relationships between AI, ML and DL for digital health solutions for cancer care.

FIGURE 2

The LSTM unit structure.

are set in order to minimize the classification loss with the help of

an optimization scheme.

The CV approach is implemented during the model

construction to estimate how accurately the model will perform.

The CV algorithm randomly generates k partitions (folds) through

the training data; each has an index number of 1 to k. The

predictive model would run k iterations by taking interchangeably

one fold as the validation set and the remaining k-1 folds as

a training set until sweeping all the original data, as shown

in Figure 3A. The predictive results are averaged over the k
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FIGURE 3

Data splitting techniques for SVM and LSTM methods: (A) SVM cross-validation approach and (B) LSTM data split method.

TABLE 1 The di�erent breast tissue classes.

Tissue classes Spectra (cases) Categories Characteristics

Carcinoma 21 Pathological tissue Cancerous tissue

Fibro-adenoma 15 Benign tumor

Mastopathy 18 Benign disease (lumpy) Fibrocystic breast changes

Glandular 16 Normal tissue Part of the breast that makes milk

Adipose 14 Fatty tissue

Connective 22

TABLE 2 The EIS features extracted for use in the machine learning.

Symbol Features

I0 Impedivity (ohm) at zero frequency

PA500 Phase angle at 500 kHz

HFS The high-frequency slope of the phase angle

DA Impedance distance between spectral ends

AREA Area Under Spectrum

AD/A Area normalized by DA

IPmax Maximum of the Spectrum

DR Distance between I0 and the real part of the
maximum frequency point

P Length of the spectral curve

iterations to estimate the model’s performance. Instantly, the

hyperparameters optimization process seeks to reduce CV loss and

improve classification accuracy.

A growing interest was observed over the last couple of years

in a deep neural network for tabular data classification due to

the great success achieved by their applications. As the dataset

used in this study is static tabular data usually associated with ML

techniques like K-NN and SVM (Alvi et al., 2021), its application

in DL is extremely important to consider increasing the data size to

train and evaluate deep learning algorithms effectively. The current

dataset is relatively small to be used with the DL algorithm, so

the data augmentation technique needs to be applied to the raw

input data as a pre-processing step. The amount and diversity of the

available data during training largely rely on the model’s prediction

accuracy. In particular, data augmentation approaches can prevent

overfitting by reducing noises and random fluctuations during the

training process. As a result, the DL model cannot overtrain all the

samples and is forced to generalize to extract more information

from the original dataset and achieve an accurate accuracy (Shorten

and Khoshgoftaar, 2019). Duplication or oversampling is one form

of data augmentation commonly used in DL; it allows adding

more data by inflating the training dataset size. The data was split

into 30% for validation and testing set each, and the remaining

40% was for the training set while considering the total classes

of breast tissue (Figure 3B). The validation data can estimate the

performance of the deep learning model with unseen data during

the training process.

The biLSTM model accepts input as sequential or time-series

data. However, the data used in this study is static in the form of
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FIGURE 4

Workflow of an AI system for tissue classification using two di�erent methods SVM and biLSTM, showing: (A) data preprocessing, (B) SVM method,

and (C) biLSTM method.

a structured tabular array. Since the input has to become suitable

to feed into the biLSTM model, a data augmentation procedure is

applied by creating multiple slightly modified copies of each class

in the dataset.

After data augmentation, where a duplication operator was

applied on each class of breast tissue, a padding or truncating step

was applied to the data split into mini-batches with 256 samples

long. The choice of small mini-batches size is important as it

directly affects the training stability and the model performance.

After data pre-processing, training and validation data were

introduced to the LSTM model, consisting of 5 main components:

the sequence input layer, bidirectional LSTM (biLSTM) layer, fully

connected layer, softmax layer and classification layer, as shown in

Figure 4C. First, the sequence input layer of size [256 × n], where

n is the number of features, is passed through the biLSTM layer

that learns bidirectional dependencies by interpreting the input

data in both forward and backward directions between every step

in order to map the input data into 100 features (hidden units).

Next, the fully connected layer maps the output of the preceding

layer by multiplying it by the weight matrix and adding a bias

vector to obtain an output data size representing the six breast

tissue classes. Next, the softmax layer interprets the input data with

its activation function as a probability distribution followed by the

cross-entropy loss function that computes the difference between

these probabilities of each class in the classification layer.

2.4. Electrical impedance of breast tissue

Biological tissue can conduct electrical current with the

association of impedance parameters. To understand these

electrical properties more, it is important to remember some basics

of tissue composition. Biological tissue comprises extracellular

medium and cells; the latter consists of the cell membrane

and intracellular medium composed of ionic solution and the

extracellular medium. These ions in the solution are responsible

for the cell’s electrical conductivity (Hope and Iles, 2003). It was

remarkable that the cell membrane acts dependently over the

frequency in a simple RC circuit. Lower frequencies allow the

cellular membrane to act like an insulator while the impedance

is more resistive. At a higher frequency, the ability of the cell

membrane to pass an electrical current is more important while

the impedance decreases. In conclusion, biological tissues react

dependently to the frequency after applying electrical current.

Therefore, choosing the frequency range is important, especially for

tumor detection.
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TABLE 3 Evaluation of two di�erent AI model results using the whole impedance features.

Models Accuracy Sensitivity Specificity Precision F_measure G_mean

(%)

CV-multiclass SVM 76.19 100 70.59 44.44 61.54 84.02

Bidirectional LSTM 96.67 80.00 100 100 80.89 89.44

TABLE 4 Comparison of the proposed method with the reported results.

Models Recognition
rate on

testing (%)

Carcinoma
discrimination

(%)

Linear discriminant classifier
(Estrela da Silva et al., 2000)

∼92 >86

BPNN1 (Helwan et al., 2017) 83.33 -

BPNN2 (Helwan et al., 2017) 83.33 -

BPNN3 (Helwan et al., 2017) 91.67 -

The proposed LSTM classifier 96.67 100

3. Results and discussion

For the current study, two AI approaches are adopted to classify

six classes of breast tissue to detect carcinoma breast cancer using

impedance characterization data. The traditional machine learning

algorithm is applied first, followed by the deep learning algorithm.

SVM and LSTM models are evaluated using standard metrics:

accuracy, sensitivity, and precision. These evaluation measures

compare the true-positive rate and false-positive rate; they are

commonly used to evaluate the performance of the system, mostly

related to the identification of patterns (Powers, 2011). They are

defined by the following equations (6–11):

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

Precision =
TP

TP + FP
(9)

F_measure = 2×
Precision× Sensitivity

Precision+ Sensitivity
(10)

G_mean =
√

Sensitivity× Specificity (11)

where TP, TN, FP and FN are true positive, true negative, false

positive and false negative, respectively.

The first experiments were conducted with the ML-SVM

and DL-LSTM models to assess the performance of the breast

tissue classification system and, thus, breast cancer detection. The

numerical results of the two initial experiments are reported in

Table 3. As can be seen, the classification accuracy of the bi-

LSTMmodel is 97.95%, which surpasses those of the CV-multiclass

SVMmodel.

In addition, when the evaluation was performed over precision,

specificity and all the remaining scores, it was seen that the bi-

LSTM model yielded the highest scores among others. Table 4

compares the current literature results. Linear discriminant (Estrela

da Silva et al., 2000) and backpropagation neural network BPNN

(Helwan et al., 2017) models were evaluated using the same

database adopted in this study. The results indicate that the

proposed LSTM model achieved an improved recognition rate on

testing with carcinoma discrimination of 100% compared to the

other studies. Figure 5 represents the ROC (AUC) curve to evaluate

the performance of LSTM model with the unknown data (b) and

the training data (b), it is clearly shown that the model can perfectly

predict all classes with more than 0.99 AUC value.

Visualizing the learning characteristics of LSTM model layers

is important to understand the feature extraction process inside

the model clearly. The idea is to reduce dimensionality using

the t-distributing stochastic nearest neighbor embedding t-sne

technique (van der Maaten and Hinton, 2008) by converting high-

dimensional data into two or three-dimensional data that can be

displayed in a scatterplot, as shown in Figure 6. A comparison is

performed with the raw data visualization in Figure 6A and the

fully connected layer feature visualization in Figure 6B. The regions

that define breast tissue classes have gradually become closer, unlike

those with different classes that become separable. From examining

Figure 6A, it can be observed that the same samples of different

classes are misclassified.

LSTM model was performed using different configurations to

investigate every EIS feature separately. This step consisted of

classifying the six breast tissue classes to explore the discriminating

capability of EIS features. The proposed model demonstrates its

reliability by achieving a 100% recognition rate among all classes for

four different impedance features and 100% of carcinoma detection

overall impedance features except for the area under Spectrum, as

shown in Table 5.

4. Conclusion

The results reported in this paper are a proof of concept

of technology for non-invasive, early and rapid detection and

differentiation of breast cancer based on Electrical Impedance

characterization augmented with Deep Learning. The technique

has the potential for early and rapid breast cancer detection due

to the capability to characterize the evolution of the electric and

dielectric properties of breast tissue from healthy to malignant,

premalignant until cancerous tissue. Thanks to the progression

of machine learning and deep learning techniques that help us

to create a high-performance model to analyze EIS measurement.

LSTMmodel has proved to be the best in breast tissue classification
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FIGURE 5

ROC (AUC) curve of DL model for test dataset (A) and training dataset (B).

FIGURE 6

Feature visualization via 2D and 3D t-sne: (A) the raw data visualization; and (B) the fully connected layer visualization.
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TABLE 5 Evaluation of the LSTMmodel among each EIS feature.

EIS features Accuracy Specificity Precision F_measure Correct tissues identification

(%)

P 98.29 97.95 90.70 95.12 Fad+ Gla+Mas+ Adi

HFS 16.67 20 20 86.1 -

DA 51.50 61.80 0 - Car

AREA 83.33 80.00 50.00 66.67 Con+ Fad+ Gla+Mas

A/AD 98.42 98.16 91.32 95.47 Mas+ Con+ Adi+ Car

IPmax 80.38 76.45 45.92 62.94 Mas+ Con+ Adi+ Car

IO 100 100 100 100 Mas+ Gla+ Con+ Adi+ Fad+ Car

PA500 16.67 20 0 0 -

DR 100 100 100 100 Mas+ Gla+ Con+ Adi+ Fad+ Car

with ultimate accuracy; on top of that, I0 and DR impedance

features carry the most relevant EIS characterization that can

separate every single tissue of the breast and hence detect the

cancerous one. In the future, more impedance spectroscopic data

is required to investigate better the information contained in

EIS mappings, under consideration of a specific logistic plan and

clinical protocols. Moreover, data could be spread across multiple

sessions of breast cancer stages, considering the diversity of patient

gender, age, or medical conditions. Therefore, creating an accurate

EIS biological model of breast cancer could be an effective tool for

AI-based clinical decision-making.
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