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Explainable Artificial Intelligence (XAI) has gained significant attention as a means

to address the transparency and interpretability challenges posed by black

box AI models. In the context of the manufacturing industry, where complex

problems and decision-making processes are widespread, the XMANAI platform

emerges as a solution to enable transparent and trustworthy collaboration

between humans and machines. By leveraging advancements in XAI and catering

the prompt collaboration between data scientists and domain experts, the

platform enables the construction of interpretable AI models that o�er high

transparency without compromising performance. This paper introduces the

approach to building the XMANAI platform and highlights its potential to resolve

the “transparency paradox” of AI. The platform not only addresses technical

challenges related to transparency but also caters to the specific needs of the

manufacturing industry, including lifecycle management, security, and trusted

sharing of AI assets. The paper provides an overview of the XMANAI platform

main functionalities, addressing the challenges faced during the development

and presenting the evaluation framework to measure the performance of the

delivered XAI solutions. It also demonstrates the benefits of the XMANAI approach

in achieving transparency in manufacturing decision-making, fostering trust and

collaboration between humans and machines, improving operational e�ciency,

and optimizing business value.

KEYWORDS

explainable AI, XMANAI platform, manufacturing industry, business value, decision-

making, Fuzzy Cognitive Maps

Introduction

Explainable AI (XAI) models belong to the class of models that provide insights into how

an AI system makes predictions and executes its actions. In recent times, these models have

gained significant attention due to their transparency and interpretability in domains such

as finance and healthcare. However, such models often fail to successfully address complex

problems in highly dynamic environments with multiple parameters involved (Lampathaki

et al., 2021). This poses a major challenge in using these models in industrial settings such
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as manufacturing. In those cases, achieving a balance between

transparency and accuracy in XAI systems is crucial, as there is a

trade-off between these aspects.

The XMANAI project (www.ai4manufacturing.eu) has defined

a concrete strategy to address this trade-off and provide explainable

yet performant solutions for the manufacturing domain. Several

methods have been identified that lay an underlying foundation to

building this strategy. It includes an efficient and trusted handling

of data along with the possibility of creating pipelines for all XAI

asset lifecycle management. Thereupon, the XMANAI platform

as a prototypical solution is developed to realize and evaluate

this strategy.

The primary goal of this paper is to introduce the approach

used to build customizable XAI solutions for the manufacturing

industries. The key factors considered in building this approach

are security, interoperability, trusted sharing, transparency and

asset lifecycle management. These can be mapped into three

major dimensions to view the XMANAI platform, which are the

Data, Services and AI models. The data dimension introduces the

secure and efficient handling of all major XAI assets including

datasets extracted from themanufacturing operations, AI pipelines,

trained models and explainability results. The services dimension

introduces the means to design, apply and manage XAI algorithms

and the AI models’ dimension gives a peek into the XAI model

paradigm that addresses concrete manufacturing use cases.

The XMANAI platform is developed and deployed as a solution

to specifically address the limitations of traditional AI models in the

context of the manufacturing industry. One of the main challenges

in applying AI in industrial settings is the lack of transparency

and interpretability of black box models (Sofianidis et al., 2021).

In this paper, we present how the XMANAI platform helps to

overcome this challenge, as a secure and trustworthy environment

where data scientists together with business users can create and

customize interpretable AI solutions by combining XAI methods

with domain knowledge. We provide a comprehensive overview

of the platform’s key features and capabilities, highlighting how

it enables the collaborative construction of transparent AI models

that can be understood by agents involved in the decision-making

process. The challenges faced during the development of the

platform are also discussed.

Finally, this paper presents an extensive evaluation framework

by utilizing novel methodologies for assessing business value

and evaluating the impact of AI systems. The extended 6P

methodology and the use of Fuzzy Cognitive Maps provide

valuable insights for measuring the effectiveness and added value

of XAI in manufacturing. By sharing these methodologies, we

aim to facilitate further research and implementation of XAI

in industrial domains. We strive to empower decision-makers,

data scientists, and business users in the manufacturing sector to

make informed decisions, optimize business value, and establish

trustworthy collaboration between humans and machines.

This paper is structured as follows: In Section 2, we provide

an overview of the existing literature on Explainable AI and its

applications in various domains.We identify the gaps in the current

approaches when it comes to the specific challenges faced in the

industrial sector. In Section 3, we present an overview of the

XMANAI approach to the provision of explainable data, models

and services. We demonstrate the XMANAI platform and its key

features that enable the construction of transparent AI models

for manufacturing applications. Section 4 discusses the validation

of business values within the XMANAI pilot demonstrators,

highlighting the extended 6P methodology and a novel method

for assessing business added value using Fuzzy Cognitive Maps.

Finally, in Section 5, we conclude the paper by summarizing the

contributions and discussing future directions for research and

implementation of XAI in manufacturing.

Literature review

Explainable by design methods play a crucial role in enhancing

transparency and interpretability in machine learning (ML) models

(Lipton, 2018). Notable examples found in literature include linear

and rule-based models, decision trees, k-nearest neighbors (KNN),

or Bayesian models (Branco et al., 2023). Each method offers

unique strengths and/or limitations, providing valuable insights

into the decision-making process and AI interpretability.

Linear models provide interpretable outputs by combining

input features linearly. They offer intuitive explanations of feature

contributions, allowing for easy simulation by humans. However,

their simplicity limits their ability to capture complex relationships

present in certain datasets (Hastie et al., 2009). More complex rule-

based models offer transparency through logical rules. However,

as the number of rules increases, the model complexity grows,

potentially leading to a loss of interpretability (Caruana et al., 2015).

Fuzzy rule-based models enhance interpretability by incorporating

fuzzy logic, providing more nuanced decision-making capabilities

(Chimatapu et al., 2018).

Conversely, decision trees offer a graphical approach to

explainability, dividing the data space based on decision rules. They

provide clear visualizations and are applicable to both classification

and regression tasks (Podgorelec et al., 2002). However, decision

trees can become overly complex and prone to overfitting, leading

to reduced generalization performance. Different algorithms offer

varying splitting methods, branching strategies, and loss criteria,

impacting their interpretability and accuracy (Breiman, 1984).

KNN models provide simplicity and interpretability by classifying

data based on the majority class among nearest neighbors, making

them valuable for understanding predictions (Imandoust and

Bolandraftar, 2013). However, KNN models are sensitive to the

choice of distance metrics and the number of neighbors considered,

hence may struggle with high-dimensional datasets.

Finally, and still explainable by design, Bayesian models

establish probabilistic connections between features and outputs,

capturing uncertainty through prior probabilities and likelihood

functions. They offer inherent transparency, allowing the analysis

of variable contributions through directed acyclic graphical

models (Scanagatta et al., 2019). However, Bayesian models can

be computationally intensive and require careful selection of

prior probabilities and model assumptions (Betancourt, 2017).

In summary, each explainable by design method has its unique

characteristics and it is important to understand their strengths and

limitations before selecting an appropriate approach for a specific

application, and acknowledge that trade-offsmust bemade between
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interpretability, complexity, and computational demands to ensure

transparency in machine learning models. However, when dealing

with complex problems encountered in industrial settings, black

box models are often preferred due to their efficiency.

Post-hoc explainability techniques play a crucial role in

understanding the behavior of complex ML models after training

(Guidotti et al., 2019). These techniques provide valuable insights

into how these models arrive at their predictions. They can

be broadly categorized as model-agnostic or model-specific,

depending on their applicability to different types of models (Adadi

and Berrada, 2018; Molnar, 2021). Model-agnostic techniques offer

flexibility by separating the explanation technique from the ML

model itself. They can be applied to any ML model, making them

a versatile choice, particularly when comparing explanations across

different black-box models. However, it’s worth noting that model-

agnostic methods may sacrifice efficiency or accuracy compared

to model-specific techniques, as they do not leverage the specific

features of each model (Ribeiro et al., 2016).

One model-agnostic technique is explanation by simplification

as it involves using a surrogate interpretable model to approximate

the predictions of the initial black-box model (Tritscher et al.,

2020; Seddik et al., 2022). This surrogate model, designed to

be explainable, helps understand the behavior of the initial ML

model and facilitates comparisons. Nonetheless, the accuracy

of this approximation may be limited (Ribeiro et al., 2016).

Another well-known model-agnostic technique is explanation by

feature relevance (Barredo Arrieta et al., 2020; Tritscher et al.,

2023). Its goal is to measure the contribution of each input

feature to the model’s prediction. Various methods fall into this

category, including Partial Dependence Plots (PDP), Individual

Conditional Expectation (ICE), and SHapley Additive exPlanations

(SHAP). They provide insights into the relationship between

the target variable and individual features, enabling users to

gain a deeper understanding of the model’s behavior (Lundberg

and Lee, 2017). Finally, visual explanation techniques are also

model-agnostic and provide visually interpretable explanations of

black-box model predictions (Barredo Arrieta et al., 2020). These

techniques combine visualizations with other methods to enhance

understanding and capture complex interactions among variables.

Common visualizations used in these techniques include box plots,

bar plots, heatmaps, and scatter plots, which help convey the

learned patterns of the model (Molnar, 2021).

Model-specific techniques are tailored to explain specific

models or categories of models. They rely on mathematical

or statistical analyses specific to certain types of models to

extract meaningful reasoning for predictions. For example, tree-

based ensembles, Support Vector Machines (SVM), and Deep

Learning (DL) models often require model-specific explainability

techniques. Tree-based ensembles, such as random forests and

gradient boosting, can be interpreted using techniques like

explanation by simplification and explanation by feature relevance

(Kuralenok et al., 2019; Lundberg et al., 2020). These methods

provide justification for the predictions made by ensemble

models. Explanation by simplification, feature attribution, and

visualizations have been commonly used to shed light on SVM

models and understand how they make decisions (Van Belle

et al., 2016; Shakerin and Gupta, 2020). Similarly, deep learning

models, including Deep Neural Networks (DNN), Convolutional

Neural Networks (CNN), and Recurrent Neural Networks (RNN),

require specialized explainability methods. Feature relevance,

model simplification, and feature visualization techniques are often

used to gain insights into these models and comprehend their

decision-making processes (Samek et al., 2017).

XAI in industry

Industry 4.0 has revolutionized manufacturing by introducing

advanced technology to prioritize customer needs and

customization. This has led to continuous improvements in

quality and productivity. Smart manufacturing and smart factories,

driven by intelligent systems, allow for flexibility inmeeting varying

product demands (Marques et al., 2018). Recent developments in

IoT, Cyber Physical Production Systems (CPPS), and big data have

further enhanced productivity, quality, and process monitoring

in the industry, and AI has become increasingly important in

the transition to the 5.0 paradigm, with more manufacturers

integrating AI into their operations (Ogrezeanu et al., 2022).

Modern industry 5.0 settings rely on a high level of automation

and collaboration between humans and machines. Throughout the

manufacturing production line, various processes are continuously

monitored using multiple sensors and controlled by actuators.

Real-time analysis of these measurements involves the use

of SVM (Doltsinis et al., 2020), random forest (Wang et al.,

2018), CNN, or reinforcement learning (Kuhnle et al., 2021)

models to evaluate the status of each sub-system involved in

a specific process. Peres et al. (2020) identify data availability,

data quality, cybersecurity and privacy preservation, and

interpretability/explainability as key challenges to drive the

industrial adoption of Industrial AI with interpretability tools as

the main catalyzer. Hence, to effectively integrate AI solutions

into such complex and dynamic environments, decision makers

and operators need to monitor the process, understand the

decisions made by AI components through explainability

techniques, and intervene manually when necessary (Rožanec

et al., 2022).

Research confirms that comprehending the inner workings

of ML and deep learning models is crucial for data specialists

and scientists but also for industrial experts. Much work has

been recently developed in the field of XAI for industry, where

explainable and interpretable methods have proven to be successful

in many applications (Ahmed et al., 2022). Schlegel et al.

(2019) and Bharti et al. (2020) are using XAI to interpret ML

algorithms performing time-series analysis for demand planning

and forecasting activities. Production management, such as the

interpretation of the predictive analytics concerning defective

products can also be found in literature (Kharal, 2020). DNN

models have demonstrated strong performance in detecting

defaults using computer vision, as they can identify anomalies

that are difficult or impossible to detect with the naked eye

(Wang et al., 2018). Explanations such as saliency maps provide

visual insights that enable operators to effectively oversee quality

inspection processes.
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Predictive maintenance is another industrial application

where XAI is being widely used. It involves real-time data

collection to monitor the condition of devices and identify

patterns that can aid in predicting and proactively anticipating

malfunctions. Krishnamurthy et al. (2020) proposed an XAI

framework for predictive maintenance in automotive applications,

and Brito et al. (2022) employed anomaly detection and

Shapley additive explanations (SHAPs) for interpreting their fault

detection models. The study conducted by Chen and Lee (2020)

illustrates the synthesis of a range of post-hoc explainability

techniques to elucidate the inner workings of deep CNNs

used for machine bearing fault diagnosis. These works present

valid targeted solutions for specific manufacturing problems.

However, a comprehensive approach enabling not a single

solution but different AI explainability techniques, designed from

the conceptualization phase addressing, security, interoperability,

trusted sharing, transparency and asset lifecycle management is

missing. One way to enhance explainability is to leverage multiple

techniques that complement themselves to make the AI results

more interpretable and transparent.

The XMANAI approach—Explainable
data-models-services

XMANAI set out to develop a holistic approach to develop

robust and insightful XAI pipelines that can assist manufacturers

in their everyday operations and decision-making processes,

considering not only individual components of data, models and

services but their interconnected value, through a collaborative

platform in which different AI explainability techniques are enabled

for a plethora of manufacturing applications.

Data dimension

Having high-quality data is a requirement to create insightful

AI pipelines, however the importance of having common

underlying structure and semantics for these data is not always

obvious. Indeed, even without a common data model, data

scientists can explore, query and understand the available data,

train and evaluate machine learning models.

Using a common data model during data ingestion has many

advantages. It allows the stakeholders that have knowledge over the

data, e.g., business users, to pass this information to the teams that

will be responsible for data analysis. Semantics will thus stay with

the data, ensuring an understanding for the data scientists even

in the first steps of exploration. Spotting anomalies in the data,

developing an intuition as to the expected distributions, creating

meaningful visualizations, anticipating required transformations

and thinking of potentially useful combinations, are among the

processes that become easier based on this availability of data

insights, thus accelerating everyday operations of data scientists

when it comes to exploratory data analysis.

Going a step further, a data model is not only related to the

input data but can be also leveraged for derivative data generated

during data pre-processing, feature engineering and finally results

extraction from the AI models and analysis processes. In this way,

data across the AI pipelines are enriched with semantics conveying

to stakeholders what the data are about and how they can/should

be handled. Having data that essentially “carry their meaning”

directly contributes to the overall explainability of the XMANAI AI

pipelines. A common data model also allows the implementation of

more advanced data validation rules, guarantees data integrity, and

facilitates deployment. Furthermore, data manipulation operations

can be enabled or disabled depending on the data types/units of the

data being used.

Finally, having this common understanding of the data being

used and enforcing certain actions, rules, quality, and security

tests based on commonly agreed upon structures, does not only

facilitate the operations of each stakeholder role in XMANAI,

but provides the foundations for a more productive collaboration

among business users, data scientists and data engineers.

XMANAI graph data model for the manufacturing
domain

After studying some of the existing and commonly used

domain vocabularies, including ISO 10303,1 ISO 15926 (Klüwer

et al., 2008), X3D ontology (Brutzman and Flotyński, 2020),

the XMANAI graph data model has been defined re-using

their core concepts for manufacturing, and is used in various

steps of the XAI pipelines to add semantics to the data. The

XMANAI Data Model describes the nodes, their properties and

relationships. Its current version comprises a total of 48 concepts

spanning across different aspects, processes and entities of the

manufacturing domain, including 3D Representation, Machine

Monitoring, Market (Product and Customer), Production, Quality

Control, andKPI, Sensor data, almost 300 properties andmore than

700 relationships.

Indicative examples of the data model’s usage include

leveraging the defined types and measurement units to help detect

issues in the input data in a timely manner before these are

propagated in training processes, using the available semantics

to enable/disable feature creation and other data manipulation

functionalities accordingly, making feature importance insights

easier to comprehend by keeping the link to the overall structure

and relationships among data. Integrating the data model in the AI

lifecycle is also expected to contribute toward collaboration, as all

stakeholders will have a common view and understanding on the

data and models that drive the AI pipelines.

The knowledge graph manager is a component designed to

provide a clear visualization on how each node correlates with

another and get a better understanding of the model as well as to

get assistance on data mapping activities. Being the data model

represented as a live graph, the Knowledge Graph Manager also

provides the capability to expand and update the model with

new concepts or properties, enabling the initial deployed data

model to evolve through extension of the concepts, properties and

relationships to the dynamic nature of the manufacturing domain.

An overview of the XMANAI Data Model is displayed in Figure 1.

1 ISO 10303-1:2021(en) Industrial automation systems and integration —

Product data representation and exchange; https://www.iso.org/obp/ui/#

iso:std:iso:10303:-1:ed-2:v1:en.
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FIGURE 1

XMANAI data model overview.

XMANAI secure and e�cient data management
and sharing services

Manufacturing industries generate large volumes of

unstructured and sensitive data during their daily operations.

This data belongs to various formats and configurations. To

maximize effective utilization of this data, several methods have

been adopted to build a secure and efficient data management

and sharing system. This system manages processes to import,

store, transform and track data and brings transparency, security

and explainability to the data. In XMANAI, these methods adhere

to not just data generated in industrial surroundings, but digital

assets which includes processed/transformed data, trained models,

explanations, pipelines, scripts, results, predictions and analytical

reports of XAI pipelines. The methods identified to build the

above-mentioned data management and sharing system are

explained below.

Industrial asset ingestion and standardization

Ultimately the practical benefit of the XMANAI platform for

businesses in manufacturing should be an increase of one or

multiple performance indicators, such as product quality or sales

revenue, yielded by applying XAI methods on their own data. This

leads to a context in which access to the most recent data may

directly translate into increased performance of the company. Thus,

an efficiently operating ingestion procedure to feed the data into the

ecosystem of the analytics platform while minimizing information

overflow is desired (Gorawski and Gorawska, 2014). Due to the

lack of cohesion in industrial data, the data ingestion system must

provide the flexibility to integrate heterogeneous data belonging to

various formats and schemas.

As the interoperability of data significantly affects how

efficiently it can be used (Gal and Rubinfeld, 2019), its

standardization plays a major role for data-centered applications.

As explained previously, XMANAI promotes the usage of a

common data model to facilitate operations like the merging of

different datasets, which is the foundation for actions like the

updating of data.

With the goal of providing a standardized data ingestion,

which is flexible, efficient and transparent, XMANAI proposes a

solution involving multiple components with different tasks: The

API data harvester, which is an ETL (Extract Transform Load) tool

that connects to data providing APIs and offers a graphical user

interface, allowing the configuration and automation of harvesting

processes, through which the data gets pulled from the desired

source, transformed and ingested into the XMANAI ecosystem.

For data to be ingested, and stored in binary format, the file

data harvester can be utilized. It will extract the data, transform

it and make it usable for further processes within the XMANAI

ecosystem. The registry is storing all metadata associated with an

asset and providing it to other services like the file data manager

for transparent and efficient data management as well as for the

uploading of data in the form of binary files. Both file data harvester

and API data harvester offer a configurable data conversion tool,

allowing for an individualized transformation of the data into the

XMANAI data model.

Industrial assets provenance

To be compliant in a world, where data security plays an

increasingly important role, data-intensive projects have to make

sure that they have control over their information streams,

involving which changes were introduced to the data, when and
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by whom (Colin et al., 2012). Provenance records are metadata

information of an asset which includes why, where, how, when and

by whom an asset was created, updated, read or deleted. These

records also store information about actions performed on assets

when multiple versions of the same asset exist in the database.

An efficient version control mechanism of assets in the database

goes hand-in-hand with generating provenance information and

scalability of this version control is a major challenge when it comes

to storing large volumes of industrial data.

In the context of XMANAI, assets store with version control

is the centralized database that stores all data assets and includes

the mechanism to store and retrieve multiple versions of an

asset. The provenance engine documents all types of CRUD

(Create Read Update Delete) operations being performed on

versions of data assets, including the timestamp (when) and actor

(who). The respective metadata is being stored in RDF format,

as triplets according to the W3C-PROV Ontology (W3C, 2013)

yielding a continuously expanding knowledge-graph and providing

maximum transparency over the lineage of an asset.

Security, privacy, and trust considerations

In XMANAI, our focus is on the security of the data in

motion, data access control, data anonymization and identity

and authorization management. Secure transportation of data is

handled by the transfer protocols that exist in various layers of the

TCP/IP model. To guarantee restrictive access to the critical and

sensitive data assets, Access Control Mechanisms (ACMs) cover

all the authentication and authorization aspects of industrial data.

Identity and authorizationmanagement constitutes of the user with

a digital identity, the Identity Provider (IdP) who generates and

maintains the digital identity and the Service Provider who has the

service that utilizes IdP for the verification.

XMANAI utilizes a policy engine to regulate the access

to data assets with the help of access control decisions for

each access request. Along with it, the Policy editor presents

a user interface through which the asset owner can perform

all access policy lifecycle management activities. Identity and

authorization management performs the registration, verification,

and authentication of users and serves as the identity provider of

the XMANAI platform.

Industrial assets sharing and IPR handling

Industrial assets include digital assets generated in industries

or derived from it. Even though data marketplaces are not a new

term in the current technological landscape, the fear surrounding

them is about losing negotiation power or unknowingly giving

away sensitive data. Another critical aspect for such marketplaces

is efficient handling of data breaches. Intellectual property rights

(IPRs) are licenses that formulate decisions related to industrial

data access and data sharing. It helps to safeguard the rights of

the data owners over their property. As aggregation of multiple

datasets is common in building XAI pipelines, if they are licensed

under different licenses containing several terms and conditions,

IPR conflict resolution is a challenge that needs attention.

XMANAI proposes a XAI marketplace for assets sharing that

includes a Metadata Manager and a Contract Manager. Metadata

manager stores and maintains the metadata of assets along with

the licensing details such as license type and IPR owner. Contract

manager controls asset sharing between organizations and its users.

It allows the creation of smart contracts, terms enforcement and

other interaction between users.

Services dimension

To realize its goal of bringing explainable AI to the

manufacturing domain in an effective manner, XMANAI offers

the means to design, apply, and manage different XAI algorithms

to a plethora of different manufacturing applications. The

provision of robust and insightful XAI algorithms that can

assist manufacturers in their decision-making processes, goes well

beyondMLmodels’ training by data scientists working in isolation.

The next two sections present the services that have been already

delivered by XMANAI to handle the complete lifecycle of these

algorithms through XAI pipelines, and the role visualization and

collaboration play in this regard to help fuse XAI insights into the

manufacturing operations.

XAI algorithm lifecycle management
An important aspect of developing machine learning solutions

is that training and applying algorithms is only part of, and not

the complete process, as well as the fact that the delivery of

the trained algorithm is not the final step. Starting from data

understanding through exploration, moving to model training and

evaluation, and then to production application and monitoring,

whilst foreseeing feedback loops and risk management, the lifecycle

of the ML algorithm is in fact the lifecycle of the pipeline through

which it is created. These pipelines in XMANAI build upon the

industrial data ingestion and the common domainmodel presented

in the previous section, and a set of interconnected, yet modular,

services is provided for their design, management and deployment.

Establishing the processes to fuse explainability across the complete

pipelines’ lifecycle has been a core goal in the design of the services

and the components that offer them, namely:

(i) The XMANAI interactive data exploration and

experimentation tool (IEET) that covers the essential role of

experimentation in data science. A typical ML pipeline consists

of a sequence of steps, like data preprocessing, model selection,

hyperparameters tuning, and XAI techniques. For determining

the appropriate approach in each step, data scientists typically

need to familiarize themselves with the dataset’s characteristics

and apply multiple try-error iterations. IEET helps data scientists

gain valuable insights to make informed decisions for subsequent

pipeline steps. IEET follows the typical Notebook paradigm,

offering a set of predefined environments and templates which can

be optionally used to accelerate the experimentation process.

(ii) The XMANAI data preparation engine, which allows

users to define and configure various data processing steps,

spanning from filters and dataset combinations to mathematical

operations, to information extraction and feature engineering.

The core scope of this component is to apply the necessary

transformations to render the data suitable for visualization and

model training purposes.

Model selection, configuration, training and application

functionalities are provided through the (iii) XAI model

engineering engine, which allows training a model from scratch or

re-training it from a previously completed experiment, configuring
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its hyperparameters and validation strategy and visualizing its

training metadata. The XAI Model Explanations Engine oversees

the configuration and application of the appropriate explainability

methods, as well as the visualization of the generated explanations

from a scientific perspective, while also offering simplified versions

for less technical users.

(iv) The XMANAI experiment tracking engine that is based

on MLFlow and enables logging of experiments’ metadata

(performance metrics, corresponding hyperparameters and other

artifacts) and performing comparisons in the performance of

various trained models across selected dimensions.

(v) The pipeline designer, which lies at the heart of the

XAI pipelines, as it enables and coordinates the collaboration of

different stakeholders (business experts, data scientists and data

engineers) and team members across the various steps of the

pipelines. Through the pipeline designer, users can graphically

select, configure and link steps from the numerous services

(data preparation, feature generation, prediction model training,

explainer model training, explanation request, etc.) to create a

chain of functionalities up to storing derivative assets, including

for prediction results and generated explanations. Discussion

functionalities are offered at the pipeline and at the step level

fostering collaboration among stakeholders.

(vi) The execution and orchestration engine, for scheduling and

executing XAI pipelines based on the specified execution modality,

cloud or on-premise, and predefined environment. It generates the

necessary information to create the actual pipeline, utilizing the

configuration provided by the Pipeline Designer.

(vii) The pipeline serving and monitoring engine that takes

care of deploying the pipelines in a production-ready manner with

appropriate settings. It also monitors the performance of these

pipelines, providing valuable insights regarding their operation.

Visualization—Collaboration
Visualization plays a crucial role in the complete lifecycle

of XAI pipelines, providing a common language and visual

representation not only of data but also ML models. Visualizations

are effective tools for communicating and presenting findings to

business users, allowing often complex information to be conveyed

in a clear and intuitive manner. Therefore, visualizations targeting

the end users’ needs are provided tomake it easier for non-technical

audiences to understand andmake informed decisions based on the

insights generated by AI models.

As explained, diverse visualization needs have been addressed

by the delivered interfaces to help untap the XAI potential

in the manufacturing domain. An additional benefit of this

facilitated shared understanding is that it enables effective

communication and collaboration between team members with

different backgrounds and expertise. Data scientists and data

engineers are encouraged, through the provided components’

interfaces, to collaboratively explore and understand data, detect

data quality issues, and make informed decisions about data

preprocessing and feature engineering processes. By providing

visualizations across all phases of an XAI pipeline’s development

process, targeting different needs of all stakeholders, fruitful

discussions are promoted leading to more efficient XAI pipelines,

from design to production. Business users can provide domain

expertise and insights that help interpret these visualizations,

leading to more meaningful and actionable interpretations.

Collaboratively creating and refining visualizations allows data

scientists, data engineers, and business users to align on the key

messages and make data-driven decisions together. Visualizations

allow business users to explore the data and models on their

own, fostering engagement and participation in the decision-

making process.

AI models dimension

XMANAI hybrid XAI model paradigm – coupling
“black-box” ML models to post-hoc explanations

Modern industries present dynamic environments where high-

dimensional, non-linear problems often need to be addressed.

Interpretable by design models such as linear models and Decision

Trees often fail to efficiently address such tasks and are usually

outperformed by complex algorithms such as Neural Networks

and ensemble models. The XMANAI approach to overcome the

“performance vs. interpretability” trade-off is based on the idea

of coupling complex AI models to suitable XAI components that

explain the model’s decisions. Since the AI model is linked to its

(one or more) explainer throughout its lifecycle, the combination

of the two can be viewed as a Hybrid XAI model, consisting of

the original AI algorithm with an additional explainability layer.

Under this approach, “black box” AI models are transformed into

“glass box” solutions for the manufacturing domain, offering to

stakeholders the opportunity for transparent solutions that still

maintain state-of-the art performance.

XAI models catalog
The XMANAI XAI model paradigm is applied to address

concrete use cases in the manufacturing domain put forth by

the XMANAI demonstrators, pertaining to process optimization,

demand forecasting, anomaly detection and semi-autonomous

planning. The proposed set of XAI models are the first to populate

the XMANAI Models Catalog and available on the XMANAI

platform. The design and development of XAI solutions for each

case, comes as the result of collaborative work between XMANAI

data scientists and business users dedicated to:

- Understanding the specific details and context of each use

case, as well as the available data sources to address it.

- Defining the objectives/targets that each AI solution is

expected to achieve, as well as the confidence levels of

acceptable performance based on the company’s needs.

- Identifying the specific needs for explainability to be fulfilled,

i.e., which aspects regarding the response of the AI solution

should be explained in detail to the end user.

Following this meticulous mapping of the use case and its

requirements, XMANAI scientists are able to select an appropriate

ML model to address its solution, while the corresponding XAI

tool is selected based on the ability to provide explanations that

meet the end user’s needs. For example, SHAP values are employed

in cases where feature attributions and interactions should be
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explained both at the global and at the instance level, also providing

information on how feature values (high-low) affect the model’s

predictions. On the other hand, Permutation feature importance

(Brieman, 2001) or a Decision Tree surrogate may be most suitable

in cases where the interest is in explaining the overall behavior of

the model at the global level.

Customization of XAI solutions
The direct outputs of XAI tools, however, are not always easy

to conceive by the various business users, extending from Sales

executives to machine operators. This has been verified within

the XMANAI project by means of Explainability workshops and

questionnaires targeting the business users and their specific needs

for explanations. On the other hand, data scientists and data

engineers lack the necessary domain expertise to fully interpret the

AI models’ explanations in the specific context of the application

domain. Here is where the importance of XMANAI services comes

into play, offering the means to data scientists and engineers to

collaborate with business users over the design and management

of custom XAI solutions. Building on the explainability outcomes

in a way that incorporates domain knowledge and intuition,

interpretable AI systems are created that provide useful insights to

the end users. These solutions, enriched with text/alarm messages

to the operator in natural language, have already been delivered into

dedicated manufacturing applications, tailored to the needs of the

XMANAI demonstrators. The delivered XAI solutions continue to

evolve through constant feedback from the business users, until the

end of the XMANAI project.

XAI model guard
The XAI Model Guard is implementing the XMANAI AI

Security framework, delivering a set of functionalities that enable

the safeguarding of the security and integrity aspects of the

produced AI models. The particular framework is built around the

following main axes: (a) the identification of potential adversarial

attacks against the produced AI models, (b) the assessment of

the risks associated with such attacks and finally (c) the detailed

reporting of the findings to the user for them to take the necessary

corrective actions if needed, based on his/her expertise on the

analyzed ML model. In terms of adversarial attacks, the XAI

Model Guard supports the assessment of the risks associated with

the following attack types: (i) Pre-training (poisoning) attacks in

which adversaries attempt to introduce adversarial data points

to significantly deteriorate the performance of the model and its

ability to classify. (ii) Post-training (evasion) attacks in which

adversaries attempt to modify the input data so that the AI model

cannot identify or deliberately miss-classify specific inputs. (iii)

Backdoor attacks in which adversaries attempt to alter and control

the behavior of the model for a specific input.

The XMANAI platform

Introduction to the XMANAI platform

The current section aims to introduce the novel XMANAI

Explainable AI platform (https://iam.ai4manufacturing.eu),

putting together the methods and components introduced in the

previous sections. The platform utilizes explainable AI models

to instill trust, enhance human cognition, and effectively address

real-world manufacturing problems by providing value-based

explanations. The XMANAI platform empowers manufacturing

stakeholders to solve specific manufacturing problems in a

trustworthy manner, utilizing explainable AI models that offer

easily interpretable value-based explanations for humans. At its

core, the platform offers a catalog of hybrid and graph AI models

that serve as reusable baseline models for addressing various

manufacturing problems or as trained models fine-tuned for

specific issues. These models have already been validated through

four core use cases in the automotive, white goods, machinery,

and metrology industries, utilizing innovative manufacturing

applications and services. The XMANAI platform manages the

entire lifecycle of AI assets, including data uploading, exploration,

preparation, sharing, analysis, as well as the design and execution

of AI pipelines, accompanied by value-based explanations and

visualizations. The integrated XMANAI Explainable AI platform

offers state-of-the-art data handling, data manipulation, and AI

technologies and functionalities. A screenshot of the platform’s

menu appearing to authorized users is presented in Figure 2.

The XMANAI platform architecture

The platform architecture is designed based on the principles

of modular services and comprises of three core tiers, namely: (a)

the XMANAI Cloud infrastructure which constitutes the core part

of the platform and represents the centralized cloud instance of the

XMANAI Platform, (b) the XMANAI On Premise Environments

which represent the parts of the XMANAI Platform that can be

hosted and executed in a private cloud instance of a stakeholder

and (c) the XMANAI Manufacturing Apps Portfolio which is

composed of AI manufacturing intelligence solutions that are

effectively solving specific manufacturing problems. The XMANAI

Cloud infrastructure comprises of (a) the Core AI Management

Platform that provides all the offerings and functionalities of the

platform and is responsible for the design of the data and/or AI

pipelines and the orchestration of their execution; and (b) the

Secure Execution Clusters (SEC) which constitute the isolated

per stakeholder organization spaces which are triggered/spawn

on demand by the Core AI Management Platform, for executing

data and/or AI pipelines. The XMANAI on premise environments

facilitate the execution of the platform’s functionalities on the

stakeholders’ environments based on the instructions that are

provided by the XMANAI Cloud infrastructure in accordance with

the preferences of the stakeholder.

The XMANAI platform’s services are developed and integrated

into eight distinct bundles, ensuring seamless integration

through well-defined interfaces. These bundles facilitate

intercommunication among the services and contribute to

the overall functionality of the XMANAI platform as illustrated in

Figure 3 and include the:

I. Data collection and governance services bundle, residing

on both the XMANAI Cloud infrastructure and the

XMANAI On-Premise Environments. Its primary
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FIGURE 2

XMANAI platform menu page.

FIGURE 3

XMANAI Reference Architecture-Services Bundles Perspective. The star symbol (*) indicates that data anonymizer is based on a standalone tool

(AMNESIA) developed by ATHENA RC.

responsibility is to ensure consistent and well-managed

data collection by configuring and executing appropriate

data handling processes. This bundle securely and

reliably collects data assets and incorporates a provenance

mechanism to track their lifecycle.

II. Scalable storage services bundle, residing on both the

XMANAI Cloud infrastructure and the XMANAI On-

Premise Environments. It facilitates the persistence of

platform assets based on their types and storage locations

(either centralized in the XMANAI cloud or on-premise,

depending on the installation). Additionally, it provides

metadata indexing to optimize query performance and

enhance data discoverability.

III. Data manipulation services bundle, residing on both the

XMANAI Cloud infrastructure and the XMANAI On-

Premise Environments. Its core functionalities include

data explainability and feature engineering. This bundle

enables the derivation and harmonization of knowledge
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from available data based on the XMANAI data model. It

also prepares the data for ML/DL applications, allowing its

usage in training XAImodels and executing XAI pipelines.

IV. XAI lifecycle management services bundle, residing only

in the XMANAI Cloud Infrastructure. It manages XAI

pipelines, encompassing collaborative design, validation,

and handling of the pipelines. This bundle integrates

various functionalities such as data preparation, model

engineering, and explainability, as well as training,

explanation generation, management, tracking, and

evaluation of XAI models, considering performance and

security aspects.

V. XAI execution services bundle, residing on both the

XMANAI Cloud infrastructure and the XMANAI On-

Premise Environments. It is responsible for executing XAI

model/pipeline experiments during the experimentation

phase and deploying XAI pipelines in the production

phase based on user-defined schedules. This bundle

monitors and tracks the execution status in the Secure

Execution Clusters and/or the On-Premise Environments,

ensuring the storage of model/pipeline results and

associated metrics.

VI. XAI insight services bundle, residing on both the

XMANAI Cloud infrastructure and the XMANAI

On-Premise Environments. It facilitates collaboration

between business experts and data scientists and supports

gaining insights throughout different phases of extracting

manufacturing intelligence. This bundle incorporates the

XAI Visualization Engine, which offers novel dashboards

and diagrams to visually represent data, XAI model

results, explanations, and insights, thereby supporting the

entire experimentation process.

VII. Secure asset sharing services bundle, residing only in

the XMANAI Cloud Infrastructure. It enables cataloging

and trusted sharing of data and AI models across

various manufacturing organizations and/or users. These

functionalities are provided through the XAI Marketplace.

VIII. Platformmanagement services bundle, residing only in the

XMANAI Cloud Infrastructure. Its responsibilities include

access control functionalities for data assets based on

providers’ preferences, centralized user management, and

authentication mechanisms for the platform.

Validation of business value in XMANAI

XMANAI pilot demonstrators

The XMANAI project is dealing with a set of underlying

challenges and concerns that are critical for the industrial sector

nowadays, such as:

• The need to reduce the maintenance costs.

• The need to reduce unplanned machinery downtime.

• The need to improve the Quality Control.

• The need to increase the production throughput.

XMANAI aims at bringing the Explainable AI benefits in

different demonstrator cases addressing the above manufacturing

challenges (Figure 4). XMANAI partners have applied the

proposed approach to four industrial pilot demonstrators, enabling

testing and validation of the solutions in real-life settings. As

presented in the next sections, apart from the platform, custom

manufacturing applications are developed for the companies’

on-premise environments.

Demonstrator I. FORD
The Ford manufacturing application focuses on supporting

machine operators and professionals in production facilities

through two key use cases. The first use case involves providing

a holistic overview of the production process, incorporating a

joint representation of production line data and AI-driven product

data predictions. It also includes an anomaly detection system and

workload simulations based on hypothetical input scenarios. The

application aims to alert users to unwanted scenarios and help them

better understand the production process.

The second use case of the Ford application is Automated

Production Planning. It assists in generating planning constraints,

daily production planning, and sequencing, as well as monthly

production planning. The system automatically retrieves data from

the production line to provide a real-time status of operations

and process cycle times. Additionally, it identifies parts of the

production line that may affect predicted output, aiding in

identifying root causes of problems when the predicted output

deviates from the expected (planned) output. A collage of indicative

screenshots of the application (alpha version) are presented in

Figure 5.

Demonstrator II. WHIRLPOOL
The Whirlpool manufacturing application is designed to

enhance the decision-making process for two key stakeholders: the

Central Demand Planning team and the D2C Marketing and Sales

team. This application plays a crucial role in the overall demand

forecasting process, generating the Operational Demand Plan for

Whirlpool EMEA factories and markets. Indicative screenshots of

the application (alpha version) are presented in Figure 6.

Demonstrator III. CNH
The CNH manufacturing application aims to support machine

operators in CNH production facilities when dealing with

unplanned stoppages. By connecting the production line with an

intelligent and explainable system, the application significantly

reduces time and costs related to maintenance and production

stoppages. The application addresses two primary use cases:

anomaly detection, which helps identify unusual events or issues,

and manage/forecast stoppages, allowing for better planning

and mitigation of potential disruptions. Indicative screenshots

of the application (mobile, alpha version) are presented in

Figure 7.

Demonstrator IV. UNIMETRIK
The UNIMETRIK manufacturing application targets

metrology technicians in the areas of Process Optimization

and Semi-Autonomous Planning. This application encompasses
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FIGURE 4

Demonstrators in XMANAI project that will test and validate the XMANAI solution.

two key use cases. The first use case involves Measurement

Plan Optimization, assisting junior metrologists in

their preliminary study of the part to be measured. It

accelerates the process, minimizes costs, and ensures

result consistency.

The second use case focuses on Point Cloud Optimization,

aiming to maximize measurement accuracy and minimize

execution time while maintaining result consistency. The

UNIMETRIK application empowers metrology technicians

with advanced tools and capabilities to improve the

efficiency and effectiveness of their work. Indicative

screenshots of the application (alpha version) are presented

in Figure 8.

The extended 6p methodology

The XMANAI project applies the 6P Methodology evaluation

framework to assess the impact of Explainable AI (XAI) on the

four demonstrators. This framework is built upon the existing

6P Migration Methodology, originally developed by POLIMI and

inherited from the EU H2020′s AI REGIO Project. The primary

goal of the 6P Migration Methodology is to aid manufacturing

enterprises in their digital transformation journey by analyzing the

six key pillars that characterize the production process, including

both technical and socio-business dimensions (Figure 9).

In contrast to the original five-step 6P Migration Methodology,

the XMANAI evaluation framework focuses solely on two

crucial steps:

1. Identification of the AS-IS profile of the manufacturing

enterprise: This step involves analyzing the manufacturing

enterprise’s strategy, competitive strengths, weaknesses, etc.

The current profile is mapped into each dimension and

development stage of every migration pillar.

2. Definition of the target TO-BE profile of the manufacturing

enterprise: The future vision and desired profile of the

manufacturing enterprise are defined, considering links to

business and competitive priorities. This target profile is then

mapped onto each dimension and development stage of the

6P pillars.

The six dimensions of analysis or pillars (referred to as

“6Ps”) include product, process, platform, people, partnership, and

performance, categorized into three technical and three socio-

business pillars. As displayed in Figure 10, each pillar P is composed

of at least six different dimensions of analysis of Industry 4.0

(rows). Each analysis dimension is broken down into five sequential

development stages (columns) from the least to the most advanced

one with respect to Industry 4.0 and AI adoption.

Since the original 6Ps methodology lacked specific dimensions

for AI and Explainability, the XMANAI project introduced four

new dimensions under the People pillar to comprehensively

evaluate AI, especially XAI, implementation and its implications:

• Teaming: Focuses on the interaction between humans and AI

when performing tasks together, ranging from no interaction

to advanced interaction.
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FIGURE 5

Indicative screenshots-FORD manufacturing application.

• AI Integration: Assesses the maturity of AI integration

within production processes and its impact on

the workforce.

• Explainability: Evaluates the transparency of AI models

implemented and the extent to which human users can

understand and trust AI decisions.

• AI Development: Analyzes how AI, including XAI, is

developed and introduced within organizations, considering

internal development, acquisitions from ICT providers, or

collaborative research and development.

The People pillar has been identified as the most

suitable for introducing dimensions related to explainability

since it impacts the trustworthiness and understandability

of algorithms, particularly affecting workers’ interactions

with AI. The XMANAI project uses these dimensions

to measure the impact of explainability on the four

manufacturing demonstrators.

To perform the evaluation, an online questionnaire

is used, capturing both the AS-IS and TO-BE profiles

before and after the adoption of the XMANAI platform.

The questionnaire was followed by one-to-one meetings

with the demonstrators to validate the answers and collect

additional details.

Based on the analysis of the output from the questionnaire

and the meetings, and taking into account the six pillars, a radar

chart has been generated, comparing the AS-IS and TO-BE profiles.

These charts practically visualize the impact on various aspects

of the demonstrators, aiming to understand which areas are most

affected by the adoption of the XMANAI platform. Two exemplary

6Ps radar charts are presented in Figures 11, 12, displaying the

overall impact and the impact on Process pillar respectively.

This evaluation framework allows us to produce a

comprehensive report showcasing the measurable impact of

the XMANAI platform on the pilots. This is essential for

understanding the effectiveness of the XAI features and how they
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FIGURE 6

Indicative screenshots-WHIRLPOOL manufacturing application.

FIGURE 7

Indicative screenshots-CNH mobile manufacturing application.
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FIGURE 8

Indicative screenshots-UNIMETRIK manufacturing application.

FIGURE 9

6Ps digital transformation tool-the six pillars.

enhance the manufacturing processes and interactions between

humans and AI.

A novel method for assessing business
added value with Fuzzy Cognitive Maps

While the previous section introduced the extended 6P

Methodology evaluation framework, which considers the socio-

business dimensions, including the People pillar, to assess the

impact of Explainable AI on the manufacturing demonstrators,

this section, proposes a novel method for assessing the business

added value of AI systems in Industry 5.0. While technical

performance metrics are crucial, they do not provide a complete

picture of the system’s impact on business objectives. The inclusion

of the People pillar, which can be seen as representing business

perspectives, acknowledges the significance of considering human-

AI interaction and the effect of explainability on workers. The

proposed framework aims to bridge this gap by providing a

systematic approach that considers both technical performance

metrics and business objectives. The framework incorporates

XAI and utilizes Fuzzy Cognitive Maps (FCMs) to predict Key
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FIGURE 10

6Ps-the people dimension.

Performance Indicators (KPIs) based on a comprehensive set of AI

and XAI metrics. The methodology involves developing an FCM

model that represents the causal-effect relationships between the

various concepts and simulating different scenarios to evaluate the

impact on KPI values. The proposed framework provides valuable

insights for decision-making and resource allocation, ultimately

leading to optimized business value.

Evaluation framework
The theoretical proposed validation framework integrates

various technical and business perspectives to predict KPIs. For

instance, it could be considered as AI metrics, such as accuracy

(based on R2 score, Mean Absolute Percentage Error (MAPE) or

other metrics), precision, recall, response time etc., as well as XAI

metrics the AI Teaming (the interaction between humans and

AI, and how humans and AI work together to perform tasks),

the Explainability (the level of transparency of the AI models

implemented so that human users will be able to understand and

trust decisions), the AI development (the maturity of a process of

integration of AI within production) etc. FCMs through scenario

analysis employ expert knowledge to construct a model depicting

causal-effect relationships among concepts (inputs and outputs).

Thismethodology facilitates the evaluation of how various variables

impact business outcomes by enabling the exploration of “what-

if ” scenarios and the assessment of changes in input variables (AI

and XAI metrics) and their effects on outputs (KPIs). The choice

of FCMs for the validation framework has multiple advantages

(Kosko, 1991): (a) Modeling Complexity: FCMs are ideal for

complex systems with numerous interconnected variables and

cause-effect relationships, facilitating the representation of intricate

technical and business metric interactions. (These models can be

obtained through various methods (Özesmi and Özesmi, 2004),

including (1) questionnaires, (2) extraction from written texts, (3)

drawing from data depicting causal relationships, or (4) direct

creation through interviews with experts who construct them), (b)

Quantitative Translation: FCMs quantitatively translate qualitative

expert insights into numerical data, enabling simulations and

KPI predictions, (c) Scenario Analysis: FCMs excel in scenario

analysis, allowing researchers to explore variable impacts on

KPIs, aiding decision-making and optimization, (d) Efficiency and

Reproducibility: FCMs provide an efficient, reproducible method

for evaluating AI system impact without repeated interviews

or data collection and (e) Visual Clarity: FCMs offer visual

representations of causal relationships, enhancing understanding

for researchers and stakeholders.

Moreover, this methodology involves four main steps
(Dikopoulou, 2021): determining input and output features,
categorizing the concepts, specifying causal-effect relationships
and simulating the FCM to predict the output values. Specifically,
the first step in the methodology is to identify the relevant input
and output features that contribute to the evaluation of business
value. The second step involves categorizing the concepts into

groups. These categories provide a way to define the qualitative
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FIGURE 11

6Ps overall radar chart-an example.

levels or ranges of each concept, such as Low, Medium, and

High. Experts further refine the categories by aligning them with

numerical values within a range of 0.1 to 1. This process allows for

the quantification of the qualitative linguistic classes into numerical

representations. Next, the causal-effect relationships between the

concepts are specified in a range of−1 and 1. This step requires

expert knowledge and understanding of the domain to determine

how changes in one concept may influence others. Generally, three

possible types of causal relationships between concepts can be met

(Kosko, 1986):

• Positive causality between two concepts Ci and Cj in which

an increase (decrease) on the value of Ci leads to an increase

(decrease) on the value of Cj.

• Negative causality indicates in which an increase (decrease) on
the value of Ci leads to a decrease (increase) on the value of Cj.

• No causal relationship between Ci and Cj.

Finally, the FCM is simulated to predict KPI values based
on different scenarios. The simulation process uses an inference
rule. The well-known inference rule is called rescale and it is
denoted in (1). This rule updates the values of all concepts of the
graph model using a calculation rule such as sigmoid (2). This

iterative process continues until an equilibrium point is reached,

providing insights into how different input features influence the

business value.

V
(κ+1)
i =

(

(2∗V(κ)
i − 1)+

∑n
j=1, j6=i wji∗(2∗V

(κ)
j − 1)

)

(1)

f (x) = 1
1+e−λx (2)

By considering these metrics in conjunction with subjective

KPIs, the proposed framework enables decision-makers to make

informed choices and optimize the overall business value generated

by their AI systems.

Scenario analysis
It is important to note that each FCM model is defined by a

squared weight matrix that captures the causal-effect relationships

between concepts. The weight matrix serves as a fundamental

component of the FCM, encoding the strength and directionality

of the connections among the concepts. Figure 13 illustrates AI

metrics, depicted in brown color, encompassing the R2 score (C1)

and the Mean Absolute Percentage Error (MAPE) (C2). On the

other hand, the XAI metrics, represented in yellow color, consist

of Teaming (C3), Explainability (C4), and AI development (C5).

The output KPIs concepts, denoted in green color, reflect essential
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FIGURE 12

The Process pillar radar chart-an example.

business metrics, including Product Quality (C6), Customer

Satisfaction (C7), and Sales Growth Rate (C8). To simulate the

scenario, the initial vector is set with specific values for selected

input concepts. Blue and red arcs indicate positive and negative

relations between concepts, respectively. Wider and more saturated

arcs represent stronger causal-effect relationships. To predict the

KPI values based on the activated scenario, we employed the “fcm”

R package (Dikopoulou and Papageorgiou, 2017; Dikopoulou et al.,

2018); utilizing the fcm.infer function to simulate the FCM graph

model and generate the KPI outcomes.

For instance, consider a scenario in which the accuracy of the

AI model is intentionally minimized by activating the MAPE (C2)

metric to assess its impact on the KPIs. The FCM model, which

represents the causal-effect relationships between the concepts, is

then simulated. During the simulation, the values of the concepts

are updated based on their causal-effect relationships. For example,

an increase in MAPE may lead to a decrease in AI Teaming, as

errors can cause frustration and distrust among team members.

It may also lead to a greater need for explainability, as users

may require more information to understand and prevent errors.

These relationships influence not significant the KPIs, product

quality, customer satisfaction, and sales growth rate, suggesting

that other factors (the direct) may have a stronger effect on these

business indicators.

The simulation results demonstrated that an increase in C2

metric had a detrimental effect on the values of the KPIs. This

negative impact was observed because the concept C2 had a

negative influence on both C3 and C5. Consequently, an increase

in the C2 metric resulted in decreased values of the KPIs associated

with C3 and C5. However, it is important to note that the KPIs

values were not reduced to zero despite the negative effect of C2.

This was primarily due to the positive influence of C2 on the

concept C4, which in turn had a positive influence on the KPIs.

The simulation process was carried out until the 22 step, and the

resulting predicted values of the KPIs were as follows: C6 had the

lowest value at 0.52 (red), followed by C8 at 0.55 (blue), while the

KPI with the highest medium effect was observed on C7, reaching a

value of 0.58 (green). However, it is important to acknowledge that

the FCMmap and the resulting outcomes do not accurately reflect a

real-world problem. The purpose of the simulation was to illustrate

the behavior of the model within a controlled scenario. Therefore,

the presented values should not be interpreted as indicative of

actual business performance.

By simulating different scenarios and observing the resulting

impacts, decision-makers can gain insights into the complex causal

relationships between the input concepts and output KPIs. They

can evaluate the trade-offs between different factors and make

informed decisions to optimize the overall performance of the

AI system.

Discussion and future work

XMANAI platform – challenges and lessons
learned

The major challenges faced during the design phase of

XMANAI platform’s reference architecture can be divided into
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FIGURE 13

The simulation procedure of the FCM graph model activating in the initial vector one input concepts (C2-MAPE).

two main axes: (a) the integration challenges and (b) the

XAI challenges.

From the integration perspective, the complexity of the

integration process is amplified due to the XMANAI platform’s

reference architecture comprising three tiers situated in different

network locations (cloud vs. on-premise installations). These tiers

incorporate eight distinct service bundles with a total of 12 different

components. Successful and seamless integration across these layers

is essential to enable proper intercommunication and interaction

for the desired platform functionalities. However, the integration

process is complicated by the utilization of diverse state-of-the-

art technologies and tools within each service bundle. These

technologies and tools have varying levels of maturity, specific

programming language peculiarities, and limitations, further

adding to the complexity of integration. Additionally, AI pipelines

require modularity in their underlying components, but they also

exhibit strong dependencies necessary for effective management

of the machine learning development and deployment lifecycle,

posing an additional challenge.

From the perspective of XAI, the collaborative preparation

of AI for business problems becomes increasingly complex, as it

involves iterative exchanges between data scientists and business

users. Ensuring that XAI pipeline results are comprehensive

and leveraging relevant manufacturing data requires constant
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iterations. Moreover, presenting AI insights in an understandable

and explicit manner that caters to the perspective of the business

user is crucial. However, the current state of available XAI

solutions and approaches is not yet mature enough, necessitating

further research in many areas. The formalization of the nature,

structure, and format of explanations, as well as the definition

of concrete metrics to assess their utility and added value for

different stakeholders, remains an open challenge (Kim et al.,

2021). Furthermore, the trade-off between model explainability

and performance is yet to be effectively resolved. It is worth

noting that more understandable models may sacrifice accuracy

(Došilović et al., 2018). Deep learning models, in particular,

present challenges in achieving explainability (Barredo Arrieta

et al., 2020). Non-image, non-text, and other heterogeneous data

types such as sequences, graphs, and spatio-temporal data also

lack comprehensive explanations within AI (Saeed and Omlin,

2023). While considerable research efforts have focused on the

development lifecycle of machine learning models, including

training, deployment, and management, there is a lack of support

for explainability features in this lifecycle. Additionally, further

research is needed to address scalability issues in existing XAI

models and methods, as the computational requirements for

multivariable problems can be significant. Overall, the design

phase of the XMANAI platform faced notable challenges in both

integration and XAI, requiring careful consideration and additional

research to efficiently overcome these obstacles and achieve a

successful implementation.

Practical implications and future
perspectives of the proposed validation
framework

The proposed validation framework addresses the gap in the

literature by integrating technical and business perspectives for

evaluating the business value of AI systems in Industry 5.0.

By utilizing FCMs and incorporating AI and XAI metrics, the

framework offers valuable insights for organizations seeking to

optimize their operations. The integration of technical performance

metrics, XAI metrics, and subjective KPIs allows decision-makers

to consider a comprehensive set of factors when evaluating the

impact of AI systems on business value. Generally, the framework

provides a promising approach to effectively evaluate and optimize

AI systems in Industry 5.0, leading to enhanced business value

and competitiveness. In the subsequent sections of our research,

we will examine additional, alternate practices and frameworks

for assessing business-added value, taking into account their

specific advantages and disadvantages. Our objective is to provide

a well-rounded analysis that acknowledges the diversity of all

available approaches. However, further research and operational

validation to the XMANAI use-cases are necessary to fully assess

the effectiveness and applicability of the proposed framework in

additional diverse industry contexts (beyond the scope of the four

industrial cases where it has been already applied). Nonetheless,

this work provides a significant step toward bridging the gap in the

literature regarding the evaluation of business value in Industry 5.0.

Conclusions

This paper presented the XMANAI concrete approach

as a solution to mitigate the challenges associated with

transparency and interpretability in black box AI models

within the manufacturing industry. By leveraging advancements

in Explainable Artificial Intelligence (XAI) and exploiting the

functionalities of the XMANAI platform, “glass box” AI models

have been successfully constructed to exhibit a high degree of

transparency while maintaining commendable performance levels.

The XMANAI approach has overall contributed to the long-

standing “transparency paradox” of AI by fostering transparent

and trustworthy collaboration between human operators and

machine systems.

In addition, the paper highlighted that the XMANAI platform

has not only tackled technical challenges related to transparency

but has also catered to the industry-specific requirements of

manufacturing, encompassing vital aspects such as lifecycle

management, security, and the secure exchange of AI assets.

The platform demonstrated its significant potential in realizing

transparency in manufacturing decision-making processes,

fostering trust and collaboration between human operators and AI

systems, enhancing operational efficiency, and optimizing overall

business value. Through a synergistic incorporation of advanced

Explainable AI techniques and the sophisticated features of the

XMANAI platform, demonstrators within the manufacturing

industry have been empowered to embrace and deploy AI

technologies while ensuring transparency, interpretability, and a

human-centric approach to decision-making.

Overall, this paper has emphasized the importance of

transparency and explainability within the manufacturing

industry and demonstrated how the XMANAI approach

has comprehensively contributed to addressing these critical

challenges. The outcomes clearly illustrated the significant

potential of the adopted strategy in facilitating transparent and

trustworthy collaboration, optimizing decision-making processes,

and unlocking the full benefits of AI in the manufacturing domain,

thus paving the way for a future where humans and AI systems

work hand in hand toward mutual success.
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