
TYPE Original Research

PUBLISHED 23 November 2023

DOI 10.3389/frai.2023.1255192

OPEN ACCESS

EDITED BY

Yunye Gong,

SRI International, United States

REVIEWED BY

Takashi Kuremoto,

Nippon Institute of Technology, Japan

Daochen Zha,

Rice University, United States

*CORRESPONDENCE

Ben Sattelberg

ben.sattelberg@colostate.edu

RECEIVED 08 July 2023

ACCEPTED 20 October 2023

PUBLISHED 23 November 2023

CITATION

Sattelberg B, Cavalieri R, Kirby M, Peterson C

and Beveridge R (2023) Locally linear attributes

of ReLU neural networks.

Front. Artif. Intell. 6:1255192.

doi: 10.3389/frai.2023.1255192

COPYRIGHT

© 2023 Sattelberg, Cavalieri, Kirby, Peterson

and Beveridge. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Locally linear attributes of ReLU
neural networks

Ben Sattelberg1*, Renzo Cavalieri2, Michael Kirby2,

Chris Peterson2 and Ross Beveridge1

1Department of Computer Science, Colorado State University, Fort Collins, CO, United States,
2Department of Mathematics, Colorado State University, Fort Collins, CO, United States

A ReLU neural network functions as a continuous piecewise linear map from an

input space to an output space. The weights in the neural network determine

a partitioning of the input space into convex polytopes, where each polytope

is associated with a distinct a�ne mapping. The structure of this partitioning,

together with the a�ne map attached to each polytope, can be analyzed to

investigate the behavior of the associated neural network. We investigate simple

problems to build intuition on how these regions act and both how they can

potentially be reduced in number and how similar structures occur across di�erent

networks. To validate these intuitions, we apply them to networks trained on

MNIST to demonstrate similarity between those networks and the potential for

them to be reduced in complexity.

KEYWORDS

neural networks, ReLU, linearization, linear mapping, polyhedral decomposition,

Jacobian matrices

1 Introduction

Building a better understanding of neural network behavior is critically important.

Neural networks are state-of-the-art in a variety of contexts, including facial

recognition (Deng et al., 2019) and object recognition (Russakovsky et al., 2015). However,

there is limited understanding of how these networks work or what they are truly doing

to achieve such high performance. We present one path for building understanding and

intuition by investigating the locally linear behavior of ReLU networks.

ReLU neural networks can be broken into linear region facets—the small polytopes

where the network behaves as a linear function based on the activation pattern of the ReLU

activation functions. These can be considered both through the underlying geometry of

the polytope partitioning of the network and through the linear function associated with

the network within each polytope. Prior work has been done on establishing theoretical

bounds on the number of regions that it is possible for a network to have (Pascanu et al.,

2013; Montufar et al., 2014; Raghu et al., 2017) and on investigating metrics involving these

structures (Novak et al., 2018).

Much of the original study dealing with the linear regions of ReLU neural networks

has focused on investigating expressivity and complexity. It has previously been shown that

networks are universal approximators, that is, subject to certain mild constraints, and they

are able to approximate any well-behaved function to within arbitrary precision as the size of

the network increases (Cybenko, 1989; Hornik, 1991; Hanin and Sellke, 2017; Lu et al., 2017;

Lin and Jegelka, 2018). As meaningful as these results are, they are typically not applicable

to practical neural networks and do not say anything about the expressivity of a given neural

network. To assist with determining the expressivity of networks in practice, various groups

found and improved bounds on the maximum number of linear regions that feedforward

fully connected ReLU neural networks can attain as functions of their width, the number of

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2023.1255192
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2023.1255192&domain=pdf&date_stamp=2023-11-23
mailto:ben.sattelberg@colostate.edu
https://doi.org/10.3389/frai.2023.1255192
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2023.1255192/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

nodes in a given layer, and depth, that is, the number of

layers (Pascanu et al., 2013; Montufar et al., 2014; Raghu et al.,

2017). Themain result of this study is that themaximum number of

linear regions a network can have grows polynomially in the width

and exponentially in the depth (Raghu et al., 2017). This partially

explains the success of the trend in many modern neural networks

to go deeper, such as ResNet (He et al., 2016).

However, empirical investigations of the number of linear

regions actually achieved by many neural networks have shown

different results. Untrained neural networks after initialization have

a number of linear regions that tends to grow linearly in the number

of ReLU functions along any one-dimensional subspace of the input

space (Hanin and Rolnick, 2019a). Furthermore, after training, the

number of regions tends to grow polynomially in the number of

ReLU nodes in the network and exponentially in the dimension of

the inputs to the network (Hanin and Rolnick, 2019b).

These linear regions have also been used empirically to

measure the sensitivity of neural networks. As will be discussed in

Section 2.1, the Jacobian of a neural network at a point, together

with the value of the neural network at the point, describes exactly

the linear function that agrees with the network in a polytope

around that point. Novak et al. (2018) utilized this fact to investigate

the effect of hyperparameters on input sensitivity and found

that overparameterization can help in generalization. Additionally,

they Zhang and Wu (2019) investigated how the linear region

structure can be used to predict the quality of a network.

Many of these studies have used visualization methods for

the polytope structures of neural networks (Hanin and Sellke,

2017; Hanin and Rolnick, 2019a; Zhang and Wu, 2019). These

visualizations are frequently done on MNIST or similar datasets

using cross-sections of the input space to better understand how the

polytope structure of networks evolves through training or through

different training methodologies. We apply such visualizations to

toy, two-dimensional input problems so that we can build intuition

on problems where the entire relevant input space is viewable.

Liu et al. (2023) investigated the properties of the activation

patterns of the ReLU functions as bit strings corresponding to

these linear regions, although their method works only for fully

connected networks, and they did not extend it to convolutional

layers or max-pooling.

In the study by McNeely-White et al. (2019), it was shown

that one can apply a linear map to the feature vector (the outputs

of the pre-classification layer) of one network to obtain a vector,

considered as a feature vector in the second network, that can then

be used by the second network for classification while maintaining

high accuracy.

Zhang et al. (2018) showed that due to the piecewise linear

structure of these neural networks, and under certain assumptions,

the set of ReLU neural networks, the set of piecewise linear

functions, and the set of tropical rational functions are equivalent.

We do not extend our results to the realm of tropical algebra, but

we do take inspiration from the concept of the dual as commonly

expressed in tropical algebra.

We investigate the behavior of linear region for small networks

trained on toy problems where full visualization is possible to

build intuition for the behavior and structure of both the polytope

geometry and their associated linear functions. Insights from those

small networks are extended to larger, more modern networks

trained to recognize handwritten digits from the Modified National

Institute of Standards and Technology database for handwritten

digit recognition (MNIST) (LeCun et al., 1998; Szegedy et al., 2016;

Lin and Jegelka, 2018). The first is that clustering these linear

regions based on Euclidean distance between the weights of their

linear functions can be carried out while preserving much of the

original performance of the networks. This implies that networks

have significant redundancy at the facet level, aligning with the

success of methods for pruning and compressing networks (Frankle

and Carbin, 2018; Blalock et al., 2020).

The second main result is that the linear functions associated

with linear region of two different networks, trained or fine-tuned

on the same problem, can be related by a linear map that maintains

high accuracy. This implies that qualitatively different networks

result in similar solutions when considered on the polytope level,

while also providing a way to identify when two networks may

identify different patterns in the input data that they exploit

for classification. Identifying when networks converge to similar

solutions allows for a stronger ability to determine where different

architectures or training methods will be successful.

2 Materials and methods

Neural networks with piecewise linear activation functions,

such as ReLU, are continuous piecewise linear maps from the input

space to the output space (Zhang et al., 2018). Additionally, each

of the linear portions of this mapping is supported on a convex

polytope defined by the boundaries along which the ReLU nodes

activate. Visualizing and analyzing the structure of these linear

regions allows for increased understanding of network behavior.

2.1 Linear regions definition

The piecewise linear and convex polytope structures of a ReLU

neural network, f :Rd → R
o with inputs inRd and o outputs, mean

that it can be written as a piecewise linear function (Zhang et al.,

2018). A representation of that is

f (x) =



























W1x+ b1, if A1x ≤ c1

W2x+ b2, if A2x ≤ c2
...

Wmx+ bm, if Amx ≤ cm.

(1)

For each of the 1 ≤ i ≤ m linear regions, the affine mapping

defined by Wi and bi is valid on the convex polytope defined by

Ai and ci. One way to determine these parameters for a given

input, x, starts with identifying which ReLU functions are activated

for that input. Zeroing the weights in the network associated

with deactivated ReLU nodes and converting activated ReLU

functions to the identity function, Wi and bi can be determined

by multiplying through the resulting linear equation. The values

of Ai and bi can be determined by finding the zeros of the ReLU

functions and setting inequalities based on their activation patterns.

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 1

An illustration of how the ReLU activation pattern for an input determines the linear mapping used for that input. If a given input fails to activate the

crossed out red nodes, the corresponding rows of matrices in the functional representation are zeroed. This leads to a single linear function of the

input for that input. The region of validity refers to the possible x values for which this ReLU activation pattern exists and is determined by finding

inequalities corresponding to the zeros of the ReLU function. The zero for a given node corresponds to the x values for which the output value of the

associated matrix row is zero. All the equations must be satisfied.

An example of this process is shown in Figure 1. This piecewise

linear mapping structure can be extended to various other common

layers types, such as max and average pooling with additional work.

The Wi and Ai are linked—the Wi are selected based on

which ReLU nodes are activated, and the Ai describe where ReLU

nodes switch from activated to deactivated or vice-versa. This is

partially illustrated in Figure 1 and a specific, smaller example

of this is shown later in Equations 2 and 3. There are also

similarities and relationships between different Wi or Ai—because

they are coming from the same network weight matrices with rows

removed, there is an inherent structure in the specific values used to

construct them.

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

An additional note tomake is that the number of regions,m, has

the potential to be very large, with exponential growth in the depth

and polynomial growth in the width of the network (Pascanu et al.,

2013; Montufar et al., 2014; Raghu et al., 2017). Experimentally,

trained networks have been shown to typically exhibit polynomial

growth with the number of ReLU activations of the network, where

the degree of the polynomial is the input dimension (Hanin and

Rolnick, 2019b). Although this is polynomial, networks applied in

domains such as image recognition frequently have inputs with at

least 1,000 dimensions, so this still results in very large numbers of

regions (Russakovsky et al., 2015).

The linear mapping network definition, Equation 1, highlights

the fact that as long as one of the ReLU nodes does not switch

from “activated” to “deactivated” or vice-versa, the behavior of

the network is purely linear. Since the network is a composition

of continuous linear and piecewise linear functions, it is itself a

continuous piecewise linear function that splits the input space

into disjoint polytopes, on each of which there is an associated

affine mapping. This represents an unequivocally simple way to

conceptualize what ReLUnetworks compute, but unfortunately, the

typically extreme growth in the number of facets in Equation 1

means enumerating the full set of affine mappings is impractical

for most modern networks.

Because of this difficulty in computation, Equation 1 is of

conceptual value but, arguably by itself, not of much practical value;

however, it leads to several distinct yet ultimately equivalent views

of neural networks. Some of the relevant views are:

• The weight matrix, Wi, is the Jacobian of the neural network

in the region described by Ai and ci. The j
th row of Wi is the

gradient of the jth output of the network. This fact has been

utilized previously to consider sensitivity metrics for neural

networks (Novak et al., 2018). This also allows for simple

calculation of the Wi and bi values, even in networks with

unusual piecewise linear activation functions.

• The weight matrices, Wi, and biases, bi, form a set of linear

maps which the neural network chooses from based on the

value of the input. Each row of these Wi is a surface normal

to the hyperplane used for classification.

• The choices are based on the location of the input in a

set of connected polytopes induced by the ReLU structure

of the network. We provide animations showing how these

structures evolve as networks train in Section 3.1.

• Each row ofWi concatenated with the corresponding element

of bi forms a point in R
d+1. These points can be considered

as lying in a “dual” space to the corresponding output of the

network, and their structure can be analyzed in that context

to investigate the linear function behavior. We show how this

space forms in Sections 2.2 and 3.1, and analyze this space for

clustering and similarity of networks in Sections 3.2 and 3.3.

2.2 Example on XOR

For an example of how the piecewise linear nature of ReLU

neural networks works, we consider an XOR problem and a ReLU

neural network that solves it as presented in Figure 2. We choose

XOR as it is a complex enough problem that it illustrates non-linear

aspects of network behavior, but simple enough that full analysis

of that behavior is feasible. Note that for the XOR function itself,

shown in Figure 2A, zero is replaced with−1 to assist with training

of networks. Figure 2B shows a network which solves the XOR

problem. The functional form of that same network mapping from

the two inputs x and ymay be written as

f (x, y) =
[

2 −4
]

max

{[

1 1

1 1

] [

x

y

]

+

[

1

0

]

,

[

0

0

]}

− 1. (2)

As a function on R
2, the network divides R2 into three linear

regions with corresponding linear function/polytope pairs,

f (x) =























−2x− 2y+ 1, 0 ≤ x+ y, Both ReLUs activated

2x+ 2y+ 1, −1 ≤ x+ y ≤ 0, Top activated; bottom

not activated

−1, x+ y ≤ −1, Neither ReLU activated

(3)

These linear regions are shown in Figure 3. Even for this very

simple example, a complication arises: there is actually a “fourth”

region,−4x− 4y− 1, tied to the case where the lower ReLU node is

activated and the top is not. However, that case occurs in the empty

polytope 0 ≤ x+y ≤ −1 which cannot occur for any values of x and

y, and thus, in practical terms, this empty polytope does not exist.

This is an example of a general phenomena where cases exist in

principle but are unreachable regardless of input. Furthermore, the

existence of such cases explains in part why the number of possible

linear regions grows as it does and not simply as a power of two of

the number of ReLU functions.

There are additional practical complications that can arise but

do not on this network due to its simplicity—a network can be

considered as a function on all of its input space, Rd, but the data

to which the network is actually applied lie in a bounded region

within that space. Polytopes may exist outside of that region but

not be meaningful for the purpose of the network. Furthermore, in

many problems, the data used are a discrete subset of this bounded

region. It is possible for the network to define polytopes lying in

the bounded region but too small to contain any of the discrete

data to which the network is applied. In general, we observe that

the number of polytopes does typically grow beyond the number of

actual training samples when considering high-dimensional input

data and complex networks.

Returning to the regions shown in Figure 3, the weights and

biases in these polytopes can be considered as d + 1-dimensional

points existing in a “dual space” to the original neural network. For

example,

− x− y =
[

−1 −1 0
]







x

y

1






(4)

and so the point (−1,−1, 0) in the dual is induced by this region.

Further examples of these duals are illustrated in Figure 4, which

shows the decision boundary, numerical output, and dual points

for three networks with varying numbers of nodes trained on the

XOR problem. These can illustrate patterns in the behavior of

the network, and as will be discussed in more detail, mapping

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 2

The modified XOR problem. (A) The input and output values—inputs and outputs are rescaled to be from –1 to 1 rather than from 0 to 1. (B) A

network architecture and its associated weights that solves this problem. Nodes in red have ReLU applied after calculating their associated input

values.

FIGURE 3

The polytopes and associated linear regions for a simple network to solve the XOR problem. (A) The cross-section of the network in the plane. Green

corresponds to points that would be labeled in the positive class (neural network output greater than zero) and red corresponds to points that would

be labeled in the negative class (neural network output less than zero). The black lines correspond to the points at which one of the two ReLU units

“activates” or “deactivates” and switches the linear region used for classification. The three polytopes form bands in the plane. (B) The surface of the

neural network. The points used for training are shown as green and red dots, the non-linearities are shown as red lines, and the decision boundary

(zeros of the network) are shown as black lines.

between dual regions of networks or clustering in this space can

identify similarity metrics and areas where the neural network gives

potentially unnecessary complexity.

2.3 Polytope visualization

One way to think of the polytopes resulting from ReLU

activation patterns is the way in which they arise as a consequence

of the iterated perceptron structure inherent in this style of

network. Each ReLU node in the network builds upon the non-

linearities in the previous layers by having its activation boundary

correspond to a line in the output space of the previous layer.

An example of this is illustrated in Figure 5. This figure shows

the decision surface, numerical output, dual points, and the

boundaries of the linear regions induced by each node split by

layer.

The boundaries induced by the first hidden layer of the

network, bottom left of Figure 5, are relatively simple—each of the

nodes in the first layer has a line in the original input space for

an activation boundary where the output of that node switches

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 4

The decision boundaries (left), wireframe representations of output (center), and dual representations of the linear regions (right) for three networks

designed to solve ReLU. The top network (A) is the simple one described previously. The center (B) and bottom (C) are single hidden layer neural

networks with the center having 20 hidden nodes and the bottom having 100 hidden nodes. In the dual, blue dots represent linear regions used on

the 101× 101 uniform grid in [−1, 1]2. The red dots represent the linear regions used for the actual classification of the four data points—note that

the top image only has three dots corresponding to these, rather than four, as it only has a total of three linear regions.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 5

The polytopes resulting from the various layers of a simple network to classify a circle versus a surrounding annulus. Top left: the original problem

and the decision boundary determined by the network. Top middle: the outputs of the network. Top right: the dual weights. Bottom first: the zeros

for each of the perceptrons from the original input space to the first hidden layer—these decision boundaries are all lines, as the perceptrons at this

stage are purely linear in the original input. Each color corresponds to one of eight nodes in this hidden layer (and the colors do not relate between

each of the four bottom plots). Not every node has zeros occurring in the window shown. Bottom second: the zeros for each of the perceptrons

from the original input to the second hidden layer, with the boundaries for the first hidden layer in light gray. These are lines in the output space of

the first layer, but appear non-linear when shown in the original input space. Each boundary can only break at one of the lines from the previous

layer. Bottom third: the zeros for each of the perceptrons from the original input to the third layer, with the boundaries of the first two layers in gray.

Breaks in this layer can occur at any location where it crosses a zero of a previous layer. Bottom fourth: zeros in the output layer. This forms the

decision boundary shown in the top left.

from positive to negative. Each subsequent layer builds upon

the previous. However, the activation boundaries of ReLU nodes

in subsequent layers form lines in compressed space. Within the

polytopes formed by the activation boundaries of previous layers,

the new activation boundaries are still linear, but when changing

between those polytopes, the new activation boundaries are able

to change angle. To illustrate this, the activation boundaries for

each layer in Figure 5 are reproduced in subsequent layers in gray.

The more complicated activation boundaries for each subsequent

layer are always locally linear with changes in direction only arising

where they intersect a boundary from a previous layer. This is a

direct result and also illustration of the fact that the non-linearities

of multi-layer ReLU networks must be built up from activation

boundaries established by the previous layers in the network.

Finally, notice in the bottom right of Figure 5 that the output layer

of the network does as expected, constructing a valid piecewise

linear decision boundary for the original classification task.

A few things can be noticed from Figure 5. The first is

that the final decision boundary is not reliant on all of the

activation boundaries from previous layers. This implies that

some of the nodes in the network could be removed without

qualitatively impacting the classification. Additionally, the final

decision boundary corresponds closely to an activation boundary in

the second hidden layer, suggesting that layers after the second are

not necessary. These observations support the idea of the “lottery

hypothesis,” where networks have more nodes that necessary, and

subnetworks that are initialized well can be the main driving

force for network success (Frankle and Carbin, 2018; Blalock

et al., 2020). Finally, the 90 identified linear function weights

in the dual graph cluster into a small number of points, again

suggesting simplification of the network is possible to remove such

redundancy.

2.4 Region modification

To investigate extraneous complexity in networks, it is useful

to consider the linear functions that arise on each polytopes.

This is useful for a number of reasons, but the two simplest

are that the visualizations done in the previous section cannot

be done as simply with high-dimension input data, and that the

complexity of the polytope partitioning increases significantly with

the complexity of the network. Using the linear functions allows us

to sample points from the input space and compare the behavior

of a network or networks across those points without having to

worry about the polytope structure between those points. Even

for relatively simple image classification datasets such as MNIST,

small networks have nearly every image in the dataset lying on a

unique polytope (Novak et al., 2018). Additionally, by calculating

the linear functions using the Jacobian, we can largely treat the

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

network structure as a black box and avoid difficulties that arise

from considering more complex activation functions (Liu et al.,

2023).

For investigating these affine mappings, there are two useful

steps to take: constructing notation to allow us to refer to the set of

affine mappings potentially used for a specific output of a network,

and considering only the affine mappings that are used for training

or testing to reduce the number to something computationally

manageable.

In terms of notation, the Wi, which is the Jacobian of the

network within the region defined by Ai and ci, and bi described

in Equation 1 can be written as

Wi =













wT
i,1

wT
i,2
...

wT
i,o













and bi =













bi,1
bi,2
...

bi,o













, (5)

Where each wi,j and bi,j correspond to the affine mapping in

polytope 1 ≤ i ≤ m for the 1 ≤ jth ≤ o output of the network.

Then, it is possible to construct the matrix containing the set of

affine mappings used for a given output, j, as

Cj =













wT
1,j b1,j

wT
2,j b2,j
...

wT
m,j bm,j













∈ R
m×(d+1). (6)

In practice, it is computationally infeasible to calculate all m

linear regions, so for the purpose of empirical studies, we choose

p points in the input space to sample and construct the matrix.

Cj =













wT
1,j b1,j

wT
2,j b2,j
...

wT
p,j bp,j













∈ R
p×(d+1). (7)

For simple, two-dimensional input problems, we choose the

p points by sampling from a uniform grid. We also consider the

MNIST dataset (LeCun et al., 1998), where the p points we sample

from are the 60,000 training or 10,000 testing input samples from

that network. We construct the Cj matrices using the training

samples, and we additionally construct C̃j using the testing samples

for evaluation of how various modifications impact accuracy on the

testing set.

2.4.1 Clustering regions
Even for potentially large numbers of sampled affine maps, it

is likely that many samples will have a unique Wi due to the large

number of total linear regions. For example, even simple networks

on the MNIST dataset only have overlap on <1% of the training

inputs. This is not necessarily surprising, simply due to the sheer

number of possible linear regions the network can construct.

However, although these weights are not necessarily equivalent,

there is potentially a great deal of redundancy or similarity among

them. As discussed in Section 2.3 and shown in the behavior of the

dual points of increasingly complex networks in Figure 4, patterns

appear in the linear weights that can indicate redundant behavior.

We can cluster these linear weights and determine how well those

clusters are able to replicate the behavior of the network as a

measure of that redundancy.

1. Calculate the Cj and C̃j matrices.

2. Train k-means clustering models using the rows of each of the

Cj matrices.

3. For each row of each of the C̃j determine for which cluster center

it is closest.

4. Use that cluster center as a linear mapping from input space to

determine the value for that output.

5. Classify the input based on which of the newly calculated

outputs is highest.

By varying k and comparing the resulting accuracy against the

original accuracy of the network, we can investigate the degree to

which networks can be simplified. If applying this method with

k = 1 results in near-original accuracy, that suggests the network

is behaving holistically as a linear mapping, whereas if it results

in near-random accuracy, that suggests the network’s behavior

can not be well described by a linear transformation from the

input space to the output space. Determining at which value of k

accuracy approaches the original provides a way to understand how

significantly the network can be simplified.

2.4.2 A�ne maps between linear functions
Another area where representing the weights of these linear

regions as points in space can be useful is in finding similarities

between two networks. GivenCj,network1 andCj,network2, we can train

least-squares regression models for each output to find matrices

Mj ∈ R
d+1×d+1 for each 1 ≤ j ≤ o that minimize

||Cj,network1Mj − Cj,network2||2. (8)

This method finds a mapping between the linear region

weights, or equivalently, between the gradients of the outputs

with respect to the input. Due to this, as with the k-means

clustering method, this method requires running inputs through

each original network, calculating the Jacobians, then applying the

transformation.

This is similar to the study by McNeely-White et al. (2019)

where the authors demonstrated that the outputs of the final

layer before the linear classifier of networks trained on ImageNet

are affine-equivalent. Unlike their study, our study investigates

the connection between the affine mappings of the locally linear

functions of networks, rather than the feature vectors of networks.

Results of this process for XOR networks using the C matrices

constructed by sampling points on the 101× 101 uniform grid are

shown in Figure 6, which shows the results of mapping between two

networks trained on XOR. Although the two networks have similar

behavior, their decision boundaries are somewhat different and

their dual representations are close to rotations of each other. The

resulting points of Cj,network1Mj are very similar to Cj,network2 and

vice versa, meaning that the mapping is successful. The function

resulting from this is no longer continuous—because the bias is

part of what is being mapped, the result is able to vary based on

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 6

The decision boundaries (A), wireframes (B), and weights in the dual space (C) for two di�erent XOR networks and the result of training an a�ne

mapping from the linear regions of one network to the other. The original networks are the upper left and lower right in each subplot, with the

resulting mapped networks are the top right and bottom left. In the dual space, the four points of XOR are in red and all other points sampled

uniformly from the grid in the original input space are in blue.

the position in the plane and regions may no longer join at their

boundaries. By applying this method to more complex networks

where similarity is not as clear, we can determine potential overlap

in network behavior.

2.5 Extension to image data

The idea of investigating and visualizing linear regions can

be extended to higher dimensions, and specifically to image

data, although visualizations are no longer as simple. We

consider the MNIST dataset of handwritten digits which contains

60,000 training samples and 10,000 test samples (LeCun et al.,

1998). MNIST was chosen as an image classification dataset

due to its relative simplicity. We used PyTorch (Paszke et al.,

2019) to train four networks on the MNIST dataset. These

networks are

• A fully connected feedforward network with a single hidden

layer consisting of 128 ReLU nodes. This network achieves an

accuracy of 96.03%. The training process used cross-entropy

loss and PyTorch’s SGD function with parameters of 0.01

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

update rate, 0.5 momentum, 0.01 weight decay, and a batch

size of 64 over 30 epochs.

• Two simple convolutional networks with equivalent

architectures but different initializations. A convolutional

layer with 10 filters and a kernel size of 5 is applied to the

input, followed by a max pool. The results of that have a

convolutional layer with 20 filters and a kernel size of 5

applied, again followed by a max pool. The 320 resulting

outputs are used as inputs to a fully connected layer with 50

outputs, which is followed by a linear layer from those 50

nodes to the 10 outputs. The network achieves an accuracy

of 98.07% (labeled Conv1) and 98.04% (labeled Conv2).

The training process for both used cross-entropy loss and

PyTorch’s SGD function with parameters of 0.01 update rate,

0.5 momentum, 0.01 weight decay, and a batch size of 64 over

30 epochs.

• A network with the Inception-v3 architecture as implemented

in Torchvision’s models subpackage trained from

scratch (Marcel and Rodriguez, 2010; Szegedy et al.,

2016). This network achieves an accuracy of 99.08%. The

first layer of the network was modified to expect images with

only one channel and images were upsampled, using bilinear

interpolation, to the expected size of 224 × 224 pixels. The

training process used cross-entropy loss and PyTorch’s SGD

function with parameters of 0.1 update rate, 0.9 momentum,

1e-4 weight decay, and a batch size of 50 over 22 epochs.

• A network with the ResNet-152 architecture as implemented

in Torchvision’s models subpackage trained from

scratch (Marcel and Rodriguez, 2010; Lin and Jegelka,

2018). This network achieves an accuracy of 98.92%. The first

layer of the network was modified to expect images with only

one channel. The training process used cross-entropy loss and

PyTorch’s SGD function with parameters of 0.1 update rate,

0.9 momentum, 1e-4 weight decay, and a batch size of 50 with

60 epochs.

For a given input image and output, each network determines

a polytope within the input space which contains the image. By

considering a single output, the gradient at the input image can be

displayed in the same format as the input image. The collection

of 50 different gradient “images,” computed by considering each

of the five neural networks and each of the 10 output nodes for

an example “4” image, is visualized in Figure 7. Based on the

appearance of the images, the dense network appears to have

relatively little complexity, so it is classifying based on its “ideal”

shape of each output, corresponding to what a linear classifier

may do. This suggests a possibility for a reduction of number of

linear regions used, as presented in Section 2.4.1 and discussed

in Secton 3.2. The other networks have more complexity, tend

to focus more sharply on the relevant information being passed

in, and classify based on that input. ResNet has behavior that

is not human-interpretable and appears somewhat noisy. Based

on these visuals, the only networks that appear visually similar

are the two simple convolutional networks, suggesting possible

difficulty in the mappings presented in Section 2.4.2 and discussed

in Section 3.3. The visualization of these linear regions is similar

to the idea of saliency mappings, although many modern forms of

saliency mapping are more sophisticated than simply visualizing

the gradients at an input image, as this is doing (Simonyan et al.,

2013).

3 Results

Constructing animations and visualizations of how network

structure changes throughout the training process for different

problems and architectures on two-dimensional problems can aid

in understanding how the training process creates some of the

properties investigated and provide inspiration for behavior to

investigate in more detail. Although two-dimensional problems

are useful for building intuition of network behavior, they do

not necessarily include all of the behavior that most modern

neural networks include. As such, using intuitions gained on those

networks, even on a simple dataset such as MNIST, is necessary for

confirming that networks can be reduced in complexity or exhibit

quantitatively similar behavior despite differences in architecture.

3.1 Polytope evolution through training

The polytope structures discussed in Section 2.3 and their

associated linear mappings change as the network trains, as has

been studied previously (Hanin and Sellke, 2017; Hanin and

Rolnick, 2019a; Zhang and Wu, 2019). However, these studies

focus on MNIST and the usage of summary statistics to analyze

behavior beyond the visuals in high-dimensional space. We focus

on the visualization for two-dimensional input problems here,

so that we can fully visualize the polytope structure and identify

patterns of behavior across the entirety of the input. We continue

with the problem of classifying a circle versus a surrounding

annulus and additionally consider a more complex problem that

is a combination of the XOR problem and the circle versus annulus

problem, both illustrated in Figure 8.

There exist many simple solutions to the single circle

versus single annulus problem, but neural networks do not

intrinsically take advantage of the rotational symmetry of this

problem to express these solutions. As has been demonstrated

previously (Hanin and Sellke, 2017; Raghu et al., 2017), any

network that solves this problem requires a minimum of three

hidden nodes in at least one of its hidden layers. A node in any

layer creates a non-linearity along a line in the input space of that

layer, but when mapped back to the original input space that line

becomes a trajectory that “breaks” by changing direction whenever

it encounters a line created by the activation boundary of a node

in a previous layer. A network with a maximum width of two is

unable to solve this problem as it is unable to create a closed region

in the input space. To see this, note that each layer with at most two

nodes can only partition space into four regions (both on, one on,

the other on, and both off), one of which (both off) will be constant.

Due to this, any such network cannot form a closed region in space

and will instead have each of its polytopes extend to infinity.

To illustrate how these polytopes and decision boundaries

change as the neural network trains, we have two examples to

compare as networks increase in complexity. One is the simplest

possible network with three nodes in a single hidden layer, and the

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 7

The linear regions for each output of the four networks for the input in the top left corner. These visualizations are similar to simple forms of saliency

mapping (Simonyan et al., 2013). White pixels correspond to positive values, black pixels to negative values, and gray pixels to zero.

FIGURE 8

Two classification problems used to show animations of polytope structures during the training process. (A) The goal is to classify points in the red

annulus as being a separate class as those in the blue annulus. (B) A combination of the left problem with the XOR problem to demonstrate more

sophisticated network behavior.

other is a far more complex network with three hidden layers each

containing eight nodes. Still images of the polytope development

throughout the training process for the simple network are shown

in Figure 9 and the end result of the more complex network

is shown in Figure 10. Full videos of the evolution of their

polytope structure throughout the training process are available

at https://www.youtube.com/watch?v=lpXQI-UJIZM and https://

www.youtube.com/watch?v=rANyD9t-X-c, respectively.

As shown in the training animations, the increased complexity

of the network in Figure 10 allows it to manipulate its non-

linearities to create a closed region in fewer epochs than that of

the simple network shown in Figure 9. This comes from the fact

that the structure of the simple network forms a subnetwork of the

more complex network. The more complex networks initialization

is more likely to have activation boundaries in beneficial places

for finding good solutions, as believed to occur with the lottery

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.youtube.com/watch?v=lpXQI-UJIZM
https://www.youtube.com/watch?v=rANyD9t-X-c
https://www.youtube.com/watch?v=rANyD9t-X-c
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 9

A selection of images throughout the training process of the simplest possible network (three hidden nodes in a single layer) on this problem. The

top left set of six image shows the network at initialization, and each set of six images following that increases by 40 training epochs. Within each set

of six images, the top left shows the decision surface, the top center shows the network output, the top right shows the weights in the dual, the

bottom left shows the training accuracies, the bottommiddle shows the activation boundaries of the hidden nodes, and the bottom right shows

the decision boundary overlaid with the previous layers activation boundaries. An animation of this process is available at https://www.youtube.com/

watch?v=lpXQI-UJIZM.

hypothesis (Frankle and Carbin, 2018). Additionally, the simple

network does not find a solution every time using its training

method, frequently finding locally optimal solutions that do not

form closed regions and achieving only 50% accuracy.

An example of the polytopes constructed by a more complex

network on combination of the XOR and circle vs. annulus

problem is in Figure 11. A video of the training process

is shown at https://www.youtube.com/watch?v=T_uoGBUOgUY.

This network demonstrates a situation where the network requires

a more complex structure to successfully classify. Additionally, the

points in the dual do not cluster as they do in the original circle

versus annulus problem.

It has previously been shown by Raghu et al. (2017) that earlier

layers are more important than later layers for the quality of a

network and certain visualizations of this were included in their

study. These animations provide additional intuitive examples of

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.youtube.com/watch?v=lpXQI-UJIZM
https://www.youtube.com/watch?v=lpXQI-UJIZM
https://www.youtube.com/watch?v=T_uoGBUOgUY
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 10

A solution to this problem found by a more complex network (three hidden layers, each with eight nodes). An animation of the training process of

this network is available at https://www.youtube.com/watch?v=rANyD9t-X-c.

FIGURE 11

A solution to this problem found by a more complex network (three hidden layers, each with eight nodes). An animation of the training process of

this network is available at https://www.youtube.com/watch?v=T_uoGBUOgUY.

this—the structures constructed by the early layers are passed on,

and many of the deeper layers provide only slight modifications to

the structures apparent in the first layers. Even in the more complex

problem combining XOR and the circle versus annulus problem,

the second layer forms the bulk of the structure for classification,

with the third and final layers only refining it.

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.youtube.com/watch?v=rANyD9t-X-c
https://www.youtube.com/watch?v=T_uoGBUOgUY
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

Using simple visualizations of this sort provide a holistic view

of certain network behaviors. Intuitive understanding of existing

hypotheses and theorems and inspiration for further investigation

can be gained. In this case, the visualizations and animations

demonstrate results such as the lottery hypothesis (Frankle and

Carbin, 2018) and the influence of earlier layers (Raghu et al., 2017)

visually to potentially enhance understanding of the phenomena.

It also allows for identification of further areas of interest—in this

case, the idea that networks trained on the same problem can

exhibit significant similarity, and that there is possible pruning that

can be done on networks that are more complex than necessary for

representing a solution despite their increased complexity allowing

a good solution to be found more effectively. Additionally, they

show that the more complex network on the circle problem can

have hidden layers removed, despite that method being relatively

rare in studies of network pruning (Blalock et al., 2020).

3.2 Clustering sampled local linear
functions

Using the methods discussed in Secton 2.4.1 and the networks

described in Section 2.5, we can investigate the effect of clustering

the linear weights for MNIST trained neural networks. Accuracies

for this process with different numbers of cluster centers are shown

in Table 1.

Networks with less complex architectures capture the near-

linear behavior of the MNIST dataset well. The dense, single-

hidden-layer network, in particular, is able to recover a solution

close to linear classifiers in the single cluster case, suggesting that

the network replicates linear behavior well. This matches previous

study that shows that single-hidden-layer wide networks tend to

behave in highly linear ways.

Inception and ResNet, however, have near random

performance in the single cluster case. This suggests that the

networks are transforming the data in such a way that the

transformation cannot be approximated linearly, which matches

the complexity of architectural structure that those networks have.

The basic convolutional networks perform poorly, but significantly

better than random, suggesting that their transformation is

non-linear but has some linear properties.

As the number of clusters increases, inception quickly recovers

a high degree of accuracy, achieving better accuracy than the

original dense network with as few as 10 clusters. This suggests

that inception identifies a piecewise linear mapping from the input

space that can be reasonably well approximated by as few as 10

regions. This means that inception has a high degree of redundancy

when trained on MNIST, and could likely be pruned significantly

while maintaining original accuracy. This also could be a sign that

inception generalizes well on this dataset; it does not maintain

a high level of complexity and uses relatively simple methods to

classify the data.

This behavior is not matched by the basic convolutional

networks or ResNet, with their performance remaining poor.

The basic convolutional networks are able to recover for better

accuracy than the original dense network with 10,000 clusters (1/6

of the number of training samples), but ResNet maintains poor

accuracy throughout. This means that the polytope structure of

ResNet cannot be simplified easily in this manner—either a more

sophisticated method is necessary to identify ways of simplifying

the polytope structure, or the network has a high degree of

complexity that can not be reduced.

3.3 A�ne maps between sampled local
linear functions

Using the methods discussed in Secton 2.4.2 and the networks

described in Section 2.5, we can investigate the effect of

transforming between the linear weights for different MNIST

trained neural networks. Examples of this are illustrated for five

input samples for W0,dense and W0,conv in Figure 12. Qualitatively,

the mapped linear regions are similar, but not equivalent, to the

target. One point to note is that all of the linear regions for the dense

network appear qualitatively similar, with their shape matching

that of a zero. The convolutional network does not follow this

pattern, having different patterns for each of the input samples, and

the transformed dense regions are able to replicate those patterns

despite their visual similarities.

Table 2 shows the results of the affine mapping trained on the

training set and evaluated on the testing set for the five networks

trained on MNIST. No mapped network performs better than its

original accuracy or the original accuracy of the network it is

transformed to match. Despite this decrease in accuracy from the

original networks, a high level of accuracy is maintained for many

of the mappings. This is not necessarily unexpected, as all five

networks are attempting to approximate the same function because

they are trained to solve the same problem using the same loss

function. However, accuracy does not necessarily tell the whole

story. A high level of performance is preserved, but it may be

the case that slight variations in accuracy represent significant,

qualitatively meaningful differences in what the networks do. Even

so, these results demonstrate that there is ostensibly an interesting

relationship between these different networks and their similar

behaviors.

The dense network and the basic convolutional networks are

able to transform to each other reasonably well. Transforming

to and from the dense network achieves accuracy near its

original, and the basic convolutional networks with equivalent

architectures and training methods are able to nearly replicate

their original accuracies with transforming between each other.

This suggests overlap in how the networks transform the data

to achieve their networks, with the convolutional networks

achieving additional complexity that allows them to increase their

accuracy.

Interestingly, the inception network replicates the other

networks poorly, with a significant drop in accuracy mapping

to the dense network, accuracy near the dense networks

transformation to the basic convolutional networks for them, and

accuracy below the original dense network when transforming

to ResNet. This matches the clustering results, where the

network did not have a good single linear representation,

explaining its lack of success mapping to the dense network,

but recovers accuracy quickly with 10 clusters, suggesting a

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

TABLE 1 The accuracies of networks on the MNIST dataset after applying k-means clustering to their collection of local linear maps.

Clusters Dense Conv1 Conv2 Inception ResNet

Original 9603 9807 9804 9908 9892

1 8679 6766 6366 974 1432

10 9231 8639 8672 9660 8166

100 9434 9382 9421 9689 8458

1000 9508 9586 9603 9695 8982

10000 9554 9696 9673 9752 9381

Values reported are the number of correctly labeled test set samples out of 10,000. Note that the number of clusters for a given network is technically 10 times larger than stated in the table—each

of linear mappings corresponding to a digit is clustered separately.

FIGURE 12

Example image representations of the a�ne mapping from the dense network to the simple convolutional network trained on MNIST. White pixels

correspond to positive values, black pixels to negative values, and gray pixels to zero.

possible simple transformation that does not easily replicate

the success of the other networks despite its success by

itself.

ResNet, however, is able to replicate everything except the dense

network well. It comes close to the original accuracies of the basic

convolutional networks when mapping to them, as well as both

its and inception’s accuracies when mapping to inception. This

suggests that the linear regions it uses contain the information that

the other networks use for classification. Together with the results

with clustering, this suggests that ResNet maintains a complex

transformation from the input space.

The lack of symmetry between inception and ResNet is

interesting. ResNet is able to approximate inception well, but

inception is not able to approximate ResNet well. This means

that there is a qualitative difference between the methods these

networks are using for classification, despite their near equivalent

original accuracies. This suggests, due to both of them achieving

success, that ResNet identifies information that may not generalize,

as inception is able to perform equivalently using a representation

that appears simpler. Identifying both the overlap and differences

in the methods these networks use for classification provides a way

for identifying possible improvements for both networks.

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

TABLE 2 Number of correct labels on the test set (out of 10,000) after applying a�nemappings to the linear mappings of MNIST trained neural networks.

To

Dense Conv1 Conv2 Inception ResNet

From Dense 9603 9536 9519 9290 9068

Conv1 9567 9807 9776 9662 9588

Conv2 9562 9786 9804 9644 9579

Inception 8868 9488 9511 9908 9536

ResNet 9320 9738 9739 9838 9892

Diagonal elements are the original accuracies of the networks.

By identifying the similarity between the linear regions of

networks trained on the same or similar datasets, it is possible to

gain a deeper understanding of the networks’ behavior. Dissimilar

representations suggest the exploitation of different information

across the networks, meaning that the network behaviors can

potentially be combined to improve effectiveness. The ability

for one network to effectively recreate the representations of

another suggests that the first network exploits the information

the other contains meaning that differences in accuracy can

come down to more effective exploitation, rather than identifying

qualitative differences.

4 Discussion

Identifying patterns in simple neural networks trained on low-

dimensional toy problems can provide meaningful insight and

intuition for patterns that are replicated inmodern neural networks

trained on high-dimensional complex problems. These patterns

can assist in gaining deeper insight into the behavior and in

suggesting methodologies that can be applied to those complex

networks. We have extended the work of Raghu et al. (2017) in

visualizing the polytope structure of neural networks with two

inputs by constructing animations of the evolution of the polytope

structure. These animations demonstrate how early layers have

significant influence over the structure of subsequent layers and

how the polytope structures form through training.

Additionally, we have shown experimentally that even complex

neural networks such as inception can have the complexity of their

underlying polytope partitioning of the input space highly reduced.

The linear regions of all networks considered, except ResNet, can

be clustered to as few as 10 cluster centers for networks trained on

MNIST while preserving much of their accuracy.

We have also shown experimentally that the linear regions of

different networks are similar under an affine mapping. Applying

such an affine mapping preserves a high level of accuracy in the

resulting classifier, suggesting thatmany of the considered networks

are solving problems in qualitatively similar ways. By comparing

accuracies of mapped networks, we are able to determine where

networks may have qualitatively dissimilar behavior in a way that

suggests poor generalization or information that can be exploited

to improve network behavior.

We provide support for the tantalizing idea that different

networks converge to similar solutions that have a great deal more

simplicity than would be suggested by their complex architectures.

Further investigations of this area could allow for identification of

patterns across disparate networks that allow for a more refined

understanding of both training networks and modifying them to

be effective in full usage. We would like to continue to explore the

extent to which that idea is correct for modern neural networks

through extensions to more complex datasets and network pruning

methodologies.

Although MNIST provides high-dimensional image data, the

dataset itself is relatively simple. Extending the similarity and

clusteringmethods tomore complex datasets would provide deeper

insight into how complexity of dataset can influence the similarity

and complexity of neural networks trained on them. Each of the

networks trained here, despite their distinct architectures, used

similar training methodologies. Extending the study by Zhang and

Wu (2019) to investigate how different training methodologies and

regularization techniques impact the similarity of network behavior

would allow for an understanding of how those methods impact

polytope structures.

Additionally, network pruning research provides a natural field

where the ability to compare the similarity of two networks, linear

regions would be useful. Identifying the degree to which a network

can be simplified without impacting its ability to successfully

classify can be difficult using only accuracy as a metric (Blalock

et al., 2020). Comparing the behavior of those networks directly

while being able to treat the interior of the network as a black box

provides a promising technique for identifying success.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found in the

article/Supplementary material. Code accessible at https://

github.com/bsattelb/local-linearity-of-relu-neural-networks/tree/

master.

Author contributions

BS: Conceptualization, Methodology, Software, Writing—

original draft, Writing—review & editing. RC: Conceptualization,

Writing—review & editing. MK: Conceptualization, Writing—

review & editing. CP: Conceptualization, Writing—review &

editing. RB: Conceptualization, Writing—original draft, Writing—

review & editing.

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://github.com/bsattelb/local-linearity-of-relu-neural-networks/tree/master
https://github.com/bsattelb/local-linearity-of-relu-neural-networks/tree/master
https://github.com/bsattelb/local-linearity-of-relu-neural-networks/tree/master
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

Funding

This study is partially supported by the DARPA Geometries of

Learning Program under Award No. HR00112290074.

Acknowledgments

Apreprint version of this article is available on arXiv (Sattelberg

et al., 2020).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frai.2023.

1255192/full#supplementary-material

VIDEO 1.AVI

An animation showing the training process of a simple neural network

training to classify a points on a circle vs. points on a surrounding annulus.

Polytope structure, local linear weights, decision boundary, and the output

of the network are shown through the training process.

VIDEO 2.AVI

An animation showing the training process of a relatively complex neural

network training to classify a points on a circle vs. points on a surrounding

annulus. Polytope structure, local linear weights, decision boundary, and the

output of the network are shown through the training process.

VIDEO 3.AVI

An animation showing the training process of a neural network training to

classify points on four circles with classes matching the XOR problem and

annuli surrounding each circle with opposite classification. Polytope

structure, local linear weights, decision boundary, and the output of the

network are shown through the training process.

References

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J. (2020). “What is the state
of neural network pruning?” in Proceedings of Machine Learning and Systems 2 (MLSys
2020) 129–146.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathem. Control Sign. Syst. 2, 303–314. doi: 10.1007/BF02551274

Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). “ArcFace: additive angular
margin loss for deep face recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition 4690–4699. doi: 10.1109/CVPR.2019.00482

Frankle, J., and Carbin, M. (2018). “The lottery ticket hypothesis: finding sparse,
trainable neural networks,” in International Conference on Learning Representations.

Hanin, B., and Rolnick, D. (2019a). Complexity of linear regions in deep networks.
arXiv preprint arXiv:1901.09021.

Hanin, B., and Rolnick, D. (2019b). “Deep ReLU networks have surprisingly few
activation patterns,” in Advances in Neural Information Processing Systems 361–370.

Hanin, B., and Sellke, M. (2017). Approximating continuous functions by ReLU nets
of minimal width. arXiv preprint arXiv:1710.11278.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition 770–778. doi: 10.1109/CVPR.2016.90

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.
Neural Netw. 4, 251–257. doi: 10.1016/0893-6080(91)90009-T

LeCun, Y., Cortes, C., and Burges, C. J. (1998). The MNIST database of handwritten
digits. Available online at: http://yann.lecun.com/exdb/mnist/ (accessed October 15,
2019).

Lin, H., and Jegelka, S. (2018). “ResNet with one-neuron hidden layers is a universal
approximator,” in Advances in Neural Information Processing Systems 6169–6178.

Liu, Y., Cole, C., Peterson, C., and Kirby, M. (2023). “Relu neural networks,
polyhedral decompositions, and persistent homology,” in the ICML 2023 Workshop on
Topology, Algebra, and Geometry in Machine Learning.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). “The expressive power of
neural networks: A view from the width,” in Advances in Neural Information Processing
Systems 6231–6239.

Marcel, S., and Rodriguez, Y. (2010). “Torchvision the machine-vision package
of torch,” in Proceedings of the 18th ACM international conference on Multimedia
1485–1488. doi: 10.1145/1873951.1874254

McNeely-White, D., Beveridge, J., and Draper, B. (2019). Inception
and ResNet features are (almost) equivalent. Cogn. Syst. Res. 59, 312–318.
doi: 10.1016/j.cogsys.2019.10.004

Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. (2014). “On the number of
linear regions of deep neural networks,” in Advances in Neural Information Processing
Systems 2924–2932.

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J., and Sohl-Dickstein, J. (2018).
Sensitivity and generalization in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760.

Pascanu, R., Montufar, G., and Bengio, Y. (2013). On the number of response
regions of deep feed forward networks with piece-wise linear activations. arXiv preprint
arXiv:1312.6098.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“PyTorch: an imperative style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems, eds. H. Wallach, H. Larochelle, A. Beygelzimer,
F. d Alché-Buc, E. Fox, and R. Garnett (Red Hook, NY: Curran Associates, Inc.),
8024–8035.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-Dickstein, J. (2017). “On
the expressive power of deep neural networks,” in international Conference on Machine
Learning, pages 2847–2854.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252.
doi: 10.1007/s11263-015-0816-y

Sattelberg, B., Cavalieri, R., Kirby,M., Peterson, C., and Beveridge, R. (2020). Locally
linear attributes of relu neural networks. arXiv preprint arXiv:2012.01940.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). “Rethinking
the inception architecture for computer vision,” in Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition 2818–2826. doi: 10.1109/CVPR.
2016.308

Zhang, L., Naitzat, G., and Lim, L.-H. (2018). Tropical geometry of deep neural
networks. arXiv preprint arXiv:1805.07091.

Zhang, X., andWu, D. (2019). “Empirical studies on the properties of linear regions
in deep neural networks,” in International Conference on Learning Representations.

Frontiers in Artificial Intelligence 17 frontiersin.org

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/articles/10.3389/frai.2023.1255192/full#supplementary-material
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/CVPR.2019.00482
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/0893-6080(91)90009-T
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1016/j.cogsys.2019.10.004
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CVPR.2016.308
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Locally linear attributes of ReLU neural networks
	1 Introduction
	2 Materials and methods
	2.1 Linear regions definition
	2.2 Example on XOR
	2.3 Polytope visualization
	2.4 Region modification
	2.4.1 Clustering regions
	2.4.2 Affine maps between linear functions

	2.5 Extension to image data

	3 Results
	3.1 Polytope evolution through training
	3.2 Clustering sampled local linear functions
	3.3 Affine maps between sampled local linear functions

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

