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Graphs are used as a model of complex relationships among data in biological

science since the advent of systems biology in the early 2000. In particular, graph

data analysis and graph data mining play an important role in biology interaction

networks, where recent techniques of artificial intelligence, usually employed

in other type of networks (e.g., social, citations, and trademark networks)

aim to implement various data mining tasks including classification, clustering,

recommendation, anomaly detection, and link prediction. The commitment and

e�orts of artificial intelligence research in network biology are motivated by

the fact that machine learning techniques are often prohibitively computational

demanding, low parallelizable, and ultimately inapplicable, since biological

network of realistic size is a large system, which is characterised by a high density

of interactions and often with a non-linear dynamics and a non-Euclidean latent

geometry. Currently, graph embedding emerges as the new learning paradigm

that shifts the tasks of building complex models for classification, clustering, and

link prediction to learning an informative representation of the graph data in a

vector space so that many graph mining and learning tasks can be more easily

performed by employing e�cient non-iterative traditional models (e.g., a linear

support vector machine for the classification task). The great potential of graph

embedding is the main reason of the flourishing of studies in this area and, in

particular, the artificial intelligence learning techniques. In this mini review, we give

a comprehensive summary of themain graph embedding algorithms in light of the

recent burgeoning interest in geometric deep learning.
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1 Introduction

Graph embedding is a mathematical procedure that transforms nodes, edges, and

their features into vectors of a vector space (usually of a lower dimension) while trying

to maximally preserve properties such as graph structure, vertex-to-vertex relationship,

and other relevant information about graphs, subgraphs, and vertices. The uses of graph

embedding are numerous, ranging from obtaining a representation of multidimensional

data in a lower dimensional space for the purpose of more efficient manipulation and

interpretation to the identification of the latent geometry of graphs. This second purpose is

recently gaining ground in the analysis of biological networks, for which the geometry of the

latent metric space explains organisational principles and dynamics (Krioukov et al., 2010;

Krioukov, 2016; Bianconi and Rahmede, 2017; Alanis-Lobato et al., 2018; Papadopoulos and

Flores, 2019; Boguñá et al., 2021; Lecca and Re, 2022).
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Graph embedding can be implemented with artificial

intelligence techniques, but it can also be used upstream of artificial

intelligence techniques for learning and data analysis to enable

easier and more efficient application of the techniques themselves.

Graph embedding has a number of potential benefits. Embedding-

based algorithms usually outperform their equivalents that employ

the original networks in terms of speed. Additionally, downstream

analysis frequently uses the learnt embeddings, either through a

direct interpretation of the embedding space or through the use

of machine learning methods specifically created for vectorial data

(Nelson et al., 2019).

There are three types of embedding, namely, vertex embedding,

edge/path embedding, and graph embedding proper. Vertex

embedding is a mapping of graph vertices to vectors of a vector

space (usually Rn), which approximately preserves properties such

as distances between nodes. This type of embedding is commonly

used to perform visualization or prediction on the vertex level

or prediction of new connections based on vertex similarities.

DeepWalk (Perozzi et al., 2014), node2vec (Grover and Leskovec,

2016), and SDNE (Wang et al., 2016) are three very well-known

approaches to this type of embedding. Edge/path embedding is

the mapping of graph edges to vectors of a vector space (usually

of low dimension). This embedding is used to describe traversals

across the graph and similarly to vertex embedding, targets edge

prediction, reconstruction, and graph clustering (Wang et al.,

2020). Finally, “graph embeddings” is a representation of the whole

graph with a single vector (for example, Graph Readout operation

in DGL-LifeSci, 2020). This type of embedding is used to make

predictions on the graph level structure and compare or visualize

the whole graphs, e.g., in studies of molecular structures where it

is often necessary to compare chemical structures. In this review,

however, we will not use the phrase “graph embedding” in this

sense.

Graph embedding is critical to graph mining tasks such

as classification, clustering, recommendation, anomaly detection,

and link prediction. In the majority of applications, when the

embedding is performed with the purpose to project the data in

a lower dimensional space, the main reason for this lies in the

possibility that the embedding offers to carry on these operations

in simpler (in terms of handling and processing data structures

and the usual operations on graphs) and more efficient manner.

Network relationships in a graph of V nodes and E edges can

only use a subset of mathematics, statistics, and machine learning,

whereas vector spaces have a more diverse set of approaches

(Pan et al., 2020). Graph embedding consists of calculating the

coordinates of its nodes in a vector space so that the properties of

the graph, such as, for example, the node content and the distances

between nodes, are preserved within a certain error, which is

desired to be small. The adjacency matrix is the most common

numerical representation of a graph. It is a |V| × |V|matrix, where

|V| is the number of graph nodes. In the matrix, each column and

row represents a node, and non-zero values indicate that two nodes

are connected. It is nearly impossible to use an adjacency matrix

as a feature space for large graphs. Consider that a graph with 106

nodes is represented by a 106 × 106 adjacency matrix. Since node

properties are packed into a vector by embedding rather than the

adjacency matrix, they are more useful. Additionally, compared

with equivalent procedures on graphs, vector operations are easier

and quicker. In this regard, on the basis of a certainty now shared by

many scholars form different disciplines and in different contexts

of application [e.g., Cao et al., 2016b; Goyal and Ferrara, 2018;

Pan et al., 2020; Yang et al., 2020; Amara et al., 2021; Etaiwi and

Awajan, 2023], Zhang et al. (2020) talk about a paradigm shift

and explain that this new learning paradigm has shifted the tasks

of seeking complex models for classification, clustering, and link

prediction “to learning a compact and informative representation

for the graph data” so that many graph mining tasks can be easily

performed by employing simple traditional models (e.g., a linear

Support Vector Machine for the classification task). Furthermore,

because of how different they can be in terms of scale, specificity,

and topic, graph embedding can be challenging. A social network

could be depicted by a large, dense, dynamic graph as opposed to a

small, sparse, and static representation of a molecule (Xiong et al.,

2019; David et al., 2020). In the end, this makes it challenging to

identify an optimal embedding technique of general validity and

applicability. It is, therefore, necessary to focus on the analysis and

review of specific application domains. In the following sections,

we will describe and review the current graph embedding methods

commoly used in systems biology.

2 Graph embedding algorithms

The three types of graph embedding algorithms are (i)

probability models, (ii) algorithms based on matrix factorization,

and (iii) algorithms based on deep learning. For a comparative

review of preservation extent of current graph embeddingmethods,

we refer the reader to the study by Goyal and Ferrara (2018),

Mohan and Pramod (2019), Vaudaine et al. (2020), and Xu (2021).

In addition to classification according to the mathematical and/or

algorithmic methodology adopted, graph embedding approaches

can also be classified according to the type of input they process.

Probabilistic embedding: Probabilistic embedding methods

predict the distribution of embeddings, as opposed to deterministic

embedding methods, which map the input to a single embedding

vector. Probabilistic embeddings have the following benefits over

deterministic methods: (i) probabilistic losses can stabilise training

on noisy data; (ii) predicted uncertainty can be used to assess the

quality of the data and identify out-of-domain data (see Karpukhin

et al., 2022 for a more detailed discussion); (iii) tasks involving

rejection and categorization may benefit from confidence (Chang

et al., 2020; Mena et al., 2020; Karpukhin et al., 2022).

By extracting various patterns from the network, probabilistic

models such as DeepWalk (Perozzi et al., 2014), node2vec (Grover

and Leskovec, 2016), and LINE (Tang et al., 2015c) try to

learn graph embedding. DeepWalk learns the node embedding

from a set of random walks. Node2vec creates random walk

sequences for network encoding by combining breadth-first

sampling (BFS) and depth-first sampling (DFS) techniques. LINE

handles massive information networks while maintaining both

first-order and second-order proximities. Other random walk

variations include DDRW [Discriminative Deep RandomWalk (Li

et al., 2016a)] and HARP (Hierarchical Representation Learning

Approach, Zhao et al., 2023). Global structural equivalence,

neighbourhood connectivities at the local level, and other different

order proximities are among the recorded patterns or walks. These
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graph embedding algorithms outperform traditional approaches

such as Spectral Clustering (von Luxburg, 2007) and are scalable

to large networks (Pan et al., 2020).

Matrix factorization-based embedding: The adjacency matrix

A ∈ R
m×n is factorized by two matrices, namely, U ∈ R

m×d and

V ∈ R
n×d (to be learnt), where d is the dimension of the embedding

space. When compared with learning the entire matrix, matrix

factorization usually produces a more concise representation. The

embeddingmatricesU andV haveO((m+n)d) entries, whereas the

full matrix hasO(mn) entries. The embedding dimension d in these

matrices is usually much smaller than m and n. The embeddings

are learned such that the UVT well approximates the matrix A. The

entry (i, j) of U, VT is the inner product 〈Ui,Vj〉, which we want to

be close to Aij.

Examples of factorisation-based embedding algorithms

are GraRep (Graph Representations with Global Structural

Information, Cao et al., 2015), HOPE (High-Order Proximity

preserved Embedding, Ou et al., 2016), and M-NMF (Modularized

Nonnegative Matrix Factorization, Yan and Chang, 2019), which

then factorise the adjacency matrix to implement the embedding.

GraRep, as well as NEU [Neural Network Embeddings (Yang

et al., 2017)], and AROPE (Arbitrary-Order Proximity Preserved

Network Embedding, Zhang et al., 2018) all capture the higher

order approximation except the first-order and the second-

order similarities. HOPE preserves asymmetric transitivity by

approximating high-order proximity for improved performance

in graph topological information capture and reconstruction from

partially observed graphs. Among the graph embedding methods

based on matrix factorisation, we also mention the recent study

by Liu et al. (2020), who propose SMNMF, a Semisupervised

Modularised Non-negative Matrix Embedding model. Liu et

al. point out that the existing network representation learning

algorithms are mostly unsupervised models, and that the pairwise

constraint information, which represents community membership,

is not effectively used to obtain node embedding results that

are more consistent with previous knowledge. Their method,

SMNMF, offers a network embedding procedure while preserving

the community structure; the pairwise constraint (must-link and

cannot-link) information is effectively fused with the network’s

adjacency matrix and node similarity matrix, making the node

representations learned by the model more interpretable.

Deep learning-based embedding:Neural network embeddings

are learned low-dimensional vector representations of discrete

variables. The network’s parameters, or weights, are formed by the

embeddings and are adjusted to reduce task loss. The resulting

embedded vectors indicate categories where related categories are

closer to one another in relation to the task.

Pan et al. (2020) report that many probabilistic algorithms,

such as DeepWalk (Perozzi et al., 2014), LINE (Large-scale

Information Network Embedding) (Tang et al., 2015c), and

node2vec (Grover and Leskovec, 2016), have lately been shown

to be equivalent to matrix factorisation methods, and Qiu et al.

(2018) have proposed a unified matrix factorisation method

called NetMF (Network Embedding as Matrix Factorization)

for graph embedding. The methods are unify DeepWalk,

LINE, PTE [Predictive Text Embedding (Tang et al., 2015a)],

and node2vec.

Deep learning techniques based on autoencoders are also being

researched (Zhu et al., 2019; Hasibi and Michoel, 2021; Xu, 2021;

Wang et al., 2022). SDNE (Structural Deep Network Embedding)

(Wang et al., 2016) and DNGR (Deep Neural Networks for Graph

Representations) (Cao et al., 2016a) use deep autoencoders (Baldi,

2012) to preserve the graph proximities and model the positive

pointwise mutual information (PPMI). To learn representation for

graph clustering, the MGAE (Marginalized Graph Autoencoder)

algorithm relies on a marginalised single layer autoencoder (Wang

et al., 2017). For signed network embedding with a stacked auto-

encoder framework, the DNE-SBP (Deep Network Embedding

with Structural Balance Preservation) model is proposed (Shen and

Chung, 2020).

Input-based classification of embedding algorithm:

According to Pan et al. (2020), the embedding algorithms for graph

mining can be further classified into topological network embedding

approaches and content enhanced network embedding methods.

The former take as an input only the information concerning the

topological structure of the graph, and their learning objective is

to preserve it maximally. The latter take as an input the node and

process both topological information and content features.

DeepWalk, node2vec, LINE [Large-scale Information

Network Embedding (Tang et al., 2015b)], HARP (hierarchical

representation learning approach, Chen et al., 2018), DDRW

(Discriminative Deep Random Walk, Li et al., 2016b), and

Walklets (Perozzi et al., 2016) are topological network embedding

approaches. DeepWalk can be interpreted as a factorisation

method, and Yang et al. introduced TADW. They also suggested

extending DeepWalk to investigate node features. Many other

embedding algorithms process both topological and node

content information, e.g., TriDNR [Tri-Party Deep Network

Representation (Pan et al., 2016)], UPPSINE [User Profile

Preserving Social Network Embedding (Zhang et al., 2017)], ASNE

[Attributed Social Network Embedding (Liao et al., 2018)], LANE

[Label informed Attributed Network Embedding (Huang et al.,

2017)], DANE [Domain Adaptive Network Embedding (Song

et al., 2022)], and BANE [Binarized attributed network embedding

(Yang et al., 2018)].

TriDNR uses a tri-party neural network architecture to record

information about structure, node content, and labels. UPPSNE

uses an approximated kernelmapping scheme to take the advantage

of user profile characteristics in order to maximise the learning

that users are embedding into social networks. In essence, a

kernel approximation mapping is learning an estimated subspace

in the high-dimensional feature vector space that is induced and

defined by the kernel function (Francis and Raimond, 2020). For

attributed social networks, ASNE trains a neural network model to

incorporate both structural proximity and attribute proximity, and

LANE integrates label information into the optimization process to

learn a better embedding. This is, in general, a difficult task because

of the possibility of noisy and incomplete label information.

Additionally, labels, geometrical structure, and node properties

are totally distinct from one another. Finally, recently, BANE was

suggested to learn binarised embedding for an attributed graph,

which could improve efficiency for later graph analytical tasks.

Most graph embedding methods have been developed

principally for indirect graphs, since (i) information about
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the direction of the arcs leads to a non-symmetrical weighted

adjacency matrix (the factorisation of which is more complex),

and (ii) the metric space that can possibly describe the latent

geometry of a directed graph must have characteristics such that

it can store information about directionality. For this reason, we

devote the next section to those embedding techniques specialised

for directed graphs. For the sake of completeness, we will then

discuss in the following sections the embedding methods for three

other categories of graphs (bipartite, temporal, and multi-label),

which, with their topological peculiarities, are useful in describing

numerous real-world networks. We refer the reader to the study by

Kamiński et al. (2019), Vaudaine et al. (2020), Zhang et al. (2021c)

for a comparison of different embedding methods.

2.1 Embedding of directed graphs

For undirected graphs, the weighted adjacency matrix (alias

affinity matrix) is symmetrical, and thus, for each pair of nodes, the

weight of the arcs joining them and/or the dissimilarity or distance

between them are uniquely defined, since they have no dependence

on the direction of the arc. The symmetry of the affinity matrix

greatly simplifies the operations and computational procedures of

the embedding methods. However, there is a significant amount of

intrinsically asymmetric graph data, such as, for example, social

networks, alignment scores between biological sequences, and

citation data. As reported by Perrault-joncas and Meila (2011), a

common strategy for this type of data is not to use as input for

embedding procedures, the asymmetric affinity matrix W, but the

matrices obtained from it as W + WT or WTW. In fact, suppose

that

W =

(

a b

c d

)

where a 6= d and b 6= c. Then,

W +WT =

(

2a b+ c

b+ c 2d

)

and

WTW =

(

a2 + b2 ab+ cd

b+ c b2 + c2

)

.

are both symmetric matrices.

Already in the early 2000s, other approaches have been

proposed to directly deal with the asymmetry of the affinity matrix

(Zhou et al., 2004, 2005; Meilă and Pentney, 2007) or define

directed Laplacian operators (Chung, 2006).

Interest in and the need to develop efficient ad hoc methods

for embedding directed graphs have re-emerged very recently,

and the attention of the community has focused mainly on

embedding in non-Euclidean spaces. Indeed, it is becoming

more and more apparent that Euclidean geometry cannot easily

encode complex interactions on big graphs and is not flexible to

handle edge directionality. Of interest, as being more functional

for geometric deep learning, we mention the study by Sim

et al. (2021). The authors of this study demonstrate that

directed graphs can be efficiently represented by an embedding

model that combines three elements, namely, a non-trivial

global topology (directed graphs, eventually containing cycles), a

pseudo-Riemannian metric structure, and an original likelihood

function that explicitly takes into account a preferred direction in

embedding space.

Pseudo-Riemannian manifolds are Riemannian manifold

generalisations that relax the requirement of the non-degenerate

metric tensor’s positive definiteness. As comprehensively described
in the study by Law and Lucas (2023), there are two categories in

the machine learning literature on pseudo-Riemannian manifolds.

The first category does not consider whether the manifold is time-
oriented or not; instead, it concentrates on how to optimise a

given function whose domain is a pseudo-Riemannian manifold

(Law and Stam, 2020; Law, 2021). The second category makes

the use of how general relativity interprets a particular family of
pseudo-Riemannian manifolds known as “spacetime” (Clough and

Evans, 2017; Sim et al., 2021). Spacetimes are actually linked time-

oriented Lorentz manifolds. They inherently have a causal structure

that shows whether or not there is a causal chain connecting

occurrences at different positions on the manifold. In directed
graphs, each node is an event, and the existence of a directed

arc between two nodes depends on the causal characteristics of

the curves connecting them (Bombelli et al., 1987). This causal

structure has been used to depict these directed networks.

Sim et al. (2021), on the other hand, use three different
spacetime types and suggest an ad hoc method introducing a

time coordinate difference function, whose sign is then used to

determine the orientation of edges. This has been an interesting

and innovative approach that suggested further research and

advancement as indicated by Law and Lucas (2023). In that

study, Law et al. observe, regarding the study by Sim el al., that

when the manifold is non-chronological and does not generalise

to all spacetimes, the sign of such a function, for example,

alternates periodically and is not always relevant. Additionally,

when a geodesic cannot connect two points, their distance function

remains constant.

In this brief subsection, we have emphasized embedding

methods of directed graphs that adopt spacetime representations.

Indeed, the wealth of information contained in spatiotemporal

structures could inspire the design of a neural network that can

learn most of it and can thus become as accurate a tool for

geometric deep learning as possible. For the sake of completeness,

however, we mention some other recent studies that propose

other methods for embedding directed graphs, such as ShortWalk

algorithm by Zhao et al. (2021), MagNet by Zhang et al. (2021a),

and the study of Khosla et al. (2020). Less recent is the study of

Chen et al. (2007) that proposed an approach taking into account

the link structure of graphs to embed the vertices of a directed graph

into a vector space.

The idea of ShortWalk is that long random walks may become

stuck or stopped in a directed graph, producing embeddings of

poor quality. To enhance the directed graph network embeddings,

ShortWalk generates shorter traces by doing brief random walks
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that restart more frequently. MagNet uses a graph neural network

for modelling directed graphs, exploiting a complex Hermitian

matrix which encodes undirected geometric structure as the

magnitude of the matrix entries and the direction of edges

in their phase. Khosla et al. (2020) created role-specific vertex

neighbourhoods and trained node embeddings in their associated

source/target roles using alternating random walk technique, fully

using the semantics of directed graphs. Alternating walk technique

draws inspiration from SALSA (Lempel and Moran, 2001), a

stochastic variant of the HITS (Kleinberg, 1999) algorithm that

also recognises hubs and authorities as two different categories of

significant nodes in a directed network. The pathways produced

by alternating random walks between hubs (source nodes)

and authorities (target nodes), sampling both nearby hubs and

authorities in relation to an input node.

In the study by Chen et al. (2007), the main goal of the

authors was to keep vertices on the locality property of a directed

graph in the embedded space. To assess this locality quality, they

combined the transition probability with the stationary distribution

of Markov random walks. It turns out that they obtained an ideal

vector space embedding that maintains the local affinity that is

inherent in the directed graph by utilising random walks to explore

the directed links of the graph.

Finally, it is worth mentioning that most of the directed

graph embedding techniques mentioned in this section are also

appropriate for embedding bipartite graphs. A comprehensive

survey on bipartite graph embedding can be found in the study by

Giamphy et al. (2023), and a short review is also presented in the

next sub-section.

2.2 Embedding of bipartite graphs

Since bipartite graphs are frequently utilised in many different

application domains [many of them in biology and medicine

(Pavlopoulos et al., 2018; Ma et al., 2023) and drug discovery

an repurposing (Zheng et al., 2018; Manoochehri and Nourani,

2020; Hostallero et al., 2022; Yu et al., 2022)], bipartite graph

embedding has recently received a lot of interest. The majority

of earlier techniques, which use random walk- or reconstruction-

based objectives, are usually successful at learning local graph

topologies. However, the general characteristics of the bipartite

network, such as the long-range dependencies of heterogeneous

nodes and the community structures of homogeneous nodes,

are not effectively retained. To circumvent these constraints,

Cao et al. (2021) developed BiGI, a bipartite graph embedding

that captures such global features by introducing a novel local-

global infomax objective. BiGI generates a global representation

initially, which is made up of two prototype representations. The

suggested subgraph-level attention method is then used by BiGI

to encode sampled edges as local representations. BiGI makes

nodes in a bipartite graph globally relevant by maximising mutual

information between local and global representations.

Also the Yang et al. (2022b) proposal for efficient embedding

of bipartite graphs of big size is of interest. Yang et al. pointed

out that existing solutions are rarely scalable to vast bipartite

graphs, and they frequently produce subpar results. The study by

Yang et al. (2022b) introduced Generic Bipartite Network

Embedding (GEBE), a general bipartite network embedding

(BNE) framework, with four core algorithmic designs that

achieves state-of-the-art performance on very large bipartite

graphs. First, GEBE provides two generic measures that may be

instantiated using three popular probability distributions, such

as Poisson, Geometric, and Uniform distributions, to capture

multi-hop similarity (MHS)/ multi-hop proximity (MHP) between

homogeneous/heterogeneous nodes. Second, GEBE develops a

unified BNE goal to preserve the two measurements of all feasible

node pairs. Third, GEBE includes a number of efficiency strategies

for obtaining high-quality embeddings on large graphs. Finally,

according to the study by Yang et al. (2022b), GEBE performs

best when MHS and MHP are instantiated using a Poisson

distribution, therefore they continued to build GEBEp based on

Poisson-instantiated MHS and MHP with challenging efficiency

improvements.

2.3 Embedding of temporal graphs

A network whose links are not continuously active is referred

to as a temporal network or a time-varying network (Holme and

Saramäki, 2012). Each connection includes its active time as well as

any further details that may apply, including its weight. Traditional

network embedding methods are created for static structures,

frequently taken into account nodes, and face significant difficulties

when the network is changing over time. Various methods for

embedding temporal networks have been proposed in the last years,

e.g., Stwalk (Pandhre et al., 2018), tNodeEmbed (Singer et al., 2019),

Online Node2Vec (Béres et al., 2019), and the Dynamic Bayesian

Knowledge Graphs Embedding model of Liao et al. (2021). In

many methods of temporal network embedding, the traditional

representation of the temporal network is often modified, whether

it takes the form of a list of events, a tensor [as in the method by

Gauvin et al. (2014)], or a supra-adjacency matrix [as in DyANE

algorithm by Sato et al. (2021)]. Each of these approaches, such

as DyANE, Online Node2Vec, STWalk, and tNodeEmbed, share

the common goal of resolving the node embedding issue by locally

sampling the temporal–structural neighbourhood of nodes to

produce contexts, which they then feed into a Skip-Gram learning

architecture adapted from the text representation literature. They

have been used in chemical and biological research studies, e.g. Kim

et al. (2018), Öztürk et al. (2020), Fang et al. (2021), and Gharavi

et al. (2021) and in biomedical language processing (Zhang et al.,

2019b).

Regarding these studies, Torricelli et al. (2020) highlighted

that as a workaround these methods construct a series of

correlated/updated embeddings of network snapshots that take

into account the network’s recent past. Torricelli et al. stated

that the main drawback of these approaches is that it might be

challenging to control a large number of hyper-parameters for

the sampling random walk process and the embedding itself.

The embedding of nodes may, however, fail to capture the

dynamic shifts in temporal interconnections. The performance of

the prediction might be severely hindered by simply considering

past and current interactions in the embedding, whereas bringing
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future occurrences into account can greatly enhance this task.

Torricelli et al. (2020) developed weg2vec to overcome these

limitations. Weg2vec learns a low-dimensional representation of a

temporal network based on the temporal and structural similarity

of occurrences. A higher order static representation of temporal

networks, sampled locally by weg2vec, codes the intricate patterns

that define the structure and dynamics of real-world networks. This

method of unsupervised representation learning can concurrently

take into account an event’s past and future contexts. It samples

without the use of dynamical processes, making it controllable by

a few hyper-parameters. It finds similarities between various events

or nodes that may be active at various periods but have an impact

on a group of nodes that are similar in future.

Finally, the studies by Yang et al. (2022a) proposed a hyperbolic

temporal graph network on the Poincaré ball model of hyperbolic

space; the temporal network embedding using graph attention

network by Mohan and Pramod (2021); the embedding based

on a variational autoencoder able to capture the evolution of

temporal networks by Jiao et al. (2022); ConMNCI by Liu et al.

(2022) that inductively mines local and communal influences.

The authors of ConMNCI suggested an aggregator function

that combines local and global influences to produce node

embeddings at any time and presented the concept of continuous

learning to strengthen inductive learning; the continuous-time

dynamic network embeddings by Nguyen et al. (2018), the causal

anonymous walk representations for temporal network embedding

by Makarov et al. (2022); and TempNodeEmb by Abbas et al.

(2023). To extract node orientation using angle approach, the

methodology by Abbas et al. considered a three-layer graph neural

network at each time step, taking advantage of the networks’ ability

to evolve.

Finally, we mention a study aimed at the possibility of using

embedding methodologies in practice for networks of degree sizes,

i.e., the proposal for parallelising temporal network embedding

procedure by Xie et al. (2022).

2.4 Embedding of multi-label graphs

The graph convolution network (GCN) is a widely-used

method to embed multi-label graphs (Ye and Wang, 2022).

However, Gao et al. (2019), pointed out that for multi-label learning

problems, the supervision component of GCN just minimises the

cross-entropy loss between the last layer outputs and the ground-

truth label distribution, which often misses important information

such as label correlations and prevents obtaining high performance.

In this study, the authors proposed ML-GCN, a semi-supervised

learning approach for Multi-Label classification based on GCN.

ML-GCN first makes the use of a GCN before including the

node attributes and graph topological data. Then, a label matrix

is generated at random, with each row (or label vector) denoting a

different type of label. Before themost recent convolution operation

performed by GCN, the label vector’s dimension was the same as

the node vector’s. In other words, every label and node is contained

within a constant vector space. The label vectors and node vectors

are finally concatenated during the ML-GCN model training to

serve as the inputs of the relaxed Skip-Gram model to identify the

node-label correlation and the label-label correlation.

Another study by Shi et al. (2020), to learn feature

representation for networked multi-label instances, presented an

interesting multi-label network embedding (MLNE) method. The

key to MLNE learning is to combine node topological structures,

node content, and multi-label correlations. To couple information

for successful learning, the authors developed a two-layer network

embedding approach. To capture higher order label correlations,

the authors employed labels to construct a high-level label-label

network on top of a low-level node-node network, with the label

network interacting with the node network via multi-labelling

interactions. Latent label-specific characteristics from a high-level

label network with well-captured high-order correlations between

labels are used to improve the low-level node-node network. In

MLNE, both node and label representations are forced to be

optimised in the same low-dimensional latent space to enable

multi-label informed network embedding.

Recent successful applications of the embedding for multi-label

classification in medical domain is the medical term semantic type

classification (Yue et al., 2019) and the knowledge graph embedding

to profile transcription factors and their target genes interaction

(Wu et al., 2023).

2.5 On the complexity of graph embedding

To conclude this section on graph embedding, we would like to

provide some information about the complexity of the embedding.

Due to the high dimensionality and heterogeneity of real-world

size networks, classical adjacency matrix-based techniques suffer

from high computational costs and prohibitive memory needs. The

computational complexity of adjacencymatrix approaches is at best

O(n2) (where n is the number of nods of the graph).

Random walk-based methods, on the other hand, proved as

more efficient in terms of both space and time requirements

than both matrix factorisation and BFS/DFS-based methods. For

example in node2vec (Grover and Leskovec, 2016), the space

complexity for storing each node’s closest neighbours isO(e) (where

e is the number of edges). The links between each node’s neighbours

need to be stored for 2nd order random walks, incurring a space

complexity ofO(d2n) (here d is the average degree of the graph, and

n the number of nodes). Randomwalks have a temporal complexity

advantage over conventional search-based sampling techniques

too. Random walks, in particular, offer a straightforward way to

boost the effective sampling rate by reusing samples across several

source nodes by imposing network connectedness in the sample

production process.

The increasing of methods for graph embedding obviously

prevents us from making generalisations or categorisations

regarding the complexity of the various methods. Here, we wanted

to report the information in this regard that is confirmed in

the literature. At the moment of writing, and to the best of our

knowledge, systematic studies on estimating the complexity of each

proposed method are very limited, if any, part of the literature on

the subject.

To conclude, we mention the studies of Archdeacon (1990)

and Chen et al. (1993) on the complexity of graph embedding

procedures. It is well-known that embedding a graph G into a
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surface of minimum genus γmin(G) is NP-hard whereas embedding

a graph G into a surface of maximum genus γmax(G) can be done

in polynomial time. Chen et al. demonstrated that the problem of

embedding a graph G with n vertices into a surface with genus at

most γmin(G) + f (n) remains NP-hard, but there is a linear time

algorithm that approximates theminimum genus embedding either

within a constant ratio or within a difference O(n) for any function

f (nǫ) = O(n) where 0 ≤ ǫ ≤ 1.

3 Geometric deep learning

A technique that takes into account a large class of machine

learning issues from the perspectives of symmetry and invariance

is known as geometric deep learning (Bronstein et al., 2017, 2021).

An example provided by R. East in East (2023) intuitively and

effectively explains the concepts of symmetry and invariance in

machine learning. R. East imagines that we are given a learning task

and the data we are using to learn from has an underlying symmetry

and takes as an example of the game of Noughts and Crosses.

East points out that if we win, we would have won if the board

had been rotated or flipped along any of the lines of symmetry.

Moreover, we have two options if we want to train an algorithm

to predict the result of these games: we can either disregard this

symmetry or include it in some way. The benefit of focusing on

the symmetry is that it recognises various board configurations

as “the same thing” as far as the symmetry is concerned. As a

result says East, we can immediately lower the quantity of data,

and our algorithm must sort through by reducing the size of

our parameter space. Our results are also naturally encouraged to

be more generalisable by the fact that the learning model must

encode a symmetry that truly exists in the system we are seeking

to portray.

If we ignore the possibility that the majority of tasks of

interest are not generic and come with necessary predefined

regularities arising from the latent geometry of the physical

system under investigation, learning generic functions in a given

number of dimensions is a cursed estimation problem. Through

unified geometrical concepts that may be used in a wide range

of applications, geometric deep learning aims to exploit these

regularities. Indeed, a powerful and time-tested solution to the

dimensionality curse, and the foundation of most physical theories,

is to take advantage of the system’s recognised symmetries.

Deep learning systems are not different. For instance, researchers

have modified neural networks to exploit the geometry, resulting

from physical measurements, such as grids in images, sequences

in time-series, or position and momentum in molecules, and

their associated symmetries, such as translation or rotation. The

knowledge about the geometry of the physical systems is often

referred to as geometric. These priors include the concepts of

symmetry and invariance, stability, and multiscale visualisations.

In summary, we can define geometric deep learning as a

machine learning technique in which the machine, instructed

by geometric priors, learns from complicated data represented

by graphs or multidimensional points, often in non-Euclidean

domains. Tong in an online study (Tong, 2019) uses a very

effective example to explain the difference between deep learning

and geometric deep learning. He says that “The difference

between traditional deep learning and geometric deep learning

can be illustrated by imagining the accuracy between scanning

an image of a person versus scanning the surface of the person

themselves”.

Cao et al. (2020) go even further in explaining the

difference between deep learning and geometric deep learning

as follows. In several machine learning applications, such as

object identification, image classification, speech recognition, and

machine translation, the deep learning technologies, for instance,

the convolutional neural networks (CNN)s, have produced

exceptional results. Convolutional neural networks, in particular,

leverage the fundamental statistical properties of data, such as

local stationarity and multi-scale component structure, to capture

more detailed local features and information than classic neural

networks. Although deep learning technology is particularly

effective in processing conventional signals such as images, sound,

video, or text, current deep learning research still primarily

concentrates on the aforementioned data that are defined in the

Euclidean domain, i.e., grid-like data. However, as higher data

scales and more powerful GPU computing capabilities emerge,

people are becoming more and more interested in processing

data in non-Euclidean domains. Here, we point out that graphs

are endowed with latent geometry. By virtue of this, nodes

and edges have spatial features, such as coordinates of nodes

and directions along edges, which are geometric relationships

(including distance, direction, and angle) among the entities

for a graph neural network to learn from (see Figure 1 which

suggest first to embed the graph in the least distorting manifold

and then to apply geometric deep learning). In the previous

section, we saw that embedding procedures give an indication

which manifold best describes the latent metric space of the

graph and calculates the nodes’ coordinates and distances in

that manifold. Knowledge of the manifold describing the graph

is thus an additional information that enriches the input for

a neural network. However, manifold learning poses difficult

challenges to traditional deep learning. When describing geometric

shapes, such as the surfaces of objects, the manifold data are

typically utilised. Cao et al. (2020) point out that it is difficult to

identify the underlying pattern in these geometric data because

they may be randomly dispersed and unevenly structured. Non-

Euclidean data typically have an exceptionally vast scale, which

is another problem. A molecular network, for instance, may

include hundreds of millions of nodes. It seems unlikely that

typical deep learning technology can be used in this situation to

perform analysis and prediction. Indeed, geometric deep learning

is much more articulate than traditional deep learning and

involves fundamental building elements, as presented in Figure 2.

The convolution technique, which merges data from nearby

nodes in a graph, serves as their foundation of each of these

elements.

3.1 Applications

In Table 1, we summarize the main categories of the geometric

deep learning and the current main applications of it. Various

applications of geometric deep learning to the study of biological
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FIGURE 1

Geometric deep learning involves encoding a geometric understanding of the graph, e.g., the knowledge of nodes’ coordinates, and their distances

in the latent metric space of the graph, and creates neural networks that can learn from this geometry who, in the majority of the real networks, is

not Euclidean. In spite of the recent flourishing of the application of graph neural networks to biological sciences, a plethora of successful case

studies populate the current literature [see for example the review by Zhang et al. (2021b)].

FIGURE 2

Building blocks of geometric deep learning according to the study by Sivakumar (2023). Graph Convolutional Networks (GCNs) are a particular type

of neural network that may be used to categorise and extract characteristics from data that are graph-structured. The convolution technique, which

merges data from nearby nodes in a graph, serves as their foundation. Graph Attention Networks (GATs) are a subset of GCNs that employ attention

mechanisms to assess the relative relevance of various nodes in a graph. This enables GATs to process the graph while concentrating on the most

important nodes. Laplacian eigenmaps: By mapping graph-structured data to a lower-dimensional space, a method known as Laplacian eigenmaps

is utilised to reduce the dimensionality of the data. This is accomplished by identifying the eigenvectors of the graph’s Laplacian matrix. Di�erentiable

Pooling: This technique enables for the handling of variable-size graph-structured data by dynamically adjusting the number of nodes in a graph

during the training phase (references in Ying et al., 2018; Li et al., 2021a). Spectral Graph Convolution is a method for handling graph-structured data

that are based on the eigenvectors of the graph Laplacian. It enables the convolving of a signal on the graph by the use of a Fourier space filter (some

references in Zhang et al., 2019a; Salim and Sumitra, 2022). Graph capsules: It is a technique that makes use of a capsule network design to enhance

the functionality of graph-based models (Misra, 2019). A certain class of neural network called capsules may simulate relationships between things.

systems, especially at the level of dynamic interactome, are

beginning to emerge, and we will make special mention of these

in this review.

Pineda et al. (2023) apply geometric deep learning to the

analysis of dynamical process. For their mechanical interpretation

and connection to biological functions, dynamical processes in

living systems can be characterised in order to gain valuable

information. It is now possible to capture the movements of

cells, organelles, and individual molecules at several spatiotemporal

scales in physiological settings to recent advancements in

microscopy techniques. However, the capture of microscopic image

sequences still lags behind the automated analysis of dynamics
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TABLE 1 Categories and applications of geometric deep learning.

Geometric deep learning

Categories Applications

Graph Neural Networks (GNNs). Examples of GNNs include Graph
Convolutional Networks (GCNs) (Zhang et al., 2019a) and Graph Attention
Networks (GATs) (Veličković et al., 2018; Hong et al., 2020; Chen et al., 2022).

Image classification, object detection and segmentation, natural language
processing, structural chemistry, molecule solubility, network node classification,
and recommendation systems.

Manifold-valued Neural Networks (MVNs). Examples of MVNs include
Spherical CNNs (Li et al., 2021b; Su and Grauman, 2021; Scott et al., 2022),
PointNet (Charles et al., 2017), and ManifoldNet (Chakraborty et al., 2022).

Image classification, object detection and segmentation, natural language
processing, and recommendation systems.

Topology and Shape Analysis. Case studies and surveys in the study by Hensel
et al. (2021) and Magai and Ayzenberg (2022).

Analysis of properties of data, such as connectivity, homology, and curvature, is
used in fields such as computer vision, medical imaging, and computational
biology.

When it comes to operating on graph-structured and manifold-valued data, geometric deep learning can be roughly divided into Graph Neural Networks (GNNs) and Manifold-valued Neural

Networks (MVNs). Topology and Shape Analysis, which examines topological and geometric data properties, is another field that can be regarded as a subset of geometric deep learning.

happening in crowded and complicated situations. The authors in

the study mentioned in the reference (Pineda et al., 2023) offer

a methodology built on geometric deep learning that successfully

estimates dynamical properties with accuracy in a variety of

biologically relevant settings. This deep learning strategy makes the

use of an attention-based graph neural network (see in Table 1 for

some literature reference on attention graphs). This network can do

a variety of things, such as to convert coordinates into trajectories

and infer local and global dynamic attributes, by processing object

features with geometric priors.

Drug repositioning is another growing application domain of

geometric deep learning on graphs. Currently, drug repositioning

uses artificial intelligence tools to find new markers of authorised

medications. The non-Euclidean nature of biological network

data, however, is not well accounted for the majority of drug

repositioning computational approaches. To solve this issue,

Zhao et al. (2022) developed a deep learning system called

DDAGDL. It uses geometric deep learning over heterogeneous

information networks to predict drug-drug associations. By

cleverly projecting drugs and diseases that include geometric

prior knowledge of network topology in a non-Euclidean domain

onto a latent feature space, DDAGDL can take advantage of

complex biological information to learn the feature representations

of pharmaceuticals and disorders. The authors in the study

by Zhao et al. (2022) showed that according to experimental

findings, DDAGDL may recognise high-quality candidates for

breast neoplasms and Alzheimer’s dementia that have already been

described by published studies.

Another application of considerable interest in the medical

and biological fields of geometric deep learning was proposed

by Das et al. (2022). The authors start from the consideration

that drug-virus interactions should be investigated in order to

prepare for potential new forms of viruses and variants and rapidly

generate medications or vaccinations against potential viruses.

Despite expensive and time-consuming experimental procedures,

geometric deep learning is a way that can be utilised to make

this process faster and cheaper. Das et al. (2022) offered a new

model based on geometric deep learning for predicting drug-virus

interactions against COVID-19. First, in the SMILES molecular

structure representation (Weininger, 1988), Das et al. employ

antiviral medication data to generate features and better define

the structure of chemical species. Then, the data are turned into

a molecular representation, which is subsequently translated into

a graphical structure that the geometrical deep learning model can

understand.

Exploiting the idea that a molecule can be represented as a

graph whose vertices correspond to the atoms of the compound

and edges correspond to chemical bonds, geometric deep learning

has been also applied for the prediction of molecular structure

in structural chemistry and drug design (Hop et al., 2018; David

et al., 2020; Atz et al., 2021). Geometric deep learning has

been also applied to macromolecular structure (i.e., molecular

graph) in structure-based drug design. Structure-based drug design

identifies appropriate ligands by utilising the three-dimensional

geometric information of macromolecules such as proteins or

nucleic acids. An overview of recent geometric deep learning

applications in bioorganic and medicinal chemistry, emphasising

its promise for structure-based drug discovery and design, is

presented by Isert et al. (2023). The focus of this overview

is on predicting molecular properties, ligand binding site and

posture prediction, and structure-based de novo molecular design.

Similarly, geometric deep learning has been applied on molecular

graph for molecular crystal structure prediction in mentioned in

the study by Kilgour et al. (2023) and the RNA molecular structure

prediction mentioned in the study by Townshend et al. (2021).

Although not directly relevant to the conception of the

structure of a molecule as a graph, an interesting recent application

of geometric deep learning to biomolecular data, which contributes

to create knowledge about the interaction networks between

proteins and other biomolecules, is the study by Gainza et al.

(2019). The rationale of the authors in this study is that it is

still difficult in biology to predict interactions between proteins

and other biomolecules merely based on the structure. On the

basis of their study, the experimental well-consolidated knowledge

is that the molecular surface, a high-level illustration of protein

structure, shows the patterns of chemical and geometric properties

that uniquely identify a protein’s modes of interaction with

other biomolecules. Consequently, Gainza et al. hypothesized that

independent of their evolutionary background, proteins involved

in related interactions may have comparable signatures. Although

fingerprints might be challenging to understand visually, they

can be learned from big datasets. To identify fingerprints that

are crucial for particular biomolecular interactions, the authors

introduced MaSIF (molecular surface interaction fingerprinting),
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a conceptual framework based on a geometric deep learning

algorithm.MaSIF can predict protein pockets with ligands, protein-

protein interaction sites, and rapid scanning of protein surfaces for

protein-protein complex prediction.

Townshend et al. (2021) pointed out that the intricate

three-dimensional configurations that RNA molecules take

on are challenging to measure experimentally or anticipate

computationally. The analysis of the RNA structure is crucial to

find medications to treat diseases that are currently incurable.

A machine-learning technique proposed by Townshend et al.

developed a geometric deep learning technique to enhance

the prediction of RNA structures. Interestingly, the authors

highlighted an important feature of geometric deep learning,

namely, the flexibility of this approach to be suitably adapted to

work with a smaller amount of training data than that required by

traditional deep learning techniques.

Finally, we mention the use of geometric deep learning

techniques in neuroimaging and the study of the brain connectome

(Gurbuz and Rekik, 2020; Huang et al., 2021; Williams et al., 2021),

as well as the study on (i) the relationship of human brain structure

to cognitive function (Wu et al., 2022), (ii) the topographic

heterogeneity of cortical organisation as a necessary step toward

precision modelling of neuropsychiatric disorders (Williams et al.,

2021), (iii) brain aging (Besson et al., 2022).

3.2 Latent geometry and graph
comparison

To compare graphs, it is necessary to define a distance

metric between graphs. This is a very complex undertaking that

necessitates balancing interpretability, computational efficiency,

and outcome effectiveness - all of which are frequently dependent

on the particular application area. It should come as no surprise

that there is a tonne of literature on this subject and that

many various approaches have been suggested (Wills and Meyer,

2020). Tantardini et al. (2019) examined and categorised a variety

of network comparison techniques, emphasising the standards

they adhere to as well as their benefits and limitations. The

set comprises techniques such as DeltaCon (Koutra et al., 2016)

and Cut Distance (Liu et al., 2018) that require known node-

correspondence and techniques such as alignment-based [widely

used in structural chemistry and genomics (Kolář, 2013; Kehr et al.,

2014; Saxena and Xu, 2021; Soltanshahi et al., 2022)], graphlet-

based (Ömer Nebil Yaveroğlu et al., 2015; Faisal et al., 2017), and

spectral methods that do not require known node-correspondence

beforehand, as well as the recently proposed Portrait Divergence

(Bagrow and Bollt, 2019) and NetLSD [Network Laplacian Spectral

Descriptor (Tsitsulin et al., 2018)]. Of these three categories of

methods for comparing graphs, the most closely related to latent

geometry is the category of methods based on spectral analysis

of the weighted adjacency matrix or Laplacian matrix, since the

latent geometry of the network is derived from this. The rationale

behind the use of spectral methods for graph comparison is that by

comparing spectra provide metrics for comparing networks since

the spectrum of a network’s representation matrix (an adjacency

or Laplacian matrix) contains information about its structure. In

particular, the authors of NetSLD made explicit the relationship

between weighted graph adjacency or Laplacian matrix and latent

geometry through metaphors introduced by Günthard and Primas

(1956) and Kac (1966). Spectral graph theory is effective in the

comparison of 3D objects—said Tsitsulin et al. (2018)—but graphs

lack a fixed form, yet 3D objects have an exact low-dimensional

shape. However, a graph can be thought of as a geometric entity.

Günthard and Primas (1956) posed the initial inquiry, “Can one

hear the shape of a drum?” Kac (1966) elegantly posed the same

query “To what extent may a graph (or, in general, a manifold) be

determined by its spectrum?”. Since then, research has revealed that

certain graphs are dictated by their spectrum and that isospectral

graphs typically are isometric. Consequently, spectral graph theory

provides a foundation for graph comparison.

Learning the latent geometry of a network also proves to be

very useful in graph comparison because it can help address some

of the challenges that this task presents. We summarise the main

ones here and then explain how learning latent geometry can

prove useful. First, graph comparison must not care about the

order in which nodes are displayed; this is known as permutation

-invariance. Second, a good method of graph comparison would

make it possible to compare graphs both locally (representing,

for example, the variations in atomic bonds between chemical

compounds) and globally or communally (recording, for example,

the various topologies of social networks). This ability is referred

to as scale-adaptivity. Third, it would identify structural similarities

regardless of network size (e.g., determining the similarity of two

criminal networks of various sizes). This ability is referred to as

size-invariance.

The research in graph comparison is very active today [see

the recent review by Tantardini et al. (2019)], because—as

Tsitsulin et al. (2018) highlights—there is not a method for graph

comparison that meets all three of these criteria. In addition to

these standards of quality, a workable method of graph comparison

should be effectively computable. After preprocessing, it is suitable

to do graph analytics jobs that frequently need pairwise graph

comparisons inside a large collection of graphs in constant time.

Unfortunately, current techniques perform considerably worse in

this regard. Graph edit distance (GED) is a widely used graph

distance; machine learning has utilised graph edit distance to

compare objects when the objects are represented as attributed

graphs rather than vectors. The GED is typically used in these

situations to determine the distance between attributed graphs.

GED is defined as the smallest number of edit operations (such

as the deletion, insertion, and replacement of nodes and edges)

required to change one graph into another (Serratosa, 2021). GED

is NP-hard and APX-hard to compute (Lin, 1994); significant

research in GED-based graph comparison has not been able to

ignore this fact [see a concise but comprehensive state of the art

on this in the study by Tsitsulin et al. (2018)]. Similar to GED,

graph kernel approaches (Borgwardt et al., 2020; Kriege et al., 2020)

do not explicitly represent the graph and and they do not scale

well (Tsitsulin et al., 2018). Identifying the challenges in meeting

the requirements of efficiency, scalability, size, and permutation

invariance, Tsitsulin et al. moved the issue to the spectral realm and

provides an evocative metaphor to clarify their process. Heating

the nodes of the graph and tracking the heat spread over time

is a metaphor. The idea of a system of masses for the graph’s
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nodes and springs for its edges is another helpful metaphor. The

authors (Tsitsulin et al., 2018) claimed that in both scenarios, the

entire procedure embodies more global information with time

and defines the graph in an efficient permutation-invariant way.

They developed the NetLSD that summarises the features of the

(undirected, unweighted) graph by a vector derived from the

solution of the “heat equation” ∂ut/∂ = −Lut , where ut is an

n-dimensional vector and = I − D−1/2AD−1/2 is the normalised

Laplacian matrix. Since L is symmetric, it can be written as L =

838⊤, where 3 is a diagonal matrix of sorted eigenvalues λ1 ≤

λ2 ≤ · · · ≤ λn of which φ1,φ2, . . . ,φn are the corresponding

eigenvectors. Hence, the closed-form solution is given by the n× n

“heat kernel” matrix

Ht = e−Lt = 8e−3t8T

whose entry (Ht)ij is the heat transferred from node i to j at time t.

NetLSD summarises the graph representation in the heat trace

signature as follows:

h(G) =
{

ht
}

t>0 = trace (Ht)

Finally, the continuous-time function ht is converted into a

finite-dimensional vector by sampling over a suitable time interval,

and the distance between two networks G1,G2 is taken as the L2-

norm of the vector difference between h (G1) and h (G2). The time

complexity of NetLSD is O(n3), if the full eigen-decomposition of

the Laplacian is carried out. Specifically, the heat or wave kernel of

the Laplacian spectrum is inherited by the compact signature that

NetLSD derives, thus “it hears the shape of a graph”—said Tsitsulin

et al. (2018).

At the conclusion of this section, some general comments

on the spectral methods are made. Despite their use of ease

and rigorous theoretical foundation, these methods exhibit some

limitations, such as cospectrality between graphs, reliance on

matrix representation, and abnormal sensitivity, wherein slight

alterations in the graph’s structure can result in significant changes

in the spectrum (Tantardini et al., 2019) and vice versa. However,

it is reasonable to think that strategies to manage the sensitivity

to noise or perturbations will not be long in coming, given the

numerous advantages that spectral methods offer compared with

their limitations, first of all the possibility that these methods offer

to efficiently satisfy the three main desiderate of graph comparison

as NetLSD has demonstrated.

4 Challenges and future
developments

A comprehensive review by Cai et al. (2018) outlines the

challenges of graph embedding. In that review, the authors

emphasized how the challenges of embedding a graph rely on the

issue formulation, which entails embedding input and embedding

output. The input to graph embedding algorithms according to

Cai et al. can be categorized into four groups: homogeneous,

heterogeneous, with auxiliary information, and graph built from

non-relational data. The task of graph embedding is complicated

by the fact that different forms of embedding input require

different information to be kept in the embedded space. For

instance, when embedding a graph with only structure information,

the goal is to preserve the connections between the nodes. The

auxiliary information, however, gives graph properties from various

perspectives and may therefore also be taken into account during

the embedding for a graph that has node label or attribute

information. In contrast to the given and fixed embedding input,

the embedding output is task driven – said Cai et al. (2018). For

instance, node embedding depicts nearby nodes as comparable

vectors. Node-related activities such as node classification, node

clustering can benefit from node embedding. However, in some

circumstances, the tasks may pertain to a finer level of a network,

such as node pairs, subgraphs, or the entire graph. Finding an

appropriate embedding output type for the application of interest

is thus the first hurdle in terms of embedding output. Node

embedding, edge embedding, hybrid embedding, and whole-graph

embedding are the four output categories commonly used to

classify graph embedding results. Cai et al. (2018) then continue

by asserting that distinct output granularities are faced with

various difficulties and have distinct requirements for an optimal

embedding. A successful node embedding, for instance, maintains

the resemblance to its surrounding nodes in the embedded space.

A decent whole-graph embedding, on the other hand, depicts a

full graph as a vector in order to maintain the graph’s level of

similarity.

Since the output of embedding is task-driven, we can rightly

imagine that the quality of the output is also contextual to the

task. Consequently, any procedure for evaluating and validating

graph embedding must necessarily refer to particular tasks and

contexts. Regarding applications in biology of graph embedding,

we mention here a study by Yue et al. (2019) that compared

the performance of embedding methods with the purpose of

link prediction. Three significant biomedical link prediction

tasks–drug-disease association (DDA), drug-drug interaction

(DDI), and protein-protein interaction (PPI) prediction–as

well as two node classification tasks–classification of medical

terms according to their semantic types and protein function

prediction–are the subjects of the systematic comparison of

11 representative graph embedding methods as shown in the

study mentioned in the reference (Yue et al., 2019). According

to Yue et al., the results of the test show that current graph

embedding techniques are effective and deserve additional

consideration in biological graph analysis in future. Recent

graph embedding methods achieve competitive performance

without using any biological features, and the learned embeddings

can be treated as complementary representations for the

biological features when compared with three state-of-the-art

methods, namely, DDAs, DDIs, and protein function predictions.

The comparative review by Yue et al. finally offers broad

recommendations for choosing graph embedding algorithms

and configuring their hyper-parameters for various biomedical

objectives.

Graph embedding is proved to be of particular importance for

the prediction of links in a network and, more generally, in all

declinations of network inference (see Saint-Antoine and Singh,

2020 for a review on network inference challenges), a pivotal task
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in systems biology and, more specifically, gene regulatory network

inference and single cell biology. In this regard, Hetzel et al.

(2021) present a viewpoint on learning graph representations that

is specifically inspired by the uses and difficulties of (i) single-cell

biology; (ii) network inference, and (iii) current developments in

spatial molecular profiling. Hetzel et al. (2021) state that single-

cell RNA sequencing provides previously unattainable levels of

resolution and scale for measuring gene expression and enables the

investigation of cellular characteristics. Graphs provide a natural

representation of the system in this setting, both as gene- and

cell-centric. Thus, we foresee the possibility of obtaining highly

informative results from graph embedding of such accurate and

good quality data.

Finally, an additional challenge that graph embedding methods

and geometric deep learning face are the management of noise

in the data. The quality of the input data, as determined by

the value of the experimental uncertainties on edge weights

and/or structural noise that plague them, and the sparsity of

the data are two parameters that affect the quality and thus

the reliability of embedding results and consequently their

geometric deep learning. Some studies are already tried to

address these challenges (Zhang et al., 2012; Pujara et al.,

2017; Fox and Rajamanickam, 2019; Okuno and Shimodaira,

2019; Cheng et al., 2020; Hong et al., 2021; Xia et al.,

2023).

5 Conclusion

In this mini-review, we have reviewed and collected an

abundance of literature on graph embedding techniques and

geometric deep learning methods of great relevance for graph

mining of biological networks and/or biophysical systems that

can be represented as networks/graphs. Since non-Euclidean

data cannot be effectively represented using conventional deep

learning techniques, geometric deep learning offers a significant

advancement in the field of machine learning. Deep learning

models in applied artificial intelligence perform appropriately with

Euclidean data, but they performed with non-Euclidean data.

Because it is usual to find data of this type in biology, biochemistry,

and biophysics, this is a significant problemwhich is the rationale of

the research studies in geometric deep learning. Graph embedding

and geometric deep learning are not two separate methods but can

operate in sequence since graph embedding can provide geometric

information about nodes and/or arcs, which can then be used by

geometric deep learning for more complete, reliable, and accurate

analysis and inference of new knowledge.
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