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As part of the Special Issue topic “Human-Centered AI at Work: Common Ground

in Theories and Methods,” we present a perspective article that looks at human-

AI teamwork from a team-centered AI perspective, i. e., we highlight important

design aspects that the technology needs to fulfill in order to be accepted by

humans and to be fully utilized in the role of a team member in teamwork.

Drawing from the model of an idealized teamwork process, we discuss the

teamwork requirements for successful human-AI teaming in interdependent and

complex work domains, including e.g., responsiveness, situation awareness, and

flexible decision-making. We emphasize the need for team-centered AI that

aligns goals, communication, and decision making with humans, and outline the

requirements for such team-centered AI from a technical perspective, such as

cognitive competence, reinforcement learning, and semantic communication.

In doing so, we highlight the challenges and open questions associated with

its implementation that need to be solved in order to enable e�ective human-

AI teaming.

KEYWORDS

human-agent teaming, hybrid multi-team systems, cooperation, communication,
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1. Introduction

In the future, Mars is a target for long-duration space missions (Salas et al., 2015).

Both governments and private space industries are fascinated by the Red Planet, and are

aiming to send teams of astronauts on a mission to Mars in the late 2030’s (Buchanan,

2017; NASA, 2017). For successful survival and operation on Mars, a habitat with intelligent

systems, such as integrative Artificial Intelligence (Kirchner, 2020), and robots (e.g., for

outdoor operations), are indispensable, among other things. To avoid unnecessary exposure

to radiation the crew will be in the habitat most of the time. There, they will collaborate

with technical systems with capabilities that are more like the cognitive abilities of humans

compared to previous support systems. Advancements in Machine Learning and Artificial

Intelligence (AI) have led to the development of systems that can handle uncertainties, adjust

to changing situations, and make intelligent decisions independently (O’Neill et al., 2022).

Intelligent autonomous agents can either exist as virtual entities or can embody a physical

system such as a robot. Although much of the decision-making paradigm may be similar in

both cases, the physical spatio-temporal constraints of robots must be properly considered

in their decisions (Kabir et al., 2019). In the given context, autonomous agents perform tasks

such as adaptively controlling light, temperature, and oxygen levels. In addition, they can

gather important information about the outdoor environment and guide the crew’s task

planning by telling themwhen, for example, an outdoormission is most advantageous due to

weather conditions such as isotope storms. Additionally, for outdoor activities, multi-robot
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teams (Cordes et al., 2010) will facilitate efficient exploration in

areas of low accessibility, transportation of materials, and analysis

and transmission of information to the human crew.

In the previously described scenario, we are concerned with

human-AI teaming (cf. Schecter et al., 2022), also often referred

to as human-agent teaming (cf. Schneider et al., 2021) or human

autonomy teaming (cf. O’Neill et al., 2022) (all abbreviated as

HAT). Those are systems, in which humans and intelligent,

autonomous agents work interdependently toward common goals

(O’Neill et al., 2022). These forms of hybrid teamwork (cf.

Schwartz et al., 2016a,b) are already present in some industries and

workplaces and are becoming more andmore relevant, for example

in aviation, civil protection, firefighting or medicine. They provide

opportunities for increased safety at work and productivity, thus

supporting human and organizational performance.

A well-known example from the International Space Station

is the astronaut assistant CIMON-2 (Crew Interactive MObile

companioN), which has already worked with the astronauts.

CIMON-2 is controlled by voice and aims to support astronauts

primarily in their workload of experiments, maintenance, and

repair work. Astronauts can also activate linguistic emotion

analysis, so that the agent can respond empathically to its

conversation partners (DLR, 2020). Another example of AI at

work is the chatbot CARL (Cognitive Advisor for Interactive User

Relationship and Continuous Learning), which has been in use

in the human resources department of Siemens AG. CARL can

provide information on a wide range of human resources topics

and thus serves as a direct point of contact for all employees.

Also, the human resources Shared Service Experts themselves use

CARL as a source of information in their work. CARL understands,

advises, and guides and is used extensively within the company.

Carl has been positively received by the employees as well as the

human resources experts and leads to a facilitation in the work

like a colleague (IBM and ver.di, 2020). Artificial agents are also

used in the medical sector, for example, when nurses and robots

collaborate efficiently in the Emergency Department during high

workload situations, such as resuscitation or surgery.

The question that emerges is how to effectively design such

a novel form of teamwork that fully meets the needs of humans

in a successful teamwork process (Seeber et al., 2020; Rieth and

Hagemann, 2022). This perspective thus highlights the role of AI

interacting with humans in a team instead of only using a normal

high developed technology. Consequently, this perspective aims

toward a comprehensive and interdisciplinary exploration of the

key factors that contribute to successful collaboration between

humans and AI. We (1) illustrate the requirements for successful

teamwork in interdependent and complex work domains based

on the model of an idealized teamwork process, (2) identify

the implications of these requirements for successful human-AI

teaming, and (3) outline the requirements for AI to be team-

centered from a technical perspective. Our goal is to draw attention

to the teamwork-related requirements to enable effective human-

AI teaming, also in hybridmulti-team systems, and at the same time

to create awareness of what this means for the design of technology.

2. Human-AI multi-team systems

As described above, the question arises as to what aspects

need to be considered in human-centered AI in teamwork, both

in terms of the human crew and the “team” of artificial agents to

achieve effective and safe team performance. Imagine a scenario

for major disasters on earth. Here we will not only have a

team with one or two humans and one agent, but several teams

of people, e.g., police, fire fighters, rescue services, and several

agents, e.g., assistance system in the control center, robots in

buildings and drones in the air, who must communicate and

collaborate successfully.

Thus, HATs also exist in a larger context and work in

dependence with other teams. These human-AI multi teams

are called hybrid multi-team systems (HMTS) and refer to

“multiple teams consisting of n-number of humans and n-number

of semi-autonomous agents [i.e., AI] having interdependence

relationships with each other” (Schraagen et al., 2022, p. 202). They

consist of sub-teams, with each individual and team striving to

achieve hierarchically structured goals. Lower-level goals require

coordination processes within a single team and higher-level

goals require coordination with other teams. Their interaction

is shaped by the varying degrees of task interdependencies

between the sub-teams (Zaccaro et al., 2012). HMTS highlight

the complexity of the overall teamwork situation, as sub-teams

consist of humans, of agents and of humans and agents. Therefore,

teamwork relevant constructs such as communication (Salas

et al., 2005), building and maintaining an effective situation

awareness (Endsley, 1999) and shared mental models (Mathieu

et al., 2000) as well as decision making (Waller et al., 2004)

will not only be of high relevance in the human crew, but

also in the AI teams (Schwartz et al., 2016b) as well as in the

human-AI teams (cf. e.g., Carter-Browne et al., 2021; Stowers

et al., 2021; National Academies of Sciences, Engineering, and

Medicine, 2022; O’Neill et al., 2022; Rieth and Hagemann,

2022).

To date, research has focused on individual facets of successful

HAT, ignoring the Input-Process-Output (IPO) framework

(Hackman, 1987) in teamwork research (cf. O’Neill et al., 2023)

which acknowledges the pivotal role of group processes (e.g.,

shared mental models or communication) in converting inputs

(e.g., autonomy or task) into desired outcomes (e.g., team

performance or work satisfaction). Often, the focus is on single

aspects such as trust (Lyons et al., 2022), agent autonomy (Ulfert

et al., 2022), shared mental models (Andrews et al., 2023), or speech

(Bogg et al., 2021). Examining individual facets is important to

understand human-AI teaming, yet we would like to point out that

successful teamwork does not consist of individual components per

se, but rather the big picture, i.e., the interaction of inputs, processes

and outcomes. Thus, we would like to think of a teamwork-centered

AI holistically and discuss relevant aspects for a successful human-AI

teaming from a psychological and technical perspective using the

model of the idealized teamwork process (Hagemann and Kluge,

2017; see the black elements in Figure 1).
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FIGURE 1

Model of an idealized teamwork process of hybrid multi-team systems. Adapted from Hagemann and Kluge (2017), licensed under CC BY 4.0.

2.1. Teamwork requirements in human-AI
teaming

The cognitive requirements for effective teamwork and the

team process demands are consolidated within the model of an

idealized teamwork process (Kluge et al., 2014; Hagemann and

Kluge, 2017). Figure 1 shows an adapted version of this model.

The black elements in the model are from the original model by

Hagemann and Kluge (2017). The brown elements of the model

are additions which, based on literature analyses, are essential for

team-centered AI addressing human needs and thus for successful

human-AI teaming. These elements will now be discussed in more

detail in the course of this article. Following the IPO model, our

proposedmodel does not focus on solely a certain component of the

model, such as only the input, but holistically all three components.

Central elements of the model are situation awareness, information

transfer, consolidation of individual mental models, leadership, and

decision making (for a detailed explanation see Hagemann and

Kluge, 2017). Human-AI teams are responsible for reaching specific

goals (see top left of model), for example, search for, transport,

and care for injured persons during a large-scale emergency, as

well as extinguishing fires. Based on the overall goals, various

sub goals exist for the all-human teams, the agent teams, and

the human-AI teams that will be identified at the beginning of

the teamwork process and communicated within the HMTS. For

routine situations, there will be standard operating procedures

known by all humans and agents. However, it becomes challenging

for novel or unforeseen situations for which standard operating

procedures do not yet exist. Here, an effective start requires an

intensive exchange of mission analysis, goal specification, and

strategy formulation, which are important teamwork processes

occurring during planning activities (cf. Marks et al., 2001). Such

planning activities are a major challenge, especially in multi-

team systems, since between-team coordination is more difficult

to achieve than within-team coordination, but it is also more

important for effective multi-team system teamwork (Schraagen

et al., 2022). Thus, the responsiveness of the agents will be important

for a team-centered AI (see upper left corner in the model),

meaning that the agents are able to align their goals and interaction

strategies to the shifting goals and intentions of others as well as the

environment (Lyons et al., 2022).

As depicted in our model, the defined goals provide the

starting position for all teams building an effective situation

awareness, which is important for successful collaboration within

teams (Endsley, 1999; Flin et al., 2008). Situation awareness

means collecting information from systems, tools, humans, agents,

and environments, interpreting this information and anticipating

future states. The continuous assessment of situations by all

humans and agents is important, as they work independently

as well as interdependently and each team needs to achieve a

correct situation awareness and to share it within the HMTS.

High-performing teams have been shown to spend more time

sharing information and less time deciding on a plan, for example

(Uitdewilligen and Waller, 2018). This implies the importance of

a sound and comprehensive situation awareness between humans

and agents (cf. McNeese et al., 2021b) and an accompanying
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goal-oriented and continuous exchange of information in HMTS.

For developing a shared situation awareness, the information

transfer focuses on sending and receiving single situation awareness

between team members. Aligned phraseology between humans and

agents (i.e. using shared language and terminology) and closed-

loop communication (i.e. verifying accurate message understanding

through feedback: statement, repetition, reconfirmation; Salas et al.,

2005) are essential for effective teamwork. However, possible effects

of closed-loop communication have not yet been investigated in

a HAT. Thus, it is not clear, for example, whether this form of

communication is more likely to be considered disruptive in joint

work and whether it should be used only in specific situations,

such as when performing particularly important or sensitive tasks.

Nevertheless, these requirements for communication in a HAT are

important to consider for successful teamwork, as it has been shown

that performance and perception of teamwork are significantly

higher with verbal communication in a HAT (Bogg et al., 2021).

Therefore, for a team-centered AI, agents should communicate quite

naturally with human team members in verbal language.

Expectations of all humans and agents based on their

mental models and interpositional knowledge impact the situation

awareness, the information transfer, and the consolidation phases.

Mental models are cognitive representations of system states,

tasks, and processes, for example, and help humans and agents

to describe, explain, and predict situations (Mathieu et al., 2000).

Interpositional knowledge refers to an understanding of the tasks

and needs of all team members to develop an understanding of the

impact of one’s actions on the actions of other team members and

vice versa. It lays a foundation for understanding the information

needs of others and the assistance they require (Smith-Jentsch et al.,

2001). Interpositional knowledge and mental models are important

prerequisites for effective coordination in HMTS, i.e., temporally

and spatially appropriately orchestrated actions (Andrews et al.,

2023). Thus, a fully comprehensive and up-to-date mental model of

the agents about the tasks and needs of the other human and artificial

team members is highly relevant for team-centered AI.

Based on effective information transfer, a common

understanding of tasks, tools, procedures, and competencies

of all team members is developed in the consolidation phase in

terms of shared mental models. These shared knowledge structures

help teams adapt quickly to changes during high workload

situations (Waller et al., 2004) and increase their performance

(Mathieu et al., 2000). The advantage of shared mental models is

that HMTS can shift from time-consuming explicit coordination

to implicit coordination in such situations (cf. Schneider et al.,

2021). For example, observable behaviors or explicit statements

may cause the agent to exhibit appropriate behavior, such as a

robot observes that the human has reached a certain point in the

experiment and is already preparing the materials that the human

will need in the next step. Accordingly, a team-centered AI must be

able to coordinate with the humans in the team not only explicitly,

but also implicitly. In addition, the agents in a HMTS must be

able to detect when there is a breakdown in collaboration between

humans and agents, or between the different agents, and intervene

so that they can explicitly coordinate again.

As a result of the consolidation phase, the HMTS or leading

humans and agents need to make decisions to take actions. Thus,

it is important that the artificial agents have agency, i.e., they can

have control over their actions and the decision authority to execute

these actions (Lyons et al., 2022). For an effective collaboration

of humans and agents, the HMTS needs a flexible decision-

making authority, that is, authority dynamically shifting among

the humans and agents in response to complex and changing

situations (Calhoun, 2022; Schraagen et al., 2022). Requirements

in this phase include task prioritization and distribution as well

as re-prioritization and distribution of tasks according to changes

in the situation or plan (Waller et al., 2004). The resilience of

the system is thus also important for team-centered AI, so that

the agents can adapt to changing processes and tasks (Lyons

et al., 2022). In this phase, it is very important that the agents

can interpret the statements of all the others and continue to

think about the situation together with the humans. Only in this

way can HMTS be as successful as only human high-performing

teams. That is due to the fact that in the decision-making phase

high-performing teams compared to low performing teams use

more interpretation-interpretation sharing sequences: the process

involves an initial statement made by one human or agent, followed

by an interpretative response from another agent, leading to a

subsequent statement by the first agent that builds upon and

expands the reasoning and thus build a collective sensemaking

(Uitdewilligen and Waller, 2018).

The result of decision-making and action flows back into

individual situation awareness and the original goals are compared

with the as-is state achieved. This model of a continuously idealized

teamwork process includes diverse feedback loops that enable a

HMTS to adapt to changing environments and goals. For the

described processes to be successfully completed, cooperation is

required within the HMTS. This includes, for example, mutual

performance monitoring, in which humans and agents keep track

of each other while performing their own tasks to detect and

prevent possible mistakes at an early stage (Paoletti et al., 2021).

Cooperation also requires backup behavior in the team, i.e., the

discretionary help from other human or artificial team members

as well as a distinct collective orientation of all members (Salas

et al., 2005; Hagemann et al., 2021; Paoletti et al., 2021). For

team-centered AI, the agents must be able to provide this support

behavior for the other team members. A successful pass through

the teamwork process model also depends on the trust of each

team member (Hagemann and Kluge, 2017; McNeese et al.,

2021a). Important for the trust of humans in agents is a reliable

performance, i.e., as few to no errors as possible (Hoff and Bashir,

2015; Lyons et al., 2022). Nevertheless, the agent should not only

be particularly reliable, but for a team-centered AI it should also

be able to turn to all members of the HMTS in new situations and

request an exchange because it cannot get on by itself.

2.2. Technical requirement for artificial
team members

Increased autonomy enables agents to make decisions

independently in different situations, i.e., to develop situational

awareness, even in situations where there is only a limited

possibility of human intervention. For agents to be part of HMTS,

it is mandatory to achieve a level of cognitive competence that
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allows them to grasp the intentions of their teammates (Demiris,

2007; Trick et al., 2019). This claim is much easier said than

done as it requires the existence of mental models in agents that

are comparable to the models that humans rely on, especially if

they exchange information. However, such models cannot just

be preprogrammed and then implanted into agents. One reason

for this is that the process by which mental models are created in

humans is still a subject under investigation (Westbrook, 2006;

Tabrez et al., 2020). Even though this cognitive competence is

required for team-centricity, this process is difficult to reproduce

artificially. On the other hand, there is usually not just a single

isolated model (or brain process) that generates human behavior,

but rather an ensemble of models that are active at any given

time and influence the observable outcome. Compared to humans

that function based on cognitive decision-making, intuition,

etc., machines are digitized, and act based on experience, their

understanding of the current situation, and prediction models.

These models must improve over time, based on a limited set of

prerecorded data to move toward more accurate, robust systems.

Thus, for future developments in HATs it would be important to

design models with higher predictive power, which we define by

how well the model can predict the outcome of its decisions based

on the situation, experience and team behavior (see also Raileanu

et al., 2018).

Moreover, agents must be competent and empowered to make

decisions when needed, without having to wait for instructions

from humans, especially in extreme environments where humans

must adapt to particular conditions (Hambuchen et al., 2021), and

resources are scarce. System resilience is also of high importance as

the consequences of failure, on either side (human or agent) could

be catastrophic. Whenever there is a potential threat to human

lives, HMTS can prove more effective compared to homogeneous

human or AI teams. During search and rescue operations on

Earth (Govindarajan et al., 2016), responsiveness, coordination,

and effective communication are crucial requirements for HMTS.

Therefore, through teleoperation and on-site collaboration, HATs

are able to mitigate the impact after a disaster. HATs can

also be witnessed in modern medical applications that demand

cooperation and high degrees of precision. For example, nurses

and robots in the Emergency Department can efficiently handle

high workloads, and safety-critical procedures like surgery and

resuscitation, using a new reinforcement learning system design

(Taylor, 2021). Reinforcement learning is a class of machine

learning algorithms, wherein the agent receives either a reward

or a penalty depending on the favorability of the outcome of a

particular action.

In HATs of the future, we will thus have to work with

agents that can learn over time to adjust to human behavior

and shape the models of the environment and of other team

members over time. This learning approach will enable the agents

to exchange substantial information even with very few bits

or in other words content and meaning will be exchangeable

between humans and agents rather than bits and bytes. This

process, also known as semantic communication, is currently under

investigation by different teams from a more information theoretic

approach over symbolic reasoning to an approach that is called

integrative artificial intelligence (Kirchner, 2020). Beck et al. (2023)

approach this problem by modeling semantic information as

hidden random variables to achieve reliable communication under

limited resources. This is a valuable step toward adapting to the

problem of communication losses and latencies in applications

like space, and exploration in remote areas. In a HAT setup, it

is important to make some decisions regarding the nature of the

team, either a priori or dynamically. Like pure human systems,

assigning specific roles and defining hierarchies among agents

in a team and between teams can enhance the overall mission

strategy. Role-based task allocation is especially useful when the

team consists of heterogeneous (Dettmann et al., 2022) and (or)

reconfigurable (Roehr et al., 2014) agents. In HMTS, having every

member trying to communicate with every other member is

highly impractical, resource intensive and chaotic. This issue is

further complicated when all members are authorized to act as

they will. Implementing an organized hierarchical team structure

(Vezhnevets et al., 2017) is therefore imperative for a team-centered

AI successfully collaborating with humans.

To achieve seamless interaction between humans and agents,

the latter must display behavioral traits that are acceptable to

humans. An agent is truly team-centered when it can intelligently

adapt to the situation and team requirements, in a team-oriented

(Salas et al., 2005), rather than a dominant or submissive manner.

Agents need to achieve predictive capabilities for other teammates

and the environment to account for variation, as in Raileanu

et al. (2018). In the autonomous vehicle domain, it is crucial

that the vehicle can accurately predict the behavior of pedestrians

and others to enable seamless navigation (Rhinehart et al., 2019).

According to Teahan (2010), behavior is defined by how an agent

acts while interacting with its environment. Interaction entails

communication which can be either verbal or non-verbal. An

interesting aspect will be to investigate deeper into large language

models, like ChatGPT and to find out if these approaches can

be extended to general interactive behavior (Park et al., 2023)

instead of just text and images. Apart from language, verbal

communication is also characterized by the acoustics of the

voice, and style of speech. Moreover, movement is a fundamental

component that defines the behavior of any team member.

Depending on design, agents are already capable of performing

and recognizing gestures (Wang et al., 2019; Xia et al., 2019)

and emotions (Arriaga et al., 2017). Motion analyses have shown

that the intention behind performing an action is intrinsically

embedded in the style of movement, for instance, in the dynamics

of the arm (Niewiadomski et al., 2021; Gutzeit and Kirchner,

2022). In all the scenarios, one of the biggest challenges faced by

HMTS is the trustworthiness of the team. Cooperation requires

building trust-based relationships between the team members.

Bazela and Graczak (2023) evaluated, among other factors, “the

team’s willingness to consider it [the Kalman autonomous rover—

an astronaut assistant] a partially conscious team member” (p. 369).

The opposite also holds true. Agents must maintain a high trust

factor of their human teammates, i.e., be able to trust humans,

as this factor has a significant influence on the decision-making

process (Chen et al., 2018). For instance, the agent’s trust factor

can be improved by means of reliable communication when the

human switches strategies. From a technical perspective, humans

are the chaos factor in the HAT equation and even though this
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can be modeled to a certain extent on the agent side, an effective

collaboration largely depends on the predictability of human

actions. A summary of all the requirements mentioned for team-

centered successful human-AI teaming addressing human needs

can be found with definitions of these and example references in

the Supplementary Table 1.

3. Conclusion

The aim of this contribution is to discuss the central teamwork

facets for successful HATs in an interdisciplinary way. Starting

from a psychological perspective addressing the human needs,

the importance of team-centered AI is revealed. However, its

technical feasibility is challenging. It is an open problem from

a standpoint of technical cognition if AI systems can ever be

regarded and/or accepted as actual team members as this poses

a very fundamental question of AI. This question refers to the

challenge to replicate intelligence in technical systems as we only

know it from human systems. This is an old and long-standing

question that has been addressed by Turing (1948) in his famous

paper on “intelligent machinery” already in the early last century.

As a mathematician he concluded that it is not possible to build

such systems ad hoc. One loophole that he identified in this

paper is to create highly articulated robotic systems that learn—

in an open-ended process- from the interaction with a real-world

environment. It is his assumption that somewhere along this

process, which is open-ended, some of the features that we associate

with intelligence may emerge and thus the resulting system will

eventually be able to simulate intelligence well enough such that

it will be regarded as intelligent by humans. If this is actually

feasible has never been tested but could be a worthwhile experiment

to perform with technologies of the 21st century. However, for

the meantime, teamwork attributes like responsiveness, situation

awareness, closed-loop communication, mental models, and decision

making remain to be buzz words in this context and are technical

features that we will be able to implement to a limited extent

into technical systems in order to enable these systems to act

as valuable tools for humans in well-defined environments and

contexts. But whether this will qualify the agents as team members

is unknown so far (cf. also Rieth and Hagemann, 2022). This

would in fact require a much deeper understanding of the processes

that enable cognition in human systems as we have it today

and even if we had that understanding, it will still be an open

question if the understanding of mental processes is also a blueprint

or design approach to achieve the same in technical systems.

Overall, the manuscript provides insights into the team-centered

requirements for effective collaboration in HATs and underscores

the importance of considering teamwork-related factors in the

design of technology. Our proposed guidelines can be used to

design and evaluate future concrete interactive systems. In the

experimental testing of the single facets discussed for a truly

team-centered and successful HAT, which considers the needs of

the humans in the HAT, many highly specific further research

questions will arise, the scientific treatment of which will be of

great importance for the implementation of future HATs. Thus,

further research in this area is needed to address the challenges

and unanswered questions associated with HMTS. Solving them

will open doors to applying hybrid systems in diverse setups, thus

leveraging the advantages of both, human and agent members, as

human-AI multi-team systems.
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